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Abstract

The paper deals with a problem of automatic identification system (AIS) data analy-
sis, especially eliminating the impact of AIS packet collision and detecting existing
outliers in AIS data. To solve this problem, a clustering-based approach is proposed.
AIS is a system that supports the exchange of information between vessels about
their trajectories, e.g. position, speed or course. However, SAT-AIS, which enables
the system to work on a global scale, struggles against packet collisions due to the
fact that the satellite, which receives AIS data from ships, has a field of view that
covers multiple areas that are not synchronized among themselves. As a result, the
received data is difficult to process by AIS receivers, because most of the messages
have a character of noise. In this paper, results of a computational experiment using k-
means algorithm for packet recovery and for dealing with noise have been presented.
The outcome proves that a clustering-based approach could be used as an initial step
in AIS packet reconstruction, when the original data is incorrect .

Keywords K-means - Clustering - SAT-AIS - Data analysis -

Maritime data analytics

1 Introduction

An automatic identification system (AIS) is an automatic tracking system that has

been developed according to the International Maritime Organisation (IMO) regu-
lations. The aim of creating such system was to develop a technology that would
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provide information about ships, including their unique identifier, type, position,
speed, course and current state, to other vessels and shore stations automati-
cally (International Maritime Organisation (IMO) 2019). The dynamic information
is obtained from the ship’s navigational sensors such as its global navigation satel-
lite system (GNSS) receiver and gyrocompass. On the other hand, static information
(e.g. ship’s identifier MMSI) is permanently programmed on the ship’s equipment.
Both of them are formed into binary format to create AIS messages and transmitted
regularly using dedicated transponders. The reception of AIS messages is performed
by either ships or land-based systems (e.g. vessel traffic systems) (exactEarth 2015).

Most of AIS messages are transmitted on a regular basis. For instance, mes-
sages containing dynamic information are exchanged every 2 to 180 s (European
Space Agency 2019). Hence, during a specific recording time period a significant
amount of data can be received. To process this huge dataset and actually derive
some meaningful information from it, the use of modern, advanced technology is
required (Czarnowski 2019). Machine learning methods might be one of the possible
approaches here, since it provides algorithms that cope with, among others, finding
a pattern in a huge dataset (Mieczynska and Czarnowski 2019).

Nowadays, a need for carrying out the analysis of AIS data appears more and more
often. The reason is that such functionality is utilized by various applications. The
importance of AIS data analysis is crucial especially for maritime industry since the
usage of data analysis may lead to improved performance of monitoring and opti-
mization of maritime processes. Examples of those applications might be related to
the maritime safety. For instance, the usage of a system that would predict the ves-
sels’ movement may result in an early collision avoidance between ships (Zhang et al.
2015). The same system may be indispensable when it comes to predict a vessel’s
location (Liang et al. 2019) in emergency situations, when the connection with that
ship is lost. Another example of analysis of both real-time and historical data is an
identification of abnormal vessels’ activity that may lead to the detection of an act
of piracy (Lane et al. 2010). On the other hand, AIS data might also be useful in a
research of industrial usage in the form of maritime traffic analysis — prediction of
the load in seaports and its optimization (Millefiori et al. 2016) or route planning (He
et al. 2019).

The original, terrestrial AIS utilizes two VHF (very high frequency) frequencies
(161.975 MHz and 162.025 MHz) with the bandwidth of 25 kHz. To manage the
access to the wireless medium by multiple AIS transponders, the TDMA (time divi-
sion multiple access) method is used. A single device is allowed to transmit only
during a pre-determined period of time (called slot). More specifically, each AIS
transponder must preannounce the time slots it wants to use (this technique is called
self-organizing TDMA (SOTDMA)). Time slots filled with information from various
devices form a time frame. Nine 1-min-long time frames (consisting of 2250 26.6-
ms time slots per radio frequency channel) are then grouped into a communication
cell. Within such a communication cell, slot selection is organized randomly. Devices
choose their time slots so they can transmit in a pre-assumed rate (which depends
on such factors as the speed of the vessel or its heading). If the AIS transponder
changes its slot assignment, it must transmit its new assignment and timeout for that
assignment.

@ Springer



K-means clustering for SAT-AIS data analysis 379

Although original (terrestrial) AIS itself has many advantages and potential appli-
cations, there are some drawbacks of this system as well. As mentioned before, it has
been originally developed to provide information about nearby vessels that could be
used to prevent collisions of vessels. The information about ships’ movement (course,
position, speed) is exchanged between them and shore stations regularly, so they are
able to recognize other vessels that may appear on their paths. However, the main
limitation of this communication is its range. Due to the Earth’s curvature, the hor-
izontal range of terrestrial AIS’ visibility is about 74 km (40 nautical miles) from
shore (European Space Agency 2019). Consequently, this indicates that the original
AIS is a system working on a local scale, i.e. on a ship-to-ship basis or around coastal
zones only.

