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Abstract

The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable
human and financial resources, and incorporates some subjectivity, an automated approach could result in several advan-
tages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to
review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article. To
achieve it, we examined articles published between 2018 and 2022 that dealt with the automated scoring of sleep stages. In
the final selection for in-depth analysis, 125 articles were included after reviewing a total of 515 publications. The results
revealed that automatic scoring demonstrates good quality (with Cohen's kappa up to over 0.80 and accuracy up to over 90%)
in analysing EEG/EEG + EOG + EMG signals. At the same time, it should be noted that there has been no breakthrough in
the quality of results using these signals in recent years. Systems involving other signals that could potentially be acquired
more conveniently for the user (e.g. respiratory, cardiac or movement signals) remain more challenging in the implementa-
tion with a high level of reliability but have considerable innovation capability. In general, automatic sleep stage scoring has
excellent potential to assist medical professionals while providing an objective assessment.
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1 Introduction

Sleep plays a vital role in human life. Its influence on physi-
cal and psychological health and human well-being is enor-
mous, which has already been demonstrated and underlined
in numerous publications [1-4]. Accordingly, it is crucial to
be able to analyse sleep to have the possibility to intervene
in time in case of disorders, to eliminate them if possible, or
at least to reduce their negative influence on health.

As early as the 1950s, William Dement observed that the
signal of the electroencephalogram (EEG), the frequency of
eye movements and the frequency of body movements were
subject to regular cyclical fluctuations during the night [5].
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Further research into this phenomenon led over time to the
recognition of typical sleep patterns and ultimately to the
creation of the concept of sleep stages.

In 1968, the first standardised categorisation of sleep into
sleep stages was conducted using the method of Rechtschaf-
fen and Kales (R&K) [6]. It divided sleep into 30-s inter-
vals—"epochs"—and assigned one of the following sleep
stages to each epoch:

Stage W—Wakefulness/Wakefulness
Stage 1 (S1)

Stage 2 (S2)

Stage 3 (S3)

Stage 4 (S4)

Stage REM—Rapid eye movement

Furthermore, some epochs could be labelled "movement
time" if movement prevents accurate identification of sleep
stages.

Over time, as new evidence about sleep emerged, there
was a need to establish a new guide to terminology, record-
ing methodology and scoring rules for sleep. This was done
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in 2007 with the release of a new guideline by the American
Academy of Sleep Medicine (AASM) [7], which has been
continuously updated since its release. The most recent ver-
sion is 2.6, published in 2020 [8]. It proposed, among other
things, a new classification of sleep stages:

Stage W—wakefulness

Stage N1/NREMI1 (formerly S1)

Stage N2/NREM2 (formerly S2)

Stage N3/NREM3 (formerly S3 + S4)
Stage R—Rapid eye movement (REM)

In fact, inter-standard comparison of sleep stage scoring
has been the focus of several scientific publications, among
them [9, 10].

In sleep analysis practice, sleep stages N1-N3 are, in some
cases, combined into one NREM stage. Another subdivision
found in scientific papers is Wake/Light Sleep (N1 + N2)/
Deep Sleep (N3)/REM sleep (R). Table 1 summarises these
sleep stage classification manners.

The most widely utilised method for assessing sleep
behaviour, which has been in use for many years, is poly-
somnography (PSG) [11]. This approach involves measuring
several signals, which are then evaluated:

e Electroencephalography (EEG) records brain activity.

e Electrocardiography (ECG) is a method that reflects the
electrical activity of the heart over time.

e Electromyography (EMG) is used to record muscle activ-
ity.

e Electrooculography (EOG), on the other hand, uses elec-
trodes to detect and measure the potential between the
human eye's back and front to record eye movements.

e The oxygen saturation of the blood is measured with
pulse oximetry.

e Often, both respiratory flow and respiratory effort are
measured.

e Moreover, other signals can be recorded, such as the per-
son's position or a video recording for a detailed analysis.

