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1 Introduction

Sleep is a fundamental aspect of the circadian rhythm that 
is unique to each person and is comprised of various stages 
with associated autonomic nervous system activities. Dur-
ing sleep, the body repairs vital systems, and the sleep pro-
cess significantly impacts memory consolidation, physical 
development, learning, emotion regulation, and overall life 
quality [1]. However, despite the critical role that sleep plays 
in maintaining physical and mental health, there remains a 
lack of consensus regarding the best criteria for determining 
sleep quality [2]. Furthermore, various factors can impact 
sleep quality, and non-restorative sleep is widely acknowl-
edged as one of the most frequently reported reasons for 
seeking medical consultation [3]. This highlights the need 
for a clearer understanding of what constitutes good sleep 
and the mechanisms underlying sleep disturbances.

It is anticipated that the evaluation of sleep quality will 
emerge as a significant aspect of medical diagnosis in the 
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This study conducted a systematic review to determine the feasibility of automatic Cyclic Alternating Pattern (CAP) 
analysis. Specifically, this review followed the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA) guidelines to address the formulated research question: is automatic CAP analysis viable for clinical applica-
tion? From the identified 1,280 articles, the review included 35 studies that proposed various methods for examining CAP, 
including the classification of A phase, their subtypes, or the CAP cycles. Three main trends were observed over time 
regarding A phase classification, starting with mathematical models or features classified with a tuned threshold, followed 
by using conventional machine learning models and, recently, deep learning models. Regarding the CAP cycle detection, 
it was observed that most studies employed a finite state machine to implement the CAP scoring rules, which depended on 
an initial A phase classifier, stressing the importance of developing suitable A phase detection models. The assessment of 
A-phase subtypes has proven challenging due to various approaches used in the state-of-the-art for their detection, ranging 
from multiclass models to creating a model for each subtype. The review provided a positive answer to the main research 
question, concluding that automatic CAP analysis can be reliably performed. The main recommended research agenda 
involves validating the proposed methodologies on larger datasets, including more subjects with sleep-related disorders, 
and providing the source code for independent confirmation.
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near future. However, as a multifaceted construct, the natu-
ral complexity of sleep makes it difficult to capture its pro-
cesses using a single measure [4]. Thus, it is necessary to 
adopt a multivariable approach that incorporates a diverse 
range of predictors, considering variations in sleep quality 
that include age and gender information. Previous studies 
have reported that metrics based on the duration, intensity, 
or uninterrupted nature of sleep (continuity) have a limited 
correlation with subjective assessments of sleep quality 
from the previous night [5]. Alternatively, stability-based 
measures may have greater significance for future medical 
diagnoses of sleep quality [2].

In light of these findings, the analysis of sleep micro-
structure emerges as a crucial aspect in evaluating sleep 
quality. One particularly significant piece of this analysis 
is the identification of the Electroencephalogram (EEG) 
Cyclic Alternating Pattern (CAP) [6], which plays a cen-
tral role in assessing sleep microstructure. CAP refers to a 
repeating pattern of changes in brain activity that occurs 
during sleep and is associated with various markers of 
sleep quality, including sleep fragmentation and instabil-
ity. The CAP cycles are composed of alternating activation 
(A-phase) and quiescent (B-phase) phases that last from 2 
to 60 s. The A-phase is characterized by a sequence of tran-
sient EEG variations, while the B-phase indicates the recov-
ery of background EEG activity. Additionally, the A-phase 
can be further classified into three subtypes that play differ-
ent roles in the sleep process, having distinct amplitude and 
spectral characteristics in the EEG signal. The first, named 
A1, is characterized by high-amplitude slow waves, while 
the third, denoted as A3, is the opposite. The second, enti-
tled A2, represents an intermediate state between the two 
subtypes [6].

Research has demonstrated that pathological conditions 
can alter the characteristics of the subtypes, highlighting the 
importance of examining the CAP pattern and subtype char-
acteristics in assessing sleep quality. Such analysis can pro-
vide valuable insights into the stability and fragmentation 
of sleep and help to identify markers of sleep disturbances, 
enabling the development of effective strategies for promot-
ing good sleep health.

It is imperative to observe that the division of sleep into 
a limited number of sleep stages, despite its simplicity, is 
based on possible obsolescent knowledge about the sleep 
process [7]. As a result, the metrics estimated based on sleep 
macrostructure can be considered a rough estimate of sleep 
quality, as they are based on a synthetic segmentation of the 
continuous sleep process. Sleep microstructure provides a 
much more in-depth understanding of sleep, as it is based on 
a second-by-second analysis of transient and phasic events 
[8]. However, this increased resolution also brings the chal-
lenge of augmented complexity in the analysis, requiring a 

longer duration for a human operator to perform a full-night 
sleep examination. To overcome this challenge, it is crucial 
to automate the examination process to make sleep assess-
ment based on sleep microstructure metrics a feasible pos-
sibility [9]. As a result, a fundamental uncertainty is whether 
automatic CAP analysis is viable. Hence, the formulated 
research question was: is automatic CAP analysis viable for 
clinical application?