To overcome such a problem and enable AIS to work on a global scale, a SAT-
AIS system has been proposed (European Space Agency 2019). In general, SAT-AIS
utilizes satellites (e.g. AAUSAT3) on low-earth-orbit to increase the range of trans-
mission. Messages sent by ships are recorded by a satellite (which has a broader range
of view due to its altitude) and then transmitted to ground stations for further process-
ing and distribution (Wawrzaszek et al. 2019). Although it seems to solve many of
terrestrial AIS’ restrictions, SAT-AIS also struggles against its own limitations. The
main problem of this satellite system is packet collision. The problem of package
collision is an example of a normal wireless system behaviour due to its technologi-
cal restrictions regarding synchronization between AIS’ transponders (Swetha et al.
2018). When multiple vessels start or stop transmitting (thus assigning slots) in a
communication cell, other devices may receive information from various cells (e.g.
from both terrestrial AIS base station and SAT-AIS satellite), which are not orga-
nized within themselves — that is why slot (and packet) collisions appear (exactEarth
2015).

The packet collision means that the AIS message cannot be correctly decoded from
signals recorded by a satellite. Thus, the AIS message is incomplete or consists of
incorrect values (for example, includes incorrect information about ship’s position or
speed). In other words, it means that in a chain of received information, a noise exists
and the AIS message can be lost or refused. From the perspective of ship monitoring,
it means that the ship’s trajectory and ship’s behaviour cannot be monitored in some
period of time and the ship’s trajectory have gaps.

To make AIS-based systems working efficiently, not only the high-efficient algo-
rithms should be implemented, but also the dataset needs to meet some quality
requirements. Several ways of handling with problem of packet collision can be
encountered in the literature. Some of them are based on data analysis and signal
reconstruction (Prevost et al. 2012; Seta et al. 2016). The approach proposed in this
article is focused on the latter issue. Therefore, machine learning algorithms can be
applied not only for deriving information from data but also for recovering the incom-
plete dataset by learning the patterns between delivered features and trying to predict
the missing values from AIS messages or those assumed to be incorrect.

In this paper, a cluster-based approach is presented as a one of machine learning
techniques for AIS data analysis. The proposed approach is going to be the first stage
of further detection of the abnormal AIS messages and prediction of their correct
form.
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The initial results of an implementation of cluster-based approach in general
way for AIS data analysis and with respect to the AIS data reconstruction have
been presented at the International Association of Maritime Universities Conference
(IAMUC) in 2019 (Czarnowski 2019). The k-means algorithm implemented for ves-
sel trajectory reconstructions has also been discussed in Mieczyniska and Czarnowski
(2019). This article consists of an extension of the research results presented before
in the mentioned papers. In this paper, the AIS data recovery using k-means algo-
rithm is considered again, but the discussion is wider and more results are presented.
The main contribution of the paper is the evaluation (through computational experi-
ment) of the clustering approach based on k-means for AIS data recovering and for
deciding on a character of detected noise (outliers) within AIS data stream. The per-
formance of the proposed clustering approach has been evaluated using a benchmark
dataset obtained from the original AIS system.

The paper is organized as follows: the SAT-AIS packet collision is shortly dis-
cussed in Section 2. Section 3 contains a description of the proposed approach.
Section 4 provides details on SAT-AIS dataset. Details on the computational exper-
iment setup and discussion on experiment results are included in Section 5. Finally,
the last section contains conclusions and suggestions for future research.

2 SAT-AIS packet collision and problem formulation

The main problem of the satellite-based AIS system is the aforementioned packet
collision. Packet collisions occur when a satellite receives two or more messages at
the same time. The synchronized allocation of AIS message time slots is guaranteed
only within a limited area (Wawrzaszek et al. 2019), called a cell or a terrestrial AIS
service area. Satellite’s field of view (FOV) covers several such areas (see Fig. 1),
all of them not being synchronized between themselves and sending messages to the
satellite simultaneously. As a result, a package collision is observed. The satellite
receives signals from different ships that are characterized by various amplitudes,
time delays and Doppler frequency shifts, which make it difficult to distinguish the
corresponding messages.

Ultimately, not much of the received signal can be useful. Only partially received
data packets can be correctly decoded into AIS message which is a result of the lack
of synchronization and lack of the possibility to identify the beginning and ending
of a packet. The lack of synchronization and the overlapping of signals from sev-
eral ships can also result in mistakes (errors) within decoded AIS message. Those
mistaken fields with respect to all received messages can be recognized as outliers.

