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Abstract
For policies and programs aiming at reducing climate risk, it is important to obtain vulnerability information at the sub-
national level to identify hotspots. For the case of Costa Rica, no sub-national climate vulnerability index exists to date. To fill 
this gap, we constructed a climate vulnerability index at the canton level. We ground our work in the conceptual framework 
that vulnerability is a function of exposure, sensitivity, and adaptive capacity. Making extensive use of geographic informa-
tion systems and publicly available data, we constructed 13 spatial layers to reflect the multi-dimensionality of vulnerability. 
Layers reflect for example, changes in climatic extremes, flood risk, vegetation cover, access to infrastructure (road density) 
and health services (distance to hospitals), as well as various socioeconomic (wealth level, employment rates, remittances, 
literacy rate) and demographic (infant mortality) characteristics. Following normalization, we constructed an inverse vari-
ance weighted index of canton-level climate vulnerability. We confirmed the validity of our climate vulnerability index 
through correlation with disaster damage data. We find the strongest climate vulnerability not only in the rural, agricultural 
producing border cantons (Los Chiles, Matina, Talamanca, Buenos Aires), but also for a few central urban cantons (Tibas, 
San Jose). Projects and interventions in these hot spot cantons may reduce sensitivity through strengthening hydrological 
infrastructure and economic development, while adaptive capacity may be improved through addressing barriers of remit-
tance transfer, and via public health programs.

Keywords  Climate Vulnerability · Vulnerability Mapping · Sub-national · Climate Change Index · Climate Risk · Costa 
Rica
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Introduction

Background

Climate change is an issue of global magnitude (IPCC 
2014a, 2022a). Particularly countries highly dependent 
on natural resources will suffer through adverse effects on 
sectors such as agriculture (Nawrotzki and Bakhtsiyarava 
2017), forestry, or tourism (Hoogendoorn and Fitchett 
2018). These countries frequently lack the resources and 
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infrastructure to adjust to climatic changes (Thomas and 
Twyman 2005; Gutmann and Field 2010). Climate change 
is defined as a change in the global and regional climatic 
system over long periods of time (IPCC 2014a), resulting not 
only in an increase in the intensity and frequency of extreme 
weather events (e.g., storms and floods) but also in more 
gradual slow-onset changes (e.g., desertification, sea-level 
rise) (James et al. 2014). The degree to which populations 
suffer from the adverse effects of climate change depends on 
their level of vulnerability (Tanner et al. 2015).

Conceptual framework

Scholars have proposed many different conceptualizations 
of vulnerability over the past decades. These concepts vary 
by academic discipline with a focus on physical causes of 
vulnerability by engineers and natural scientists, an under-
standing that human behavior and perceptions are important 
determinants of vulnerability found in human ecology, or the 
political economy focus on structure and institutions as main 
causes of vulnerability (Füssel 2007). In this article, we fol-
low the International Panel of Climate Change’s definition 
of vulnerability as “a function of the character, magnitude, 
and rate of climate change and variation to which a system 
is exposed, its sensitivity, and its adaptive capacity” (Parry 
et al. 2007, p. 6). The “system” here is a social-ecological 
system composed of a natural system (biological and bio-
physical processes) and a social system (rules, institutions, 
knowledge, and ethics that mediate human use of resources) 
that are deeply intertwined (Berkes and Folke 1998; Tanner 
et al. 2015).

Climate change constitutes an external shock or stress 
to which the system needs to respond. Some systems can 
absorb large disturbances and have the capacity to self-
organize and adapt to the new circumstances (Carpenter 
et al. 2001; Berkes et al. 2003; Folke 2006). Such systems 
are resilient and have a low level of vulnerability. In contrast, 
systems that are susceptible to disturbances and quickly 
change to a radically different state are considered highly 
vulnerable (Adger 2006; Parry et al. 2007). Figure 1 pro-
vides a visual representation of our conceptual framework, 
which has been widely used in research on climate change 
vulnerability (o’Brien et al. 2004; Eakin and Bojórquez-
Tapia 2008; Sietz et al. 2012; Shukla et al. 2021).

The three dimensions of vulnerability (exposure, sensi-
tivity, and adaptive capacity) are not always clearly distin-
guishable. For example, some characteristics of a system 
may be classified as both adaptive capacity and sensitivity 
(overlap in circles). Nevertheless, following empirical and 
theoretical considerations (Feyissa et al. 2018), we concep-
tually separate the three dimensions as described in the next 
paragraphs. We select components, conceptually following 

the climate change vulnerability model introduced by Sul-
livan and Meigh (2005).