The goal of this research is to address this query, consider-
ing that the examination of CAP, along with other measures 
of sleep microstructure, can provide a more comprehensive 
understanding of sleep, enabling the identification of sleep 
disturbances and the development of effective interventions 
for promoting good sleep health [10]. A review article was 
published on automatic CAP methods analysis [11], discuss-
ing the performance of automated tools for CAP analysis. 
Although highly relevant, that review is limited to the per-
formance analysis. Contrarily, this article presents a com-
prehensive study that not only evaluates the performance of 
automated tools for CAP analysis but also extends its scope 
to survey additional articles, encompassing clinical applica-
tions and aspects of interpretability. By examining research 
trends, utilized features, and models, this article aims to find 
an answer to the formulated research question.

Whilst a deconstruction of arousal circuitries in the 
human brain is in its infancy, with its cortical and subcortical 
sources remaining elusive [12–14], the CAP phenotype may 
provide an indirect fundamental biomarker of its activity 
[14–17]. Moreover, there is growing evidence that CAP and 
arousals underwrite the basic mechanisms of sleep regula-
tion, with subtype A1 contributing to the build-up and con-
solidation of deep slow-wave sleep (SWS), whilst subtypes 
A2 and A3 contribute to the onset of rapid eye movement 
(REM) sleep or wakefulness [15], which is also in keeping 
with findings from recent animal studies [18].

Therefore, for future clinical approach, it might be 
beneficial in some instances to target various subtypes of 
CAP, for instance, via new neuromodulation technologies 
or pharmacotherapy [14]. Moreover, it is likely that abil-
ity to record a baseline (untreated) EEG CAP phenotype 
in majority of sleep or neuropsychiatric disorder would 
enable a more individualized approach to be developed. For 
instance, in past, it has been shown that cognitive reserve, 
daytime sleepiness, affective/mood symptoms and OSA-
severity may all dictate the distinct CAP profile in individ-
ual patients [14, 17, 19]. Thus, the baseline (untreated) CAP 
profile may also shape any individualized response to the 
future treatment in those disorders.

In this background, a systematic literature review was per-
formed to examine the various methodologies for automatic 
CAP analysis. The study aimed to evaluate the prior work 
in this area and to identify current trends and advancements. 
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Considering the existing research and technology in this 
area, the review aimed to provide insights into the potential 
of these methods to transform the way sleep is analyzed and 
understood. The organization of this article is as follows. 
Section 2 presents the methods utilized in conducting the 
systematic literature review. Section 3 examines the stud-
ies included in the review, summarizing the methodology 
employed in each work. Section 4 consists of an analysis of 
the performance of the methods, and Sect. 5 concludes the 
article by presenting the main findings and highlighting the 
research agenda for future investigations.

2 Materials and methods

This section aims to provide a comprehensive overview 
of the process used to search and analyze the articles. This 
review study followed the 2020 Preferred Reporting Items 
for Systematic reviews and Meta-Analyses (PRISMA) 
guidelines [20] to ensure that the examination is reproduc-
ible. Therefore, the eligibility criteria used to determine 
which studies to include or exclude are presented, specify-
ing the data sources, the method of data collection, and the 
selection process.

2.1 Search procedure

The systematic article search was conducted using three 
leading databases: Web of Science, PubMed, and the Insti-
tute of Electrical and Electronics Engineers (IEEE). These 
databases were selected as they offer comprehensive cover-
age of articles from multiple publishers in various fields, 
thereby providing a thorough search for the intended topic 
(automatic methods for CAP examination). The Web of Sci-
ence indexes an extensive collection of articles from mul-
tiple domains, while PubMed focuses on biomedical and 

life sciences. On the other hand, the IEEE database provides 
specialized coverage of engineering development analysis. 
The combination of these three databases offers a compre-
hensive and complementary search.

The database search was carried out on January 21st, 
2023, and aimed to identify all relevant articles aligned with 
the search strings presented in Table 1. The search keywords 
used in the search string were chosen to reflect the topic of 
interest, focusing on sleep patterns and the two most com-
mon word derivations associated with CAP (“cyclic alter-
nating pattern” and “CAP”), alongside with “A phase”. 
Additionally, the keywords “automatic” and “classifica-
tion” were included to emphasize the focus on automatic 
procedures in the analysis. The number of results for each 
search string is presented in Table 1, and the total number of 
articles found in all databases was 1,280. Among these, 635 
were duplicates; thus, the total number of unique articles 
was 645.