To eliminate the aforementioned issue, several techniques have been already pro-
posed in the literature. Most of them concentrate on packet recovery, either through
recognition of the received sequence’s shape, decoding methods using the Viterbi
algorithm (Prevost et al. 2012), blind source separation algorithm (Swetha et al. 2018)
or statistical estimation (Seta et al. 2016).

However, the problem of packet collision and elimination of its effects is still
open. Today, the advanced machine learning methods create a possibility to solve
this problem using slightly different approach than technical or statistical analysis.
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Fig. 1 AIS service areas in the satellite field of view (Swetha et al. 2018)

In the next section of this paper, the cluster-based approach for reconstruction of AIS
messages and elimination of incorrect AIS data is presented.

3 Cluster analysis for SAT-AIS data
3.1 Unsupervised learning and clustering

In general, cluster analysis is a method of distinguishing groups called clusters in
a set of available data. It is assumed that these groups are disjoint, which means
that data belonging to different clusters differ between themselves much more than
the data belonging to the same cluster. From a practical point of view, when data is
defined as a set of objects or instances described by a set of attributes (features), a
result of cluster analysis are groups of instances where each instance belongs only to
one cluster.

Thus, it can be concluded that the role of cluster analysis is to uncover a certain
kind of natural structure in the dataset. For performing this task, a certain measure of
similarity or dissimilarity is usually defined (Wierzchon and Klopotek 2015).

Cluster analysis or clustering belongs to a class of unsupervised learning. Unsu-
pervised learning is a machine learning technique where learning from data is carried
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out without supervision. In such case, the machine learning process is based on using
information that is neither classified nor labelled and allowing the algorithm to act
without guidance.

The crucial question formulated in a domain of unsupervised learning concerns
identification of similarities among the data and determining the number of clusters
in a dataset.

Among the set of different algorithms dedicated for solving the task of cluster
analysis, there is a k-means algorithm. K-means is an iterative and so-called par-
titional clustering algorithm. The k-means algorithm divides the given data into k
clusters. Each cluster has a cluster centre called centroid and the clustering process
is focused on these centroids. k defines the number of clusters and must be speci-
fied by the user. Therefore, k-means is not an algorithm for determining the potential
similarity between the data, thus for determining numbers of these similarities, but k-
means is a relatively effective algorithm for partitioning the data into clusters, when
the number of clusters is defined beforehand. In general, k-means allow to find, if
not optimal, the near optimal partition of data in reasonable amount of computation
time. The pseudocode of the k-means algorithm is presented as Algorithm 1.

Algorithm 1 The k-means algorithm.

Input: D — set of data; k — predefined number of clusters
1: Choose randomly k data points (seeds) to be the initial centroids
2: while convergence criterion is not met do
3:  Assign each data point to the closest centroid
4: Re-compute the centroids using the current cluster memberships
5: end while

An alternative way for machine learning is based on the concept of semi-
supervised learning, originally introduced to eliminate a basic disadvantage of any
supervised learning algorithm, which generally needs labelled data. Semi-supervised
learning uses both tagged and untagged data to find a model.

3.2 The proposed approach

In this paper, k-means algorithm is proposed to analyse AIS data when there are out-
liers within the data. We assume that those outliers are a result of packet collision in a
satellite-based AIS system. The proposed approach is also based on semi-supervised
learning in such a meaning that the decision on qualification of outliers is based on
clustering results.

We assume that it is well known how many vessels are within the considered sea
area — it can be established based on previously registered information. The stream
of data from AIS system for a given period time can be partitioned into number of
groups equal to a number of vessels in a considered sea area. Such clustering can be
carried out regardless of whether the data contains errors or not. Assuming that the
data contains errors or a noise, such clustering requires an approach which can detect
similarities or dissimilarities within the data, for example the k-means algorithm.
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Thus, when an individual data consists of errors or a noise and available dataset will
be divided into a predefined number of clusters, then there is a big probability that
the data with errors and a noise will be allocated to clusters including data similar to
them. Subsequently, the data with errors can be reconstructed to their correct form,
which means that the AIS message can be reconstructed to its useful form. In the
considered approach, the correct data is considered as labelled, when the damaged
data as unlabelled, so it is a reason for including the proposed approach to a semi-
supervised learning paradigm.

The pseudocode of the proposed k-means clustering for SAT-AIS data analysis is
shown as Algorithm 2.

Algorithm 2 The k-means clustering for SAT-AIS data analysis.