Exposure

A recent evidence gap map on climate change adaptation 
demonstrated that only limited research has focused on 
measures to reduce exposure to climate events (Doswald 
et al. 2019). For this research, we understand exposure as 
the degree to which a system experiences climatic stress. 
Stress can be characterized in terms of magnitude, fre-
quency, duration, and areal extent (Burton et al. 1993). Cli-
mate change–related stresses include heat waves (Nawrotzki 
et al. 2017), droughts (Leng et al. 2015), or an increase in 
the risk of flooding due to sea-level rise or storms (Arnell 
and Gosling 2016).

Sensitivity

Sensitivity is the degree to which a system is affected by a 
stressor (Adger 2006). Sensitive systems are affected deeply 
even if the perturbation is minor, while less sensitive sys-
tems can more easily absorb effects without major changes. 
Various characteristics determine the sensitivity of a system. 
For example, poor and marginalized populations are often 
highly sensitive to climate change impacts (Adger 2006). 
The agricultural sector is highly vulnerable to the effects of 
climate variability (Bouroncle et al. 2017), and therefore, 
working in this sector makes individuals highly sensitive 
to climate impacts due to the direct link between climate 

Fig. 1   Visual depiction of the conceptual framework of vulnerability. 
Source: own figure
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and crop production (Nawrotzki and Bakhtsiyarava 2017). 
In contrast, access to natural resources may serve as a safety 
net (Nawrotzki et al. 2014). For example, if crop fails due 
to a drought, households may collect fruits and edible roods 
in the forest (Walter 2001). However, generally, resources 
are limited and population pressure can put strain on scarce 
resources, making population dense regions more sensi-
tive to the impacts of climate change (Yusuf and Francisco 
2009).

Adaptive capacity

Adaptive capacity is the ability of a system to evolve in order 
to accommodate climatic changes and to expand the range of 
variability with which it can cope (Adger 2006). Population 
characteristics and access to important infrastructure deter-
mine a system’s adaptive capacity. For example, the level of 
employment and the literacy rate may serve as a proxy indi-
cator for human capital (Nawrotzki et al. 2013). Similarly, 
infant mortality can be used as an indicator of a population’s 
health and ability to deal with stressors with the assumption 
that higher infant mortality rates imply lower levels of adap-
tive capacity (Thornton et al. 2008).1 The money obtained 
via remittances from a family member living abroad may be 
used to adapt to changes in the climatic system (Nawrotzki 
et al. 2015). For example, farmers may use funds remitted 
by a family member living abroad to purchase improved 
irrigation systems if droughts increase (Schuck et al. 2005). 
Finally, infrastructure may assist in adapting to climate 
change (o’Brien et al. 2004). For example, roads will permit 
accessing alternative labor markets and to diversify income 
sources (Thornton et al. 2008). In addition, access to hos-
pitals will allow coping with the adverse effects of extreme 
weather events (Keim 2008).

While our conceptual framework considers various 
influential factors, we are unable to cover all aspects. For 
example, vulnerability is also a function of various macro-
level factors such as the political economy and governance 
quality of a region or country (o’Brien et al. 2004; Adger 
2006). Similar, vulnerability may be subjectively perceived 
by various groups of people dependent on culture, norms, 
and geographic location (Adger 2006; Sietz et al. 2012).

Literature review

Many climate change vulnerability indices exist. These 
include, for example, the University of Notre Dame (ND) 
GAIN index (Chen et al. 2015), the Global Climate Risk 
Index (CRI) (Eckstein et al. 2018), and the Environmental 

Vulnerability Index (EVI) (Barnett et al. 2008), which have 
been used extensively in published research (Barrett 2014; 
Betzold 2015; Betzold and Weiler 2017). While using a large 
number of variables and sophisticated modelling techniques, 
these indicators generally operate at the country level. 
Although macro-level indicators are of strategic importance 
for allocation decisions (Betzold and Weiler 2017), they hide 
local variability. There is considerable regional variation in 
climate impacts, households’ access to resources, and liveli-
hood strategies to cope with climate extremes. This hetero-
geneity is only captured properly at the sub-national level.

To date, sub-national climate vulnerability indices exist 
for only a selection of countries. Cutter et al. (2003) con-
structed an index at the county-level for the USA based on 11 
dimensions to capture social vulnerability towards environ-
mental hazards including climate extremes. A country that 
recently received substantial scholarly attention is Ethiopia 
(Feyissa et al. 2018; Shukla et al. 2021). Feyissa et al. (2018) 
constructed a climate vulnerability index based on 15 differ-
ent indicators with a distinctly urban focus for sub-regions 
of Ethiopia’s capital (Addis Ababa). Shukla et al. (2021) 
built a semi-dynamic climate vulnerability index for zones 
across Ethiopia comparing changes in vulnerability across 
four periods (past, present, near future, distant future) con-
sidering different future scenarios. Considering the effects of 
economic globalization as a source of vulnerability, O’Brien 
et al. (2004) constructed a climate vulnerability index at the 
district-level for India. Focusing on the agricultural sector by 
combining crop and ecological models, Parker et al. (2019) 
generated sub-national climate vulnerability indices for 
Vietnam, Uganda, and Nicaragua. Using variables of expo-
sure and vulnerability, Rod et al. (2015) computed a climate 
vulnerability index at the municipality level for Norway. A 
number of other studies have constructed climate vulnerabil-
ity indices for a small selection of geographic units, such as 
districts in Mozambique (Hahn et al. 2009), and villages in 
South Africa (Vincent 2007).2