The recorded signals are then stored and finally ana-
lysed manually by trained sleep experts, scoring the stages

Table 1 Sleep stages classification

Number of
sleep stages

Sleep stages

5 w N1 N2 N3 R
4 Wake Light Deep R
3 Wake NREM R
2 Wake Sleep
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of sleep. Mainly EEG, EOG, and EMG signals provide the
required input.

This manual evaluation of the recordings enables accurate
scoring of the sleep stages. However, it also entails a high
expenditure of time and financial resources to complete this
task [12]. It should also be noted that despite following the
established scoring guidelines, manual analysis introduces
a certain level of subjectivity, also known as interscorer/
interrater reliability/variability, which has been described
in several scientific publications [13—15]. Thus, the results
of the evaluation of the same sleep recording by different
experts may vary. As the meta-analysis of interrater reli-
ability conducted in [16] has demonstrated, Cohen's kappa
for manual, overall sleep scoring reaches the value of 0.76.

To summarise the above situation, automatic sleep scor-
ing could result in several benefits. Among other things, it
could reduce the financial and human resources needed,
thereby supporting the work of sleep physicians and mak-
ing them available to provide treatment to a larger number of
individuals requiring it. A high number of scientific works
in the field of automatic sleep stage detection indicate that
new developments are constantly being made in this area,
and only a thorough analysis can provide a comprehensive
overview of the status quo.

The conducted analysis of current research has indi-
cated that the subject of a state-of-the-art review in auto-
matic sleep stage identification has been addressed several
times, highlighting the importance of this topic. However,
studies in recent years have focused on specific aspects of
the problem. For example, in [17], only the algorithms that
work with the EEG signal were selected. In [18], consumer
sleep technologies (CSTs) were investigated to analyse sleep
in combination with artificial intelligence. [19] examined
a more extended period of 19 years but with a relatively
small number of selected articles (55 in total) for this larger
time frame. EEG signals in combination with deep learn-
ing algorithms applied directly to raw signals or spectro-
grams, were the subject of investigation in [20], resulting
in a more refined but smaller sample of 14 studies. Deep
learning techniques for sleep phase detection were inves-
tigated in [21], with 36 studies selected from the period
between 2010 and 2020. The number of studies reviewed
in [22] is also relatively small, below 30, which is in part
caused by the research question in which EEG signal-based
algorithms were investigated. Also, if one looks further into
the past, it can be seen that the matter of automatic detec-
tion of sleep phases was addressed considerably earlier, and
was, for example, already investigated in a review article in
2012 [23]. In general, the principles of automatic sleep scor-
ing were even reported in 2000 [24], indicating the topic's
importance and demonstrating a long history of research in
this scientific area.
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Due to the major importance of the topic, knowing the
enormous number of recent developments in the field of
automatic sleep scoring and considering the gaps in exist-
ing review articles in recent years, the decision was made
to conduct a detailed investigation of state-of-the-art and
to report the results in a review article. The aim is to pre-
pare a comprehensive overview of the state-of-the-art in
the field of automatic sleep stage identification and provide
researchers with a consolidated summary of the current
developments, which should increase the efficiency of
their scientific research.

Several approaches to literature reviews exist. One of
the classifications proposes the following groups: sys-
tematic, semi-systematic (or narrative) and integrative,
according to [25]. In our case, it seems appropriate to use
the semi-systematic approach, as it facilitates more flex-
ibility and is commonly used for overview publications.
In addition to aiming to provide an overview of a topic, a
semi-systematic review often examines how research in a
particular area has developed over time [25]. This type of
review can be a highly effective way to cover more areas
and broader topics than a systematic review can address,
especially when multiple subject domains (such as com-
puter science and medicine) are in the field of interest [26].

Three main research questions are being addressed in
our article:

RQ1.Which level of quality is achieved at the current state of
development of automatic sleep scoring approaches?

RQ2.How has the focus on particular signal analysis meth-
ods evolved over time?

RQ3.How has the choice of signals used for analysis varied
over time?

2 Materials and methods
2.1 Eligibility criteria

A list of inclusion and exclusion criteria was established
based on the analysis of the current state of the art and
considering the defined research questions.