Input: D — set of data; k — predefined number of clusters (equal to the number of

vessels)
1: Run k-means on D and map instances from D into k clusters
2: Let D1, ..., Dy denote the obtained clusters such that D = Uf'(:] D;

3:foralli =1,...,kdo
4:  Identify outliers or damaged feature values in D; and run their correction
5: end for

In the next sections, computational experiment results of a research where k-means
algorithm has been used for the considered problem will be presented. Moreover,
answers to the questions raised about the legitimacy of the proposed approach have
been formulated.

4 SAT-AIS dataset
4.1 AIS message encoding

To predict the trajectory of the ship and, subsequently, to reconstruct lost or incor-
rect AIS messages, it was necessary to obtain a specific dataset. In the AIS system,
the information regarding vessels’ trajectory is carried by messages of 3 different
types: 1, 2 and 3 (International Telecommunications Union 2014). Messages of each
of those types are called position reports and share the same data format which is
presented in Table 1. The difference between them is that messages type 1 carry
scheduled position reports, messages type 2 — assigned position reports, and type 3
— special position reports (International Telecommunications Union 2014).

The AIS data that has been used to conduct this experiment was obtained from
messages of types 1-3, each consisted of 168 bits in total, gathered in 3 different
datasets:

— The first one was obtained from 22 vessels from the area of Gulf of Gdansk,
recorded during a 35-min time slot (during that time 850 messages have been
received),
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Table 1 Fields of AIS messages types 1-3 (International Telecommunications Union 2014)

Field Bits Format

Message ID 1-6 Unsigned integer

Repeat indicator 7-8 Unsigned integer

User ID (MMSI) 9-38 Unsigned integer

Navigational status 39-42 Enumerated (unsigned integer)
Rate of turns 43-50 Signed integer with scale
Speed over ground 51-60 Unsigned integer with scale
Position accuracy 61-62 Boolean

Longitude 62-89 Signed integer with scale
Latitude 90-116 Signed integer with scale
Course over ground 117-128 Unsigned integer with scale
True heading 129-137 Unsigned integer

Time stamp 138-143 Unsigned integer

Special manoeuvre indicator 144-145 Enumerated (unsigned integer)
Other (spare, radio status) 148-168 -

— The second covers the broader area of Baltic Sea (19,999 messages, 387 ships),
and

—  The third consists of data collected around Gibraltar (also 19,999 messages, 524
ships).

The original data, right after the recording, was in a binary form. Each of the mes-
sages had to be then decoded, i.e. some fields (mentioned in the next section) have
been transformed into a decimal form (multiplied by some scale in certain cases).
The decoding process of a sample AIS message type 1 is shown in Table 2.

Figures 2, 3 and 4 show the visualization of the used data. As mentioned before,
the AIS message carries numerous amounts of information; however, it was necessary
to select no more than 2 or 3 fields to make the visualization comprehensible. The
most intuitive ones seemed to be those related to the location of the vessel since
that could present the trajectory of the ship, i.e. how the vessel moved during the
recording interval. That is why the plot in Figs. 2 and 3 consists of the longitude on
X axis and latitude on Y axis. Furthermore, each trajectory has been marked with a
different colour to distinguish datapoints originating from each of the vessels.

4.2 The proposed data model

In order to implement the proposed approach to analyse AIS data, the gathered data
which represents vessels’ trajectories had to be arranged into an input matrix of
features.

One method of expressing the trajectory of the ship in a mathematical way is to
create a set of the following vectors (Mieczyfiska and Czarnowski 2019):

T/ = [x1, x2,%3, ..., xN]; (1)
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Table2 A sample of AIS type 1 message in a binary form and its equivalent in a decimal form
Field Binary form Decimal form
Message ID 000001 1
Repeat indicator 00 0
User ID (MMSI) 001111100100011010010000111000 261203000
Navigational status 0000 0
Rate of turns 00000000 0
Speed over ground 0000000000 0
Position accuracy 1 1 (high)
Longitude 0000101010011110001111110101 18,55 (deg)
Latitude 001111100110101100001100000 54,54 (deg)
Course over ground 100101111000 2424
True heading 000011000 24 (deg)
Time stamp 000100 4 (s)
Special manoeuvre indicator 00 0
54544 e
54542
5454
. o . ®e
o 54538 r B /
o
: /
.3 CLJ
— 54536 | { °® o
$ ~

54.532

L™

i

i i A i I J

54.53 .

185 1852 1854 1856 1858 186 1862 1864 1866 18.68 18.7

Longitude

Fig.2 Recorded AIS data from the first dataset — 22 ships and its representation in the form of trajectories
of every ship (each marked with a different colour)
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Fig. 3 Recorded AIS data from the second dataset — 387 ships and its representation in the form of
trajectories of every ship (each marked with a different colour)

where

- Tit”’ is a trajectory datapoint from time #,,

— i represents an individual vessel (with a unique MMSI identifier),

— m is the number of points (time steps) that build a trajectory sequence,

— N defines dimension vector of reported AIS dynamic information,

- X1,X2,...,xy are the features derived from AIS messages types 1-3 (see
Table 1.).

