Skip to main content
Log in

Review: optically-triggered phase-transition droplets for photoacoustic imaging

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Optically-triggered phase-transition droplets have been introduced as a promising contrast agent for photoacoustic and ultrasound imaging that not only provide significantly enhanced contrast but also have potential as photoacoustic theranostic molecular probes incorporated with targeting molecules and therapeutics. For further understanding the dynamics of optical droplet vaporization process, an innovative, methodical analysis by concurrent acoustical and ultrafast optical recordings, comparing with a theoretical model has been employed. In addition, the repeatability of the droplet vaporization-recondensation process, which enables continuous photoacoustic imaging has been studied through the same approach. Further understanding the underlying physics of the optical droplet vaporization and associated dynamics may guide the optimal design of the droplets. Some innovative approaches in preclinical studies have been recently demonstrated, including sono-photoacoustic imaging, dual-modality of photoacoustic and ultrasound imaging, and super-resolution photoacoustic imaging. In this review, current development of optically triggered phase-transition droplets and understanding on the vaporization dynamics, their applications are introduced and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77(4):41101.

    Article  Google Scholar 

  2. Bell AG. The production of sound by radiant energy. Science. 1881;2(49):242–53.

    Article  Google Scholar 

  3. Tam AC. Applications of photoacoustic sensing techniques. Rev Mod Phys. 1986;58(2):381–431.

    Article  Google Scholar 

  4. Sigrist MW. Laser generation of acoustic waves in liquids and gases. J Appl Phys. 1986;60(7):R83–122.

    Article  Google Scholar 

  5. Wilson K, Homan K, Emelianov S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun. 2012;3(1):618.

    Article  Google Scholar 

  6. Hobbs SK, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95(8):4607–12.

    Article  Google Scholar 

  7. Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng. 2007;9(1):415–47.

    Article  Google Scholar 

  8. Yoon H, Yarmoska SK, Hannah AS, Yoon C, Hallam KA, Emelianov SY. Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets. Med Phys. 2017;44(7):3444–9.

    Article  Google Scholar 

  9. Strohm E, Rui M, Gorelikov I, Matsuura N, Kolios M. Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opt Express. 2011;2(6):1432.

    Article  Google Scholar 

  10. Hasi WLJ, Lu ZW, Gong S, Liu SJ, Li Q, He WM. Investigation of stimulated Brillouin scattering media perfluoro-compound and perfluoropolyether with a low absorption coefficient and high power-load ability. Appl Opt. 2008;47(7):1010.

    Article  Google Scholar 

  11. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam K-H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release Off J Control Release Soc. 2009;138(3):268–76.

    Article  Google Scholar 

  12. Yu J, Chen X, Villanueva FS, Kim K. Vaporization and recondensation dynamics of indocyanine green-loaded perfluoropentane droplets irradiated by a short pulse laser. Appl Phys Lett. 2016;109(24):243701.

    Article  Google Scholar 

  13. Barber EJ, Cady GH. Vapor pressures of perfluoropentanes. J Phys Chem. 1956;60(4):504–5.

    Article  Google Scholar 

  14. Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA. Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials. 2012;33(11):3262–9.

    Article  Google Scholar 

  15. Sheeran PS, Rojas JD, Puett C, Hjelmquist J, Arena CB, Dayton PA. Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents. Ultrasound Med Biol. 2015;41(3):814–31.

    Article  Google Scholar 

  16. Wilson KE, Wang TY, Willmann JK. Acoustic and photoacoustic molecular imaging of cancer. J Nucl Med. 2013;54(11):1851–4.

    Article  Google Scholar 

  17. Lin CY, Pitt WG. Acoustic droplet vaporization in biology and medicine. Biomed Res. Int. 2013.

  18. Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol. 2000;26(7):1177–89.

    Article  Google Scholar 

  19. Kripfgans OD, Fabiilli ML, Carson PL, Fowlkes JB. On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am. 2004;116(1):272–81.