Inclusion criteria

e Automatic approach for sleep scoring is described in a
manuscript

e Peer-reviewed journals

e Publications considering adults (> 18) as a group of inter-
est

e English language

e Manuscripts published between 2018 and 2022

¢ Ground truth labels came from AASM rules

Exclusion criteria

Article size of fewer than four pages

Test dataset is smaller than 20 overnight recordings

Animals being a subject of investigation

Only Wake/Sleep identification without more detailed

scoring

e Review article/Editorial/Book chapters (however, these
arts of publications are being checked for eligible arti-
cles)

e Epochs of longer than 30 s are being analysed

e Missing significant information on some of the points

from the exclusion criteria list

When a research group has published several consecutive
articles that represent a further development of particular
methods, only the most recent article has been included in
this review. If the reported approaches represent significantly
different procedures or use diverse input signals, all of them
are included in the selection.

A more detailed explanation of the inclusion criterion
" Automatic approach for sleep scoring is described in a man-
uscript" appears to be reasonable. As one of the important
aspects for the developed sleep stage identification system is
its applicability in practice and usability, only those publica-
tions were included in the review that allow fully automatic
scoring, i.e. the systems that require manual intervention in
use, such as partial manual scoring, were not considered in
this work.

In 2007, the AASM guidelines [7] replaced the
Rechtschaffen & Kales rules [6] as the new standard for
sleep assessment. Therefore, in the selection of articles,
the publications were included in which the sleep phase
detection of the reference measurement is done according
to AASM guidelines, as only the manuscripts since 2018
were considered. However, in order to be able to evaluate the
methods that were using the older databases already avail-
able, the decision was made also to consider the articles that
were using the existing recordings according to R&K rules,
but adapting them to the sleep stages defined in AASM.

2.2 Information collection strategy

After analysing the requirements for articles to be included
in the review and considering the interdisciplinary nature
of the topic, the following selection of databases was made
to ensure the comprehensive collection of information:

IEEE Xplore
PubMed
Scopus

Web of Science
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The following query (with necessary adaptions for spe-
cific databases) was determined to search for articles that
match the defined criteria:

(((automatic OR automated OR automatically) AND
("sleep stage" OR "sleep stages" OR "sleep phase" OR
"sleep phases")) AND (scoring OR classification OR deter-
mination OR identification OR recognition OR detection)).
The search using this defined query took place on the arti-
cles' titles, abstracts and keywords in databases. In addition,
a restriction of years (2018-2022) was used, either directly
in the query, if the database provided this option, or through
the later application of an appropriate filter.

2.3 Datarefining procedure

The next step after applying the designed query in the
selected databases was to refine the collected data. This
involved several steps. First, duplicates were removed, and
all non-journal articles were excluded from the list of arti-
cles. This was followed by three phases of initial screening:
title, abstract and diagonal reading. During this process,
the eligibility of the manuscripts was checked according
to the inclusion/exclusion criteria, and if they did not meet
them, they were eliminated. At last, the final screening was
applied, where the full reading of the papers was performed.
In this step, the last articles that did not meet the established
criteria were removed to generate the final list of manu-
scripts for further analysis.

2.4 Synthesis methods

A set of Python packages (Pandas, NumPy, Seaborn, Mat-
plotlib and SciPy) were used for the statistical analysis car-
ried out in this scientific work. Statistical data visualisa-
tions were presented to aid the understanding of the results.
Where possible, statistics were proposed to explain relevant
information gathered during the review of the articles.

3 Results

The conducted in-depth analysis of the current research
outcomes over the last five years has led us to create a com-
prehensive overview, which is presented in the following.
It is important to point out that not all descriptions of the
implementation and evaluation approaches provide sufficient
information to estimate the results' quality and correctness.
Nevertheless, this review has included these articles accord-
ing to inclusion/exclusion criteria.

@ Springer

3.1 Study selection

The article selection process carried out throughout this
review of scientific papers dealing with the classification
of sleep stages is shown in Fig. 1. The number of publica-
tions included and excluded during each review stage is also
shown.