At this point, an important question arises: which fields of AIS messages types
1-3 should be included in the input matrix as features. After conducting multiple
auxiliary tests, the decision has been made to use the following fields: longitude,
latitude, navigational status, speed over ground, course over ground, true heading,
special manoeuvre indicator, ship identifier and country identifier. The last two fea-
tures have been obtained from the same message field, since the 3 first digits from
MMSI indicate the number unique to each country and the following 6 digits form
individual code for each vessel.

Moreover, it is worth mentioning that in machine learning, a special attention is
required while using codes/identifiers as features (Brownlee 2017). The algorithm
might mistakenly try to interpret the increasing/decreasing code numbers as values
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Fig. 4 Recorded AIS data from the third dataset — 524 ships and its representation in the form of
trajectories of every ship (each marked with a different colour)

that indicate the increase/decrease of that feature’s level (e.g. temperature, speed,
brightness). To avoid this behaviour, it is advisable to further encode those identifier
features using one hot encoding. With this technique, it is possible to convert each
digit of identifier into a set of additional features, whereof each consists of only two
binary values: 0 and 1, while 1 can be placed on only one position and other positions
are filled with Os.

With the use of one hot encoding technique, the following features have been con-
verted: navigational status, special manoeuvre indicator, ship identifier and country
identifier. Each digit of MMSI has been converted into 10-dimensional vectors filled
with the value of 0 and one value of 1 on the kth position, where k is simply that
digit. If the identifier is allowed to take only restricted / values (like navigational sta-
tus, which is carried in 2 bits and can only take values in the range from O to 3), then
the output vector of one hot encoding is /-dimensional.

According to the aforementioned rules, the established features are set as follows:

— x1 — longitude,

—  xp — latitude,

— X3 — x13 — navigational status,
—  x19 — speed over ground,

—  xpp — course over ground,
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—  xp1 — true heading,

— X232 — x5 — special manoeuvre indicator,
—  xp6 — xg5 — ship identifier,

—  xg¢ — X115 — country identifier,

that gives 115 features in total.

Finally, the entire dataset has been standarized, i.e. all features have been turned
into values in the range from —1 to 1: the distribution of each of the features has a
mean of 0 and a variance equal to 1.

5 Computational experiment results

To validate the proposed approach, it has been decided to carry out the computational
experiment. Those experiments aimed at answering the main question whether the
proposed approach can help in decoding AIS messages when they contain errors,
resulting, for example, from packet collisions.

5.1 Assumption on the number of clusters

The k-means algorithm does not provide build-in methods to assess the optimal
quantity of clusters which the entire dataset should be divided into. Wherefore, the
selection of that value should have been done in a different manner, preceded by
some preliminary analysis of the dataset.

The goal of clustering was to separate AIS messages originating from one vessel
from the messages sent by any other vessel in the given area. That would further allow
to carry a deeper analysis of those selected messages to find abnormal (either dis-
rupted or incomplete) ones among them. Following this line of reasoning, we could
expect to observe that ideally our dataset would be divided into clusters that only
consist of messages from one vessel, with no messages from any other ship attached.
Further reasoning leads to the conclusion that the optimal quantity of clusters should
be equal to the number of individual vessels from which the messages forming the
dataset originated.

To examine the aforementioned conclusion, the following approach has been pro-
posed: iteratively, the k-means algorithm has been run to cluster the entire dataset
into different numbers of groups. For example, for the dataset from the area of Gulf
of Gdansk with 22 vessels, the experiment started with 2 clusters. To find the final
number of iterations, firstly it had been checked that there were messages from 22
individual ships in our dataset, then we multiplied it by 1.5, that gives 33 in this
scenario. Then, we computed the value of the silhouette coefficient for each of the
obtained clustering results and plotted it to visually see how the value of the silhou-
ette coefficient changes with the increasing number of clusters. Figure 5 presents the
graph with the computed silhouette values for each number of clusters.

Analysing Fig. 5, the following conclusion can be drawn: the number of vessels
in the dataset is indeed an optimal quantity of clusters, as one may notice that it is
close to the number (which in this scenario is around 24) that corresponds to the
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Fig. 5 Examples of silhouette coefficient values obtained while dividing the first dataset into various
quantities of clusters (ranging from 2 to 33 clusters). Silhouette value corresponding to 22 clusters (i.e. the
number of individual ships in this dataset) has been additionally marked

maximum value of silhouette; thus, it gives sufficient results in terms of silhouette
and also proves that there is no need to conduct additional, computationally costly
calculations to find the actual maximum of the silhouette value.