2.2 Eligibility criteria

The initial screening of the 645 articles was performed by 
two scorers, who reviewed the title and abstract of each arti-
cle to determine its relevance. The inclusion criteria for the 
articles were: the article must describe an automatic analy-
sis of CAP, including the classification of A phases, A phase 
subtypes, or CAP cycles, and be written in English. Articles 
that only classified the onset or offset of the A phase were 
not considered for inclusion, as such a method does not pro-
vide information about the entire A phase length. After this 
screening process, a total of 56 articles were selected for 
further examination.

Eight articles whose method does not examine the EEG 
sensor were not considered for the review as they employ 
an indirect analysis regarding the presence of CAP [21–
28]. Articles that examined CAP’s signal characteristics 
but did not provide a fully automatic methodology for A 
phase, A phase subtypes, or CAP cycle classification were 
also excluded. As a result, 35 studies were selected for the 
systematic review. The PRISMA procedure is depicted in 
Fig. 1.

The distribution of the selected articles based on their 
year of publication is presented in Fig. 2. From this figure, it 
is evident that the search for methods for automatic analysis 
had already lasted for over two decades. It is also noticeable 
that there was a nearly stagnant period until 2010. However, 
interest was resurgent after that, largely due to the advance-
ments in machine learning algorithms and the ability to pro-
cess larger data sets. This tendency was accelerated after 
the year 2018 as more than half of the articles (20) were 
published in the past five years, indicating the significance 
of the topic and the requirement for a comprehensive review 

Table 1 Number of results for each search string in the examined data-
bases
Search string Number of results

Web of 
Science

PubMed IEEE

sleep – AND – cyclic alternating pat-
tern – AND – automatic

67 31 15

sleep – AND – cyclic alternating pat-
tern – AND – classification

73 37 18

sleep – AND – A phase – AND 
– classification

401 19 98

sleep – AND – A phase – AND 
– automatic

187 20 49

sleep – AND – CAP – AND 
– classification

74 39 29

sleep – AND – CAP – AND 
– automatic

65 36 22

Total 867 182 231
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performance metrics reported by the articles were included 
but not further analyzed.

3 Results

This section summarizes the included articles, presenting 
their methodologies and results. It is divided into three sub-
sections, following the evolution of automatic classification 
approaches, from threshold-based classifiers to the conven-
tional machine learning models, concluding with the deep 
learning models. The results are summarized in Tables 2 
and 3, and 4 for the A phase classification, A phase subtypes 
estimation, and CAP cycle detection, respectively. Most 

that can consolidate the knowledge, highlight the trends, 
and identify new directions for exploration.

2.3 Performance analysis

As most studies included in the systematic review employ 
machine concepts and learning algorithms, four standard 
performance metrics were considered to assess the rele-
vance of the method’s performance since these were previ-
ously shown to be suitable for comparing dissimilar works 
in a review [29]. Specifically, the metrics were Accuracy 
(Acc), Sensitivity (Sen), Specificity (Spe), and Area Under 
the receiver operating characteristic Curve (AUC). Other 

Fig. 1 PRIMA flow diagram of the performed systematic review
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alpha, 8–12 Hz, sigma, 12–15 Hz, and beta, 15–25 Hz). The 
descriptors were computed by averaging the amplitude val-
ues of two time intervals, a long interval of 64 s and a short 
interval of 2 s, every 0.5 s. The computation was then given 
by (short average − long average) / long average, providing 
a normalized measure to describe how much the instanta-
neous amplitude differed from the background amplitude. 
These features were also used by Barcaro et al. [35]. Largo 
et al. [36] further extend this idea by proposing an activity 
index that computes two moving averages, one short and the 
other long, from EEG bands (the standard bands with the 
delta band in three sub-bands, from 0.5 to 1 Hz, 1–2 Hz, and 
2–4 Hz) obtained from a discrete wavelet transform.

Mariani et al. [37] further analyzed the band descrip-
tors (the conventional bands with the delta subdivided into 
low, 0.5–2 Hz, and high, 2–4 Hz). They also utilized the 
differential variance of the EEG signal (calculating the dif-
ference in variance between consecutive windows) and 
Hjorth descriptors in the low delta and high delta bands. 
These Hjorth descriptors were activity (variance of the sig-
nal segment) and mobility (the square root of the ratio of the 
activity of the first derivative of the signal to the activity of 
the original signal). It was concluded that differential vari-
ance provides the highest Acc and Spe. Mariani et al. [38] 
first segmented the EEG signal using a FeedForward Neural 
Network (FFNN) to separate the Non-Rapid Eye Movement 
(NREM) sleep. Then, they used the previously mentioned 
features (5 band descriptors, Hjorth activity, and differential 
variance) for A phase analysis and applied the CAP scoring 
rules to identify the CAP cycles. Machado et al. [40] exam-
ined subjects with Nocturnal Frontal Lobe Epilepsy (NFLE) 
and computed for the five standard EEG bands the bands’ 
descriptors and the Teager Energy Operator (TEO). It was 
concluded that the best performance for A1 and A2 subtypes 