3.2 Which level of quality is achieved at the current
state of development of automatic sleep
scoring approaches?

A summary table was prepared to provide a comprehen-
sive overview of the available approaches for automatic
sleep stage scoring, including all articles selected accord-
ing to inclusion criteria and after refining the set accord-
ing to exclusion criteria. The results can be seen in Table 2,
attached to this manuscript. Due to its comprehensive con-
tent, inserting it directly into the text would significantly
decrease the manuscript's readability, which should be
avoided.

The best accuracies reported in the reviewed manuscripts
achieve over 90% when analysing EEG signal, being an
excellent result. As reported in several research papers, the
best conducted Cohen’s kappa values are over 0.80, and F1
values achieve up to 85-90%.

The differences in performance of some algorithms can
vary significantly depending on the composition of the test
group/dataset. In particular, if the training was done on
healthy subjects only, testing on a group with sleep disor-
ders (e.g., sleep apnoea) would be associated with a high
probability of a reduction in sleep stage detection accuracy,
as indicated in, e.g. [27]. Therefore, the provided table
includes information on a targeted population of the devel-
oped algorithms.

In the column “Algorithm/Method” in the table, only the
primary used approach for sleep scoring is provided. Fea-
ture extraction/filtering procedures, being another relevant
characteristic of the method, are not described due to the
large variability and individuality of utilised approaches
which complicates their classification and would excessively
enlarge the table, decreasing its clarity.

3.3 How has the focus on particular signal analysis
methods evolved over time?

Trends in research are changing over time, among other
things, as new knowledge is gained and new priorities may
be set. This raises the question of how the choice of meth-
ods for sleep stage estimation has evolved over the last few
years. Figure 2 depicts the list of publications that met the
inclusion/exclusion criteria and were selected for statisti-
cal analysis separately for the years 2018-2022, as well as
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Fig. 1 Flow chart for the selec-
tion of the entire set of the
included publications

Fig.2 Bar plots with the
number of publications that met
the inclusion/exclusion criteria.
The terms “Machine Learning”
(with Deep Learning excluded)
and “Deep Learning” refer to
the approach followed for sleep
stage classification

the breakdown by primary approach for every single year.
The highest number of selected articles was published in
2022 (37.6% of all publications), and the lowest number of

Number of publications

N

Identification

Screening

Identification of studies via databases

Records identified from:
Databases (n = 1067)

PubMed (n =235)
Scopus (n=430)

IEEE (n=62)

Web of Science ( n = 340)

A4

Records screened
(n=515)

Records removed before screening:

Duplicate records
&
Non-journal sources
(n=552)

Records excluded (n=376)

Y

Reports assessed for eligibility
(n=139)

Included

48

44

40

36

32

28

24

20

16

12

v

Title reading (n=190)
Abstract reading ( n=96)
Diagonal reading (n=90)

Reports excluded (n=14)

Studies included in the
review
(n=125)

Approach
I Machine Learning
Deep Learning

12.0%
11.2%

2018 2019

selected papers was in 2018 and 2019. It can also be seen

v

Lack of information for reproducibility

Did not meet inclusion / exclusion criteria

20.8%

18.4%

2020
Year

37.6%

in Fig. 2 that the use of deep learning techniques is much
higher than other machine learning approaches in any year
from 2018 to 2022.
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3.4 How has the choice of signals used for analysis
varied over time?

The selection of signals for analysis with the subsequent
scoring of sleep stages and their variation over time also
provides interest for the research. Therefore, we have graphi-
cally presented the selection of signals by year in Fig. 3 to
facilitate an overview and to illustrate possible trends.

With the aim of providing more insight into the selection
of signals used to score sleep stages in the articles included
in the review, the detailed representation per input signal
was generated and can be seen in Fig. 4.

As shown in Fig. 4, the EEG signal is the most widely
used as opposed to other signal sets, with 69 scientific publi-
cations using standalone EEG and being a part of numerous
other combinations with other signals.