5.2 Clustering results

After the number of clusters was established, the clustering itself was conducted. The
k-means algorithm has been run to divide the first dataset into 22 groups, the second
dataset into 387 groups and the third dataset into 524.

For example, the results of the clustering for the first dataset are presented in
Figs. 6 and 7. In case of the first dataset, the average silhouette value of the clustering,
as shown in Fig. 7, is equal to 0.927456.

Using the second dataset — clustered into 387 groups — the value of the silhouette
coefficient equals 0.9325, while for the third dataset — clustered into 524 groups —
the coefficient equals 0.8696 (Figs. 8,9, 10 and 11).

Moreover, a visual comparison of Figs. 2 and 6 (as well as Fig. 3 and 8, Fig. 4 and
10) may lead to the conclusion that datapoints clustered into the same group indeed
mostly follow the trajectory of one ship, i.e. consists of points originating from one
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Fig.6 Recorded AIS data from 22 ships clustered into 22 groups (each marked with a different colour)

particular vessel. However, relying on a visual rating may sometimes be mislead-
ing. For this reason, in the next section, for each considered dataset, a mathematical
verification of the clustering correctness is used.

5.3 Clusters’ homogeneity coefficient

As mentioned in the previous subsection, a need to mathematically validate the cor-
rectness of clustering the AIS messages has arisen. It is worth reminding that the
main goal of the clustering was to separate messages originating from one vessel
from those received from any other vessel, i.e. to put all messages from one ship into
one cluster. Therefore, one of the possibilities to measure whether the clustering was
successful or not is to ascertain if all datapoints gathered in a cluster originate from
one particular ship, i.e. all the messages from one cluster share the same number in
MMSI field.

To elaborate such a coefficient, each cluster has been examined using the
following procedure:

1 Firstly, decide which MMSI is the most common in the cluster.
Secondly, calculate how many messages the cluster consists of.

3 Then, calculate how many messages in the cluster have the same MMSI as the
one indicated in point 1.
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4 Finally, calculate the percentage of how much the cluster is filled with the mes-
sages with modal MMSI value by dividing the value from point 3 by the value
from point 2.

Some exemplary results are presented in Table 3. Once each cluster has been
examined this way, a weighted average for those calculated percentages of all clusters
has been computed with the volume of each cluster being a weight. The computed
average may be called tentatively “the clusters’ homogeneity coefficient”, as it indi-
cates the average fraction of each cluster that consists of messages originating from
one ship, i.e. to what extent all clusters are homogeneous. It takes values in the range
from O to 1. The values close to 0 can be interpreted as a result of clustering where
nearly every single datapoint in each cluster has been received from a different ves-
sel. On the opposite, results close to 1 indicate that messages from mostly one ship
are gathered in each cluster.

The analysis of Table 3 provides the conclusions that in most cases, each cluster
consists only of messages originating from one vessel (the value of 100% is present
in most of the fields in the third row in Table 3), which is the desired behaviour
of the clustering. However, several clusters (1 out of 22 in this case) include data-
points from more than one ship. The clusters’ homogeneity coefficient for the first
dataset is 0.99751. It equals 0.982299 and 0.98535 for the second and third datasets,
respectively.
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Fig. 7 Values of silhouette coefficient for each datapoint for clustering the first dataset into 22 groups —
the average value equals 0.927456
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Fig.8 Recorded AIS data from 387 ships clustered into 387 groups (each marked with a different colour)

5.4 Vessels’ homogeneity coefficient

The method of calculating a so-called clusters’ homogeneity coefficient of the AIS
data clustering described above is, however, not the only one that can be elaborated.
In fact, the clusters’ homogeneity coefficient does not provide information whether
packets from one vessel have been divided into several clusters. Those clusters may
still be characterized with the high clusters’ homogeneity coefficient (each of them
might consist of packets from only one ship), although this behaviour is not desirable.

Table3 Numerical values necessary for computing the correctness of clustering the first dataset according
to the percentage of different MMSI identifiers prevalent in each cluster: cluster — the number of the
cluster, volume — the amount of messages assigned to the corresponding cluster, % — percentage of the
occurrence of modal MMSI value in the corresponding cluster

Cluster 1 2 3 4 5 6 7 8 9 10 11
Volume 110 129 183 26 128 91 5 4 34 7 7
% 100 100 100 100 100 100 100 100 100 100 100
Cluster 12 13 14 15 16 17 18 19 20 21 22
Volume 8 1 6 7 2 8 2 6 1 33 7

% 75 100 100 100 100 100 100 100 100 100 100
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To elaborate such a coefficient, packets from each vessel have been examined
using the following procedure:

1 Firstly, decide which clusters contain messages from the particular ship.

Secondly, designate the most common cluster that the messages have been

assigned to.