works used the CAP sleep database in the examination [6, 
30]. Although some works are certain to be using samples 
from this database, since they have not explicitly mentioned 
it, it was not indicated highlighted in the table as using data 
from that database. Likewise, some works report which sub-
jects from the database were used, but without specifying 
the demographic characteristics. Hence these characteristics 
were not included in these works.

3.1 Threshold-based methods

EEG exhibits complex patterns and generates substantial 
data during a full night examination. Several of these pat-
terns are associated with CAP [10] and comprise amplitude 
and frequency characteristics. A total of 10 studies propose 
to automate the CAP analysis by relying on custom thresh-
olds to identify the A phases [31–40]. Lima and Rosa [31] 
proposed a method that relied on an EEG signal model 
and looked for changes in the squared signal to detect the 
A phase. Afterward, a Finite State Machine (FSM) was 
employed for the CAP cycle detection. Rosa et al. [33] 
also used an FSM for CAP cycle detection, but employed a 
method based on a matched filter with a variable length and 
relative amplitude sliding template to detect A phases and 
then determined the end of these phases using a convolu-
tion-based procedure. Nevertheless, modeling EEG signals, 
which are complex and generate large amounts of data dur-
ing a full-night examination, present a difficult challenge.

There is a need to identify characteristics in the data 
that can emphasize patterns while reducing the amount of 
information. These characteristics are usually named fea-
tures, and several have been proposed for CAP analysis. 
Navona et al. [34] adopted this approach, proposing an A 
phase detection based on the computation descriptors for 
characteristic EEG bands (delta, 0.75–4 Hz, theta, 4–8 Hz, 

Fig. 2 Distribution of the 
selected articles based on their 
year of publication, highlight-
ing the accumulated number of 
publications
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was attained using TEO in the delta bands, while for A3, it 
was using the beta band.

A different approach was proposed by Fantozzi et al. [32] 
that studied healthy and sleep disorder subjects, including 
insomnia, bruxism Sleep-Disordered Breathing (SDB), and 
REM Behavior Disorder (RBM). They filtered the EEG sig-
nal into two bands (slow, 0.3–4.5 Hz, and fast, 7–25 Hz) and 
then proposed an algorithm that uses the root mean square 
of the signal to identify the presence of A phases. Niknazar 
et al. [39] also proposed a conceptually different algorithm 
based on local extrema’s statistical behaviors to determine 
the A phases’ start and end times by examining the EEG 
delta band.

3.2 Methods based on conventional machine 
learning models

The use of threshold-based methods for CAP signal anal-
ysis may seem intuitive, given that these signals exhibit 
dissimilar amplitude and frequency characteristics. How-
ever, it is challenging to generalize a threshold tuned for 
a specific dataset to a broader population. This difficulty 
is evident from the trend observed in the year of publica-
tion (Fig. 2); except for Fantozzi et al. [32], all other works 
relying on threshold methods had been published prior to 
2015. This likely reflects the generalization problem inher-
ent in threshold-based processes. The following analysis 
focuses on methodologies that use machine learning algo-
rithms, enabling the models to learn the relevant charac-
teristics from the data. A total of 12 articles compose this 
examination.