4 Discussion

The findings of the conducted review represent, to the
best of our knowledge, the most comprehensive research
overview in the field of automatic sleep stage scoring in
recent years. This allows a thorough analysis of current
developments in this domain and can serve as a basis for
further research.

Most of the information for the analysis can be found
in Table 2. For example, it can be seen that the majority
of publications have considered the detection of five sleep
stages, which corresponds to the AASM standard. Only
occasionally did the methods target fewer sleep stages.

The most common method of validation, as indicated in
Table 2, is cross-validation. More specifically, tenfold and
20-fold cross-validation are the most commonly used tech-
niques in the reviewed articles. In addition, other x-fold
cross-validation and leave-one-subject-out approaches

Fig.3 Bar plots with the 28 yom—r 37.6%
number of publications per W EEG
. . a4 EEG EOG
year depending on the signal = EEG EOG EMG
used. Four main groups of 40-1|H. Others
signals analysed for sleep stage 36
classification are represented: .
"EEG", "EEG+EOG", 5%
"EEG +EOG +EMG", and 2
"Others" 2
o
220
E
Z 16
12
8
4
ol
Year
F|g- 4 Set of Signals used by Respiration - Movement Year
the reviewed scientific works Respiration - HR - Movement - 2212
for classifying sleep stages from Respiration - HR - BCG 2020
2018 to 2022 PPG - Actigraphy - ;g;;
PPG
Other Multichannel Il
HRV - Actigrapy
HRV
% Forehead Electrophysiological
.é EOG - RR Intervals
5 EOG - ECG
8 EOG
EEG - HRV
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EEG - EOG - EMG [ —
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can be found in publications. Direct strict separation of
training and validation/test datasets is also reported in
several articles. It is important to note that using differ-
ent epochs of the same recording for both training and
evaluation would affect the algorithm's performance in
terms of increasing accuracy. However, using epochs from
the same recording for both training and evaluation does
not allow us to assess whether the algorithm used would
perform similarly if the subjects for the training and test
datasets were strictly separated. Therefore, we have tried
to extract this relevant information from the reviewed
articles. Unfortunately, far from all articles provided this
important detail. For those articles where this informa-
tion was provided, or where the method of validation (e.g.
leave-one-subject-out) allowed us to obtain the required
data, we can say that in the majority of cases there was
a strict separation of subjects into training and test data-
sets, and therefore the epochs of the same recording were
mostly not used for both training and evaluation.

We can highlight some important points by looking at the
quality parameters reported in the research papers analysed.
By far, the most widely used signal for sleep stage scoring
is the EEG, and the combination of EEG, EOG and EMG is
the second most frequently used, as can be recognised from
Table 2 and Fig. 3. Together, these two sets account for more
than two-thirds of all publications. They also yield the best
results in scoring—Cohen's kappa up to over 0.80 (substan-
tial to almost perfect according to [28]) and accuracy up
to over 90%, which is a very good performance, especially
considering that even when evaluating the same recording
by different scorers, a kappa of 0.71-0.81 is obtained, as
studied in [16]. In general, the use of automated sleep phase
detection methods could address the problem of interrater
reliability when the same approach is used for analysis in
different sleep laboratories (or even in one sleep laboratory
instead of multiple experts). This could help to free up clini-
cians' time for other clinical tasks.

At the same time, it should be noted that there has been
no breakthrough in the quality of the results when analysing
these signals (EEG, EOG, EMG) over the last five years in
terms of performance. This can be explained, among other
things, by the high scores already achieved, as mentioned
above. If one is looking for research topics with a high
innovation potential, other alternatives should perhaps be
considered. An example of this could be systems that work
with other signals. These could be, for example, cardiac,
respiratory and movement signals, as they have the potential
to be recorded with more comfort for the user and possibly
without contact [29, 30]. The number of works using these
alternative signals for sleep scoring is significantly lower,
according to the research conducted, and there is noticeable
room for improvement. Nevertheless, looking at Fig. 3, we
can see that the number of publications using other than

classical signal sets as input to the algorithm has increased
over the years.