Calculate how many messages have been received from that ship.

4 Then, calculate how many messages from that vessel have been assigned to the
cluster indicated in point 2.

5 Finally, calculate the percentage of how many of the messages from the corre-
sponding ship have been assigned to the modal cluster by dividing the value from
point 4 by the value from point 3.

w

Another exemplary result of the aforementioned calculations is presented in
Table 4. Again, after each source vessel has been examined this way, a weighted aver-
age for those calculated percentages of all ships has been computed with the number
of messages originating from one particular ship being a weight. This time the name
of the computed average might be “the vessels’ homogeneity coefficient” as it indi-
cates the average fraction of messages from each ship that have been grouped into
one cluster. Similarly to the previous coefficient described, it takes values in the range
of 0—1. Results close to 0 indicate that almost all messages from the ship have been

Cluster

1 L 1 1 L 1 1 I

06 04 -02 0 0.2 0.4 0.6 0.8 1
Silhouette Value

Fig.9 Values of silhouette coefficient for each datapoint for clustering the second dataset into 387 groups
— the average value equals 0.9325
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Fig. 10 Recorded AIS data from 524 ships clustered into 524 groups (each marked with a different colour)

clustered into different groups. Results close to 1 can be interpreted as a situation
where every message from a particular vessel has been clustered into one group.
The conclusions that can be drawn from Table 4 can be spelled as follows: only
several ships (5 out of 22) had transmitted messages that have been divided into 2
or more clusters, while the common behaviour of our clustering algorithm is to put
those messages into one group. Therefore, the vessels’ homogeneity coefficient for

Table4 Numerical values necessary for computing the correctness of clustering the first dataset according
to the amount of different clusters that include messages from particular vessel: vessel — the pseudo-
identifying number of the particular ship, volume — the amount of messages originating from the
corresponding vessel, % — percentage of how many of the messages from the corresponding ship have
been assigned to the modal cluster

Vessel 1 2 3 4 5 6 7 8 9 10 11
Volume 110 129 183 26 128 91 5 4 34 7 7
% 100 100 61,2 100 100 100 100 100 100 100 100
Vessel 12 13 14 15 16 17 18 19 20 21 22
Volume 8 1 6 7 2 8 2 6 1 33 7

% 100 100 100 100 100 100 100 100 100 100 100
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Fig. 11 Values of silhouette coefficient for each datapoint for clustering the third dataset into 524 groups
— the average value equals 0.8696

the first dataset is 0.9118. It equals 0.957698 and 0.921396 for the second and third
datasets, respectively.

5.5 Correctness coefficient

In previous sections, two possible measures of the correctness of the clustering have
been proposed. They are similar to each other, yet both focus on two different aspects
of clustering of the AIS data. If the clustering model works correctly, both of them
should produce satisfactory, high results. However, assessment based on relying on
two independent values might be either uncomfortable or impossible. Ideally, there
could be one, uniform coefficient that would provide the answer to what extent the
clustering is acceptable or not.

To create such a measure, a method similar to calculating F-score in classification
problems has been developed. The coefficient called “the correctness coefficient”
(CC) of the clustering is a harmonic average of the clusters’ homogeneity coeffi-
cient and vessels’ homogeneity coefficient. It has been computed using the following
formula:

cc 2 - clusters’ homogeneity coefficient - vessels' homogeneity coefficient

clusters’ homogeneity coefficient + vessels' homogeneity coefficient
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Not only does the aforementioned coefficient combine and compromise all of its
components, but it also retains the trait of taking the range from O to 1. If any of its
components (either clusters’ homogeneity coefficient or vessels’ homogeneity coef-
ficient) produces 0, the correctness coefficient will drop to 0, while if all component
coefficients take the value of 1, correctness coefficient will also result in 1. There-
fore, the closer to 1, the better results of clustering have been obtained and, on the
opposite, the closer to 0, the worse results of clustering.

For the considered datasets, the correctness coefficient equals 0.952734, 0.9728
and 0.9479 for first, second and third datasets, respectively.