In their study, Mariani et al. [41] suggested using an 
FFNN fed with the features described by Mariani et al. [38]. 
However, only the NREM sleep was analyzed. Although it 
is logical to isolate NREM sleep, manually doing so can 
hamper the practical applicability of the proposed meth-
odology. It is, therefore, advisable to either keep all sleep 
data or employ an automatic process to segment the NREM 
sleep. Another important aspect is the used postprocessing 
procedure that divided the scored long A phases (over 60 s) 
into two separate A phases using a neural network-based 
clustering method. Both preprocessing and postprocessing 
are critical components in machine learning, as the former 
prepares the data, while the latter corrects some misclassifi-
cations. A Support Vector Machine (SVM) (fed with similar 
features to those used in the previous study) was employed 
by Mariani et al. [42], presenting a postprocessing proce-
dure capable of correcting misclassifications by changing 
isolated 1-second classes to the adjacent class. Later, Mari-
ani et al. [43] adopted a similar approach but examined four 
classifiers, specifically, FFNN, SVM, adaptive boosting 
with trees, and linear Discriminant Analysis (DA). Among 
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sliding windows of 4 s with 2 s of overlap. The classifi-
cation was then carried out using the k-Nearest Neighbors 
(k-NN) algorithm. Machado et al. [50] further expanded this 
concept by creating a methodology for identifying the sub-
types of the A phase directly from the EEG signal. They 
utilized the EEG band descriptors (previously described), 
TEO, zero-crossing, Lempel-Ziv complexity, characteris-
tics of the discrete-time short-time Fourier transform sig-
nal (such as frequency of maximum and mean energy and 
area under the magnitude spectrum curve), empirical mode 
decomposition, Shannon entropy, fractal dimension, and 
variance of the EEG signal. A total of 55 features were cre-
ated, and the minimum Redundancy Maximum Relevance 
(mRMR) algorithm was used to rank them. The top 40 
ranked were fed into an SVM (k-NN and linear DA were 
also examined but attained a lower Acc). Later, Machado 
et al. [51] used the same methodology but provided results 
for A phase detection and examined the use of Principal 
Component Analysis (PCA) to reduce the features’ dimen-
sionality. However, the results without PCA were superior. 
The same classifiers were examined by Karimzadeh [52] 
for CAP cycle detection. An SFS procedure was then used 
to determine the most relevant features, choosing Kol-
mogorov, Shannon, and Sample Entropy to feed an SVM 
(best-performing classifier).

3.3 Methods based on deep learning models

Despite being intuitive, relying on features designed by 
researchers has significant drawbacks in the context of ana-
lyzing CAP patterns. Feature engineering is a demanding 
process that requires expertise and thoughtful consideration, 
often involving a feature selection procedure to identify the 
most relevant features for the problem at hand. This process 
can be time-consuming and may not always result in opti-
mal features. Additionally, the features are limited in their 
ability to capture complex patterns and relationships in the 
data, leading to poor generalization and potential scalabil-
ity issues as the amount of data increases. In contrast, deep 
learning-based methods can automatically learn relevant 
features from the data, uncovering patterns that may not be 
immediately apparent to humans. This eliminates the need 
for manual feature engineering and allows for the effective 
handling of large amounts of data. A total of 13 articles 
employed deep learning classifiers.

Mostafa et al. [53] propose the first deep learning model 
for A phase analysis (in 2018), using a Deep AutoEncoder 
(DAE), whose output was then stored in a buffer to feed 
a subsequent FFNN responsible for classifying the CAP 
cycles. Mendonça et al. [54] provided the preprocessed 
EEG signal to three classifiers, two are based on a Recurrent 
Neural Network (RNN), precisely, the Long Short-Term 

the four classifiers, the DA achieved the highest accuracy 
and specificity.

Linear DA classifier was also used by Mendonça et al. 
[44], which segmented the EEG signal into two-second 
segments and estimated six time-based features (average 
power, standard variation, Shannon entropy, autocovari-
ance, log-energy entropy, TEO) and five frequency-based 
features by examining the Power Spectral Density (PSD) 
in the delta, theta, alpha, sigma, and beta bands. Sequential 
Feature Selection (SFS) identified PSD in the beta, theta, 
and alpha bands, average power, TEO, and standard devia-
tion as the most relevant features. An FSM was also used to 
assess the CAP cycles. Later, Mendonça et al. [45] expanded 
the work by examining nine more classifiers, the Logistic 
Regression (LR), two tree-based methods (one with and one 
without ensemble), SVM, kNN, two variants of the FFNN, 
and unsupervised learning-based classifiers, the SelfOrga-
nizing Map (SOM) and the k-Means Clustering (k-MC). It 
was concluded that the standard FFNN outperformed the 
other classifiers using the PSD in the theta and beta bands, 
Shannon entropy, TEO, and autocovariance as features.

Dhok et al. [46] used the Wigner–Ville distribution to 
analyze two-second segmented data, which enables exhaus-
tive time-frequency analysis. They then calculated the 
Rényi entropy and fed the result into an SVM to classify the 
A phase. To ensure balanced performance, they performed 
a balancing operation. A time-frequency approach was also 
proposed by Sharma et al. [47], using an orthogonal filter 
bank and wavelet to decompose the EEG signal into six 
subbands. Then they computed the wavelet entropy and 
three Hjorth parameters (activity, mobility, and complexity) 
from each subband to produce 48 features. Two tree-based 
classifiers (one with bagging and the other with boosting), 
SVM, and k-NN were studied for the A phase classification. 
The tree-based classifier with bagged trees attained the best 
performance using balanced data (the authors reported indi-
vidual performance for multiple sleep disorders, however, 
in Table 2, only the healthy subjects’ results are shown). 
Sharma et al. [48] also used wavelet decomposition to attain 
six subbands and computed both the approximate and entro-
pies for each band. An ensemble of boosted trees was then 
used to classify the occurrence of A phases with a balanced 
dataset.