Another important issue in the development of sleep
scoring systems is usability and suitability for practical use.
Unfortunately, these aspects are not always explicitly consid-
ered in publications, although they are of great importance
for the transfer of research into practical implementation.
For example, it may be advantageous in terms of usabil-
ity if the algorithms work fully automatically, i.e. do not
require manual pre-classification or pre-processing. Another
point that could improve the usability of the systems in a
practical application is the determination of the measure-
ment uncertainty during sleep stage detection. This would
make it possible to see where the results of the automatic
evaluation might need to be re-examined because the clas-
sification is not unambiguous, which has been recognised
by the software, also known as confidence estimation or
prediction certainities. Some work has already been done
towards this functionality and usability improvement, e.g.
[31-34]. In summary, further research aimed at improving
the usability of systems in real-world environments can only
be welcomed, as the potential is not yet exhausted, as this
review has shown.

The explainability/interpretability of algorithms and
their results is also a topic with great potential for further
research, as it could at least partially help to solve the "black
box" problem, especially in deep learning applications. This
issue has already been addressed in some of the reviewed
articles [32, 35-38], but there is still much room for further
investigation to overcome the current challenges. In general,
due to the fact that there is an impressive number of articles
on sleep scoring, but at the same time a significantly smaller
number of practical applications, the question of usability
and practicality seems to be one of the relevant ones and
should be further investigated.

Another area of research we observed in some of the
manuscripts was the use of algorithms that adapt to the sig-
nal or recalibrate the features used [39], or incorporate the
probabilities of transitions between sleep stages [40-42].
The inclusion of these additional steps in the algorithms to
analyse the signal in an individualised way, while taking into
account the whole sleep structure, may also lead to more
accurate and higher quality sleep stage detection, and we
encourage further research in this direction.

It is pretty common that more than one dataset is used for
evaluation in the published articles, as can be seen in Table 2.
In this case, however, there are often only two datasets used,
which are additionally not always large. Though, the essen-
tial point to consider is that the algorithms developed should
be evaluated on several, preferable large datasets to ensure a
high-quality general scoring that is not only dataset specific,
as there may be peculiarities in the signals (due to different
equipment, pre-processing, etc.) in other series of recordings.

@ Springer
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This has been addressed in a number of the papers included
in the selection but not in all cases. In order to provide a reli-
able solution that can be applied to a wide range of situations,
it is crucial to consider the universality mentioned above and
evaluate with multiple data sets from diverse sleep laboratories
and recorded with different devices.

An analysis of Fig. 2 reveals that there is a tendency for the
number of developments in the area of sleep stage classifica-
tion to increase steadily, although there are minor fluctuations
in this trend from year to year. Proportionally, deep learning
methods stand out from other machine learning techniques in
this topic area from year to year, taking an increasingly larger
share. This may be partly caused by a general increase in the
popularity of deep learning methods in research and partly
by progress in developing new, more effective techniques that
may produce higher-quality results.

While Fig. 3 gives a rather general picture regarding the
signals used in literature, Fig. 4 provides more detail. Here it
can be seen that, in addition to the two most frequently used
signal sets already mentioned (EEG and EEG + EOG+EMG),
a third combination occurs significantly more frequently than
other signals—EEG + EOG, although significantly less fre-
quently than the first two. In general, it can be said that a com-
bination with the EEG signal occurs more often than possible
combinations with other signals in the research. This can be
explained by the fact that the EEG traditionally plays a key
role in the detection of sleep stages and also provides crucial
information. Apart from these three signals, only the ECG
is used significantly more often than the remaining signals.
Besides that, other signals were only sporadically included in
the approaches reported in the reviewed articles. Another inter-
esting finding from the information presented in Table 2 and
Fig. 4 is that the majority of the required signals are recorded
with electrodes (EEG, EOG, EMG, ECG), which requires
direct contact with the body and is not necessarily the most
comfortable for users. This shows that methods that allow non-
obtrusive measurement of physiological signals are not yet
widely used in sleep stage assessment.