5.6 Clustering of damaged messages

Apart from mathematical methods of evaluating the correctness of the clustering
results, another way of verifying whether the algorithm works in an acceptable man-
ner is to check its work in practice. As mentioned before, the aim of clustering is to
prepare a background for further anomaly detection analysis. To predict the missing
parts of AIS messages, damaged or incorrect packets received from one ship should
still be clustered with all other messages from the same vessel, despite the fact that
some of their fields contain abnormal values.
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Fig. 12 Visualization of damaging the AIS message and repeated clustering — single datapoint randomly
selected to form an outlier (red) and its cluster (blue)
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To verify whether the proposed model assigns the damaged messages to the same
cluster as it would do with the intact ones, additional experiments have been con-
ducted. For the need of a clear analysis of this part of experiments, they have been
carried out using only the first dataset.

The purpose of the first experiment was to visualize the clustering of a randomly
chosen message in two scenarios: when the message had been damaged and not.
After running a regular clustering algorithm and assigning all datapoints to their clos-
est clusters, one message from the first dataset was randomly selected. The chosen
one and its corresponding cluster are shown in Fig. 12. Then, the selected datapoint
was damaged to form an artificial outlier. Again, to make the visualization compre-
hensible on a 2D plot, only its location features (latitude and longitude fields) were
slightly changed, which simulates e.g. the GPS drift in a real environment. The clus-
tering process was repeated to investigate whether the datapoint would be assigned
to the same cluster as before or not. Experiments confirmed that in most cases, no
change in clustering had occurred, which can be seen in Fig. 13.

Since changing the location features in a restricted range did not change the clus-
tering results, further experiments were required. This time not only location features
should have been corrupted, but the damage should have been spread among all 168
message bits to see if the algorithm can handle more sophisticated disruption. To
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Fig. 13 Visualization of damaging the AIS message and repeated clustering — damaged message (outlier,
red) and its cluster after repeated clustering (blue)
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Fig. 14 The average percentage of correctly classified messages (i.e. assigned into the same groups) after
the corruption versus the number of bits damaged in each examined message

accomplish this, a random noise was generated to disrupt the data. One hundred sixty-
eight-dimensional binary vectors were created with O values on most of the positions
and 1s on a certain amount of randomly selected positions with the amount depend-
ing on the level of disruption to be achieved. Bits with a value of 1 simulate bits that
have been misinterpreted. Next, the XOR logical operation on a noise vector created
this way and a randomly chosen message was conducted to form an outlier.

The aim of this part of the research was to determine the impact of the level of
distortion on the correctness of clustering, i.e. on the number of messages that were
clustered to the same groups as before despite the disruption. The work was con-
ducted in an iterative way. At each iteration, the percentage of damaged bits (i.e.
the number of 1s in a noise vector) was increased. Fifty randomly selected data-
points were not disrupted with the help of the noise vector. After that, the clustering
algorithm was run and each of the artificial outlying datapoint was examined accord-
ing to the result of its clustering, i.e. whether it was assigned to the same cluster as
before. The percentage of correctly classified messages among the examined 50 ones
has been plotted on an X axis, while the number of damaged bits (ranging from 1 to
20 out of 168) has been shown on a Y axis.
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The research shows (in Fig. 14) that if the number of incorrect bits in the mes-
sage does not exceed 1% (2 bits out of 168), the algorithm successfully groups
the damaged data into the correct cluster as before the disruption (with over 80%
accuracy).

6 Conclusions

This paper focuses on packet collision and recovery in the AIS system. The proposed
approach is based on an unsupervised machine learning technique called cluster-
ing. One of its algorithms, the k-means algorithm, has been exploited to conduct
a computational experiment to ascertain whether this approach provides sufficient
results. The research proves that the clustering-based approach may be used in fur-
ther works as an initial stage of AIS data analysis which aims to distinguish packets
originating from one specific vessel (to enable the detection of abnormal ones
between them and, consequently, predict their correct form): the CC value, authors’
original coefficient which reflects to which extent one cluster consists of messages
from only one ship, obtained high values between 0.94 and 0.97, with silhouette coef-
ficient between 0.86 and 0.93. It is also worth noticing that even if some bits in an
AIS message are incorrect, k-means still manage to find the right cluster for such a
damaged packet.

The results are also very promising when we compare the results to other similar
experiments. For example, using a more sophisticated TREAD method of ship trajec-
tory extraction 80% of the traffic around Brest has been discovered (see in Pallotta et
al. 2013a). For the same method, the percentage of correctly recognized routes varies
from 40% (on Indian Ocean) to 95% around Gibraltar (see in Pallotta et al. 2013b),
when for comparable data from Gibraltar area the method proposed in this paper
managed to correctly cluster around 95% messages, regarding the CC value.

Further research will concern the subsequent improvement of clustering, i.e.
studying the influence of different distance measures on the results, as well as the
attempt to detect the outliers in each of the clustered data groups. Considering a
character of the problem, new methods for outlier detection, as well as for data
reconstruction, will be developed.
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