Mendez et al. [49] presented a method for further dis-
tinguishing A-phase subtypes from previously classified 
A-phases. For this purpose, two-second segments were ana-
lyzed and computed for each segment the mode, standard 
deviation, skewness, kurtosis, energy, and power after spec-
tral decomposition of the EEG signal in four bands (delta, 
theta, alpha, and beta). Complexity and entropy measure-
ments (Lempel-Ziv Complexity, Sample Entropy, Fractal 
Dimension, and Tsallis Entropy) were also computed in 
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is fed with data that overlap to the right, and the second 
CNN receives inputs that overlap to both the left and right. 
The third CNN uses data that overlaps to the left. The out-
put from the three classifiers was combined to classify the 
A phase or its subtypes. Additionally, they introduce the 
A-phase index as a complementary perspective for CAP 
analysis, which provides a visual representation of sleep 
stability. The study involved healthy subjects and individu-
als with sleep disorders (NFLE, insomnia, and SDB), but 
the results in Tables 2 and 3 pertain solely to the healthy 
subjects.

Deep learning models can also incorporate features as 
input. Hartmann and Baumert [63] explored this possibil-
ity using Hjorth activity, Shannon entropy, TEO, differential 
EEG variance, and band descriptors. These features were 
fed to three conventional machine learning models (linear 
DA, k-NN, and FFNN) and an LSTM that outperformed 
the other classifiers in A phase classification. Mendonça et 
al. [64] compared the performance of deep learning models 
fed with features against the same model provided directly 
with the preprocessed EEG signal. The features analyzed 
three main aspects of the EEG signal: amplitude through 
symbolic dynamics and an amplitude variation metric; 
frequency through PSD of the five characteristic EEG fre-
quency bands; and the ratio of the maximum amplitude of an 
epoch to its calculated PSD, which represented both ampli-
tude and frequency. The relevance of the features was mea-
sured using mRMR, and the most important were employed 
for the A phase subtype classification. The results indicated 
that using features improved performance, likely because 
the limited data did not allow the deep learning model to 
learn all relevant characteristics. These features were later 
used by Mendonça et al. [65] that conducted a similar analy-
sis but proposed the Heuristic Oriented Search Algorithm 
(HOSA) for optimizing the structure of deep learning mod-
els. The authors examined the performance of LSTM fead 
with features agains the LSTM fead with the preprocessed 
EEG signal, and concluded again that the use of the feature-
based model was superior for the same reason as previously 
stated. They also tested a FFNN and a CNN, and performed 
CAP cycle detection using a FSM.

4 Discussion

This section examines and discusses the reported results of 
the surveyed works. The performed classification was first 
explored, followed by an overview of the used features and 
classifiers and their relation to the CAP analysis.

Memory (LSTM) and the Gated Recurrent Unit (GRU). 
The last model was a Convolutional Neural Network (CNN) 
with one-dimensional input and custom architecture. The 
result of the A phase classification was then fed to an FSM 
to classify the CAP cycles. It was reported that LSTM 
attained the utmost performance. Mendonça et al. [55, 56] 
followed a similar methodology with an LSTM, which was 
also the classifier employed by Hartmann and Baumert [57] 
(as a comparison, an FFNN was used, which achieved lower 
performance). They propose cleaning procedures to remove 
cardiac field and eye movement artifacts. Furthermore, a 
balancing process was employed to balance the data. The 
network structure was optimized by a genetic algorithm and 
particle swarm optimization, reaching the best performance 
using three EEG derivations as input. The LSTM layers 
performed the information fusion and provided the result to 
dense layers to classify the A phases.

Murarka et al. [58] presented a CNN architecture with 
one-dimensional input and employed an undersample bal-
ancing technique. The results in Table 2, however, show the 
unbalanced data performance to enable comparison with 
other deep learning studies. The authors evaluated the indi-
vidual performance for various sleep disorders, but Table 2 
only displays the results for healthy subjects. Loh et al. [59] 
adopted a similar approach by proposing a CNN architec-
ture and using a balancing method. Therefore, Table 2 pres-
ents the unbalanced data performance (for the same reason 
as before).

Arce-Santana et al. [60] proposed another CNN archi-
tecture fed with spectrograms, which in this work are 
two-dimensional representations of four-second segments 
of the EEG signal. The authors followed a training proce-
dure where the network was first trained using 12.5% of 
the subject’s data and then used to classify the remaining 
87.5% segments. Afterward, the network was retrained 
with 20–50% of the data classified by a specialist. To allow 
for comparison with other deep learning studies, Tables 2 
and 3 include results without the retraining procedure. The 
proposed algorithm is capable of classifying the A phase 
and its subtypes. A methodology with the same classifica-
tion capability was presented by You et al. [61], proposing 
an encoder-decoder CNN architecture based on the U-net 
framework (with skip connections) with a transformer layer 
incorporating a gated multi-head attention mechanism. The 
article reports performance for healthy and subjects NFLE 
subjects. However, Tables 2 and 3 only comprise the results 
related to the entire sleep data of the healthy subjects.