Another important point is that while automated analysis
can free up physicians' time for other clinical tasks, even
with fully automated sleep evaluation there is still a need for
the clinician to review the signals to avoid missing poten-
tially important points. It is known that some specific pathol-
ogies can only be detected by looking for specific patterns
in the signals that may currently be missed by automated
scoring systems.

5 Conclusions
Analysing the review findings, in the last years, no break-

through progress in the quality of sleep scoring approaches
analysing EEG, EOG and EMG signals could be observed

@ Springer

in terms of perfomance, although the most advanced of the
current studies demonstrate a good level of quality in the
detection of sleep stages. Nonetheless, a number of topics
still remain with some gaps and have excellent innovation
potential. These include, among others, the application of
algorithms to categorise sleep stages that utilise less tra-
ditional signals, such as, for instance, breathing, body
movement or heart signals. These signals could possibly be
recorded in a contactless and more accessible way than the
classical PSG approach and with more comfort for users/
patients. Therefore, if an acceptable level of measurement
quality could be achieved, it could simplify the measurement
process and promote the widespread use of sleep scoring
systems. This, in turn, would favour the detection of sleep
disorders at an early stage.

Another critical issue that still needs to be further
addressed is the matter of interoperability of the developed
algorithms with different datasets in order to have the capa-
bility to apply the designed sleep stage identification sys-
tems universally and not only to one specific dataset. This
point was addressed in several of reviewed articles (e.g. [43,
4417), where a significant number of datasets was used for the
evaluation. Nevertheless, this topic requires further investi-
gation and assessment.

The issues of explainability, usability, practicality and the
use of adaptive algorithms are other areas of research that
have been addressed in recent years, but are still not suffi-
ciently explored and have significant potential.

In general, automatic sleep scoring has the potential
to create an objective approach devoid of some level of
subjectivity and, consequently, variance in scoring, pre-
sent by manual scorers, considered in the literature as
interrater reliability. This point was addressed in [45].
The analysis of current research in the area of sleep scor-
ing presented in our article leads us to the conclusion
that automated scoring of sleep stages could become a
powerful tool supporting physicians in their work and
helping to reduce sleep scoring ambiguity by decreas-
ing the level of subjectivity in the analysis process. It is
also noteworthy that the use of automated sleep scoring
systems could lead to a saving of resources (both human
and financial) that could be allocated to provide a more
comprehensive medical service to the general public
by medical professionals or to treat a larger number of
patients with increased time capacity.

Appendix 1

See Table 2.
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Table 2 (continued)

Kappa

Fl

Accuracy

Sleep

Evaluation

Database N° of subjects Population

Algorithm/Method

Signals

Year

Author

Stages

character-
istics

0.74
0.62

92.1%
89.2%

Fivefold CV 5 stages

Mixed

197 PSGs
500 PSGs

Sleep-

Multiscale residual convo-

EEG (1 channel)

2021

Zhong et al.

Subject CV, Split 400/100

EDF(expanded)

CinC2018

lutional neural network

(MRCNN)
SingleChannelNet (deep

[153]

0.87
0.81

90.2%
86.1%

5 stages

Fivefold CV

CCSHS (children) 515 subjects

Sleep-EDF

EEG (1 channel)

2022

Zhou et al.

78 subjects/163PSGs

neural network)

[154]

(expanded)
Sleep-EDF
Sleep-EDF

0.72
0.69

75.1%
83.4%

82.4%
85.3%

5 stages

Twofold CV (subject-
independent)

8 subjects/PSGs

153 PSGs

Random forest (RF) and

2020 EEG (1 channel)

Zhou et al.

LightGBM (LGB)

[155]

(expanded)
Sleep-EDFx
UCDDB

0.80
0.73

81.2%
78.8%

85.8%
79.4%

5 stages

Leave-one-subject-out

Healthy
Sleep

20 subjects/39 PSGs

25 subjects

Multi-branch convolu-

2020 EEG (2 channels)

Zhu et al.

tional neural network
Residual attention method

EOG (1 channel)

[42]

disordered
breathing

EMBG (1 channel)
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