Important for this study, the National Meteorological 
Institute (IMN) of Costa Rica has constructed a socio-eco-
nomic vulnerability index for the hydrological sector based 
on 14 variables (IMN 2012). They investigated variations in 
the socio-economic portfolio for regions of observed climate 
risks but neglected to combine the socio-economic and cli-
mate components in one unified index.

Substantively related, a separate body of research has 
tried to map climate vulnerability hotspots and to perform 

1  Infant mortality can also be seen as a measure of sensitivity (Bar-
rett 2014).

2  Other studies have computed vulnerability indices that are related 
to specific climate impacts. For example, Fekete (2009) constructed 
a social vulnerability index in the context of river-floods for a selec-
tion of counties located in certain river basins in Germany. Similarly, 
Quesada-Román (2022) recently computed a flood risk index at the 
canton-level for Costa Rica.



476	 Journal of Environmental Studies and Sciences (2023) 13:473–499

1 3

climate change vulnerability analysis (CCVA). These stud-
ies often quantify climate-related vulnerability at the sub-
national level for individual countries (Bouroncle et al. 
2017), regions (Thornton et al. 2008), and globally (Sietz 
et al. 2011). These studies usually focus on selected sectors 
(Thornton et al. 2008; Bouroncle et al. 2017) or specific 
types of ecosystems (Sietz et al. 2011). Generally, this line 
of research finds highest vulnerability among economically 
disadvantaged populations, residing in remote locations, that 
are highly dependent on agricultural production (Sietz et al. 
2011; Bouroncle et al. 2017).

Nevertheless, we still lack more general sub-national 
climate vulnerability information for most countries of the 
world, including Costa Rica. Sub-national climate vulner-
ability indices are particularly important as planning tool 
for the allocation of resources for development interventions 
based on an objective measure to identify vulnerability hot 
spots (o’Brien et al. 2004; Malone and Engle 2011; Shukla 
et al. 2021).3

The case

We constructed a climate change vulnerability index for 
Costa Rica. The Costa Rica government is aware of the 
societal dangers associated with the various adverse impacts 
of global climate change and seeks to expand its support 
for climate change adaptation measures at the national and 
local level (MIDEPLAN 2018). For the strategic allocation 
of resources as well as for evaluation purposes, it is of high 
importance for planners and policymakers to have a sub-
national climate vulnerability metric at hand.

The climate in Costa Rica

A volcanic mountain range divides Costa Rica into a Pacific 
and a Caribbean region with distinct climatic zones (Que-
sada-Román 2022). The Pacific climate regime shows a clear 
division between the dry season (December–March) and 
the rainy season (May–October). In contrast, the Caribbean 
climate regime is more homogenous and generally hot and 
humid throughout the year (with somewhat less precipita-
tion in February–March as well as in September–October) 
(MINAE and IMN 2015). Inter-annual variations in climate 
are influenced by the Southern Oscillation with El Niño and 
La Niña producing extreme weather events such as storms, 
floods, and droughts (MINAE and IMN 2015). Droughts are 
generally restricted to the Pacific climatic regime (mainly 

the northwest and the center of the country), whereas 
extreme precipitation events are a problem for the entire 
country (IMN 2012). Extreme weather events have steadily 
increased over the last decades (Magrin et al. 2014).

Future projections of climate change

Central America is considered to be the tropical region that 
will experience the strongest changes in the climatic system 
(Giorgi 2006), attributable to changes in the larger climate 
regime (Yeh et al. 2009; Cai et al. 2018; Power and Delage 
2018). Projections anticipate that Central America will gen-
erally become hotter and dryer with a concomitant increase 
in climate extremes (Imbach et al. 2012). These continental 
tendencies apply similarly to Costa Rica. Specifically, pro-
jections suggest that the north/northwest as well as the cen-
tral regions of the country will experience highest increases 
in maximum temperatures and a decline in precipitation. In 
contrast, regional climate models suggest for the Caribbean 
regions and the southern Pacific coastline a general increase 
in the risk of storms and floods (MINAET and IMN 2009).

Socio‑economic context

The specific socio-economic context contributes to