Mendonça et al. [62] put forward a method that employs 
long windows of EEG signals with overlapping durations 
(ranging from 15 to 23 s) as inputs for an ensemble of three 
CNNs. Each CNN has a one-dimensional input and is opti-
mized separately using the HOSA algorithm. The first CNN 
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methodology used, as a possible alternative to manual scor-
ing. Violin plots with the results for the main examined 
performance metrics are shown in Fig. 3. It was reported 
that sleep specialists’ agreement to score CAP events could 
range from 69 to 78% [66]. By checking the distributions 
from Fig. 3, it is notorious that the median is around 78%, 
which is precisely the upper specialist agreement. Although 
in a crude examination, it can be inferred that the current 
automatic models are as good as specialist scoring CAP, 
supporting the viability of automation for CAP examina-
tion. It is also worth noting that most works used the same 
dataset and examined the same subjects, making this analy-
sis less subjective.

The spread in performance can be attributed to the sub-
stantially different methodologies employed. However, it 
is worth noting that methods that require manual isolation 
of A phases or consider only data from NREM sleep may 
enhance model performance but prove impractical for real-
world applications. It is also crucial to ensure subject-inde-
pendent results to avoid bias, particularly when the number 
of subjects is low. Furthermore, the AUC suggests that 
reported performance is reasonably balanced, with similar 
sensitivity and specificity. This is significant because CAP 
analysis is naturally unbalanced, with far fewer data relat-
ing to the A phases than to not A phase. As a result, a high 
Acc is ambiguous without reporting sensitivity and speci-
ficity. Similarly, if a balancing operation is conducted, the 
test data should remain unchanged, as modifying the natural 
data distribution makes it impossible to ascertain whether 
the reported results will generalize to new, unseen data.

Regarding the A phase classification performance, the 
highest Acc (92.5%) and Spe (96.1%) were reported by 
You et al. [61], but their Sen was too low (63.6%), which 
is aggravated by the inherent imbalance in A phase analysis 

4.1 Reviewed works’ performance

Out of the 35 articles reviewed, as observed in Tables 2 and 
28 performed binary classification of EEG epochs as either 
A phase or not A phase, with seven using a threshold-based 
classifier, nine using conventional machine learning classifi-
ers, and 12 using a deep learning classifier. Additionally, ten 
articles examined the A phase subtypes. Among them, two 
used a threshold-based classifier, three used conventional 
machine learning classifiers, and five used a deep learning 
classifier.

Various approaches were employed for subtype detec-
tion, shown in Table 3, including multiclass models, indi-
vidual models for each subtype, and models that separate 
previously classified A phases. This diversity of method-
ologies makes it impractical to compare the results. Fur-
thermore, six studies conducted both A-phase and A-phase 
subtype analyses, [34, 51, 57, 60–62], while the remaining 
studies, [40, 49, 50, 64], only performed A-phase subtype 
classification.

Lastly, ten articles examined the CAP cycles, presented 
in Table 4, with three using a threshold-based classifier, two 
using conventional machine learning classifiers, and five 
employing an FSM to implement the CAP scoring rules for 
scoring the CAP cycles. It is worth noticing that no work 
employed a deep learning model for directly classifying 
the CAP cycles. Furthermore, most methodologies used for 
CAP cycle detection rely on a prior A phase classifier whose 
output was fed an FSM for imposing the CAP cycle rules. 
Only three works, [31, 33, 52], directly classified the CAP 
cycles without first estimating the A phases.

The follow-up analysis focused solely on A phase and 
CAP cycle detection, aiming to evaluate the current state-
of-the-art classification performance, regardless of the 

Fig. 3 Visualization of the 
performance metrics distribution 
for a A phase and b CAP cycle 
detection
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statistics-based features (such as mean or kurtosis), entropy-
based features (such as Shannon entropy), and complexity-
based features (which explore the signal complexity without 
relying on entropy). Additionally, Hjorth parameters were 
included as a separate category since these comprise differ-
ent metrics, and as some studies did not identify which one 
was used, it was impossible to classify them into the previ-
ous six categories. It should be noted that certain features 
may fit into multiple categories, but each feature was only 
associated with one class to simplify the examination.