    Article  Google Scholar 

  20. Sheeran PS, Dayton PA. Phase-change contrast agents for imaging and therapy. Curr Pharm Des. 2012;18(15):2152–65.

    Article  Google Scholar 

  21. Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB. The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(5):1006–17.

    Article  Google Scholar 

  22. Lo AH, Kripfgans OD, Carson PL, Fowlkes JB. Spatial control of gas bubbles and their effects on acoustic fields. Ultrasound Med Biol. 2006;32(1):95–106.

    Article  Google Scholar 

  23. Strohm EM, Rui M, Kolios MC, Gorelikov I, Matsuura N. Optical droplet vaporization (ODV): Photoacoustic characterization of perfluorocarbon droplets. In: 2010 IEEE international ultrasonics symposium; 2010, p. 495–8.

  24. Hannah A, Luke G, Wilson K, Homan K, Emelianov S. Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano. 2014;8(1):250–9.

    Article  Google Scholar 

  25. Lajoinie G, et al. Ultrafast vapourization dynamics of laser-activated polymeric microcapsules. Nat. Commun. 2014;5:3671.

    Article  Google Scholar 

  26. Asami R, Kawabata K. Repeatable vaporization of optically vaporizable perfluorocarbon droplets for photoacoustic contrast enhanced imaging. In: 2012 IEEE international ultrasonics symposium; 2012, p. 1200–3.

  27. Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nat Methods. 2016;13(8):639–50.

    Article  Google Scholar 

  28. Luke GP, Hannah AS, Emelianov SY. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets. Nano Lett. 2016;16(4):2556–9.

    Article  Google Scholar 

  29. Farny CH, Wu T, Holt RG, Murray TW, Roy RA. Nucleating cavitation from laser-illuminated nano-particles. Acoust Res Lett Online. 2005;6(3):138–43.

    Article  Google Scholar 

  30. McLaughlan JR, Roy RA, Ju H, Murray TW. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation. Opt Lett. 2010;35(13):2127.

    Article  Google Scholar 

  31. Ju H, Roy RA, Murray TW. Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy. Biomed Opt Express. 2013;4(1):66.

    Article  Google Scholar 

  32. Arnal B, et al. Sono-photoacoustic imaging of gold nanoemulsions: part I. Exposure thresholds. Biochem Pharmacol. 2015;3:3–10.

    MathSciNet  Google Scholar 

  33. Li DS, Yoon SJ, Pelivanov I, Frenz M, O’Donnell M, Pozzo LD. Polypyrrole-coated perfluorocarbon nanoemulsions as a sono-photoacoustic contrast agent. Nano Lett. 2017;17(10):6184–94.

    Article  Google Scholar 

  34. Wei C-W, et al. Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results. Opt Lett. 2014;39(9):2599.

    Article  Google Scholar 

  35. Kripfgans OD, Orifici CM, Carson PL, Ives KA, Eldevik OP, Fowlkes JB. Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(7):1101–10.

    Article  Google Scholar 

  36. Kripfgans OD, Fowlkes JB, Woydt M, Eldevik OP, Carson PL. In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(6):726–38.

    Article  Google Scholar 

  37. Williams R, et al. Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Ultrasound Med Biol. 2013;39(3):475–89.

    Article  Google Scholar 

  38. Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed. 2012;51(30):7519–22.

    Article  Google Scholar 

Download references

Compliance with ethical standards

Conflict of interest

Author Qiyang Chen declares that he has no conflict of interest. Author Jaesok Yu declares that he has no conflict of interest. Author Kang Kim declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Yu, J. & Kim, K. Review: optically-triggered phase-transition droplets for photoacoustic imaging. Biomed. Eng. Lett. 8, 223–229 (2018). https://doi.org/10.1007/s13534-018-0069-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-018-0069-0

Keywords

Navigation