The number of times each feature-based category was 
used, and the year of publication of the study that used it, 
is presented in Fig. 4. Upon examining the figure, it is evi-
dent that amplitude-based features were the most frequently 
used and were reported in studies published throughout 
the analyzed period. This suggests a strong preference for 
using these features, possibly due to the predominance of 
A1 phase subtype characteristics in healthy subjects and the 
strong association between this subtype and EEG ampli-
tude variations. While other categories of features can also 
examine these properties, it is noteworthy that frequency-
based features were used less frequently, despite the strong 
connotation between frequency components and CAP. 
Entropy-based, complexity-based, and Hjorth descriptors 
features may also be suitable for CAP examination, as they 
can detect the complex and variable patterns of brain activ-
ity during the A phases.

The subsequent examination is related to the classifiers 
used by the reviewed works. The distribution of the classi-
fiers by the year of publication of the study and the number 
of times each classifier was used are presented in Fig. 5. The 

and limits the method’s practicality. In contrast, Loh et al. 
[59] reported the highest sensitivity (92.1%), but their accu-
racy (53.0%) was nearly at a random level, rendering the 
approach unreliable. Therefore, the method proposed by 
Mendonça et al. [62] is likely the most suitable for clinical 
application since it reported the best-performing balanced 
results (Acc, Sen, and Spe of 83.3%, 80.1%, and 83.7%, 
respectively) and did not require any manual manipulation of 
the EEG signals (such as isolating NREM sleep). It is worth 
mentioning that all three of the indicated studies employed a 
CNN-based classifier, providing evidence for the suitability 
of deep learning models in A phase analysis. As for CAP 
cycle detection, Rosa et al. [33] method achieved the highest 
performance with an accuracy, sensitivity, and specificity of 
89.8%, 89.8%, and 95.0%, respectively. However, since the 
study only evaluated four subjects, the generalizability of 
the results may be limited.

4.2 Overview of the used methodologies

The patterns contained within the CAP phases comprise 
characteristics from the signal’s amplitude and frequency. 
As a result, most feature-based studies tend to examine fea-
tures that explore these domains. These features were cat-
egorized into three groups: amplitude-based (which assess 
variations in the signal amplitude), frequency-based features 
(which examine characteristics in the frequency domain, 
such as the PSD), and amplitude-frequency-based features 
(for example, the ratio of maximum amplitude to the cal-
culated PSD of an epoch). However, some features do not 
fit into these categories, so three additional were included: 

Fig. 4 Number of times each 
feature category was used by a 
study (and the year of publication 
of that study)
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on an initial A-phase classifier. Furthermore, the assessment 
of the A phase subtypes’ performance has proven challeng-
ing due to the use of various approaches, ranging from 
classification with a multiclass model to using individual 
models for each subtype.

While the current studies have methodological limita-
tions, the performance results determined in this review 
are consistent and can be considered a reasonable estimate. 
Notably, the median accuracy of the state-of-the-art meth-
ods was comparable to the upper limit of the specialist 
agreement range, suggesting that automatic CAP analysis 
can be reliably performed. Therefore, this study provides a 
positive answer to the main research question.

The recommended research agenda involves validating 
the proposed methodologies on larger datasets, including 
more subjects with sleep-related disorders, providing the 
source code for independent confirmation of the proposed 
methods, and exploring the possibility of including CAP 
analysis as a standard sleep examination practice in the 
future.
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majority of the classification methodologies used a thresh-
old solution. However, it is important to note that except 
for one study published in 2021, all other articles that used 
this methodology were published up to 2015. In contrast, 
neural network-based methods have been more prevalent in 
the past four years, primarily due to the growing popularity 
of deep learning-based approaches. The fact that the best 
results for A phase analysis were obtained using deep learn-
ing models, combined with the continuous growth of avail-
able data, suggests that the trend of using neural networks 
is likely to persist, further reducing the use of conventional 
machine learning models.

5 Conclusion

This study aimed to determine whether automatic CAP 
analysis is currently achievable. A systematic review was 
performed to address this question by searching three prom-
inent databases: a standard indexing database, a database 
dedicated to medical publications, and a database focused 
on engineering applications. A total of 35 articles were 
reviewed (from the 1,280 articles initially found), published 
between 1998 and January 21st, 2023. These studies pro-
posed various methods for automatically examining CAP, 
including the classification of A-phase, their subtypes, or 
the CAP cycles.

It was observed that three main trends were used over 
time regarding the A phase classification. Initially, either 
mathematical models or features were utilized and classified 
with a tuned threshold. This trend was followed by the adop-
tion of conventional machine learning models, which have 
been the norm until the last five years, when there has been a 
surge in the application of deep learning models. Regarding 
the classification of CAP cycles, most studies employed an 
FSM-based approach after A-phase classification to imple-
ment the CAP scoring rules. As such, these methods depend 

Fig. 5 Number of times each 
classifier was used by a study 
(and the year of publication of 
that study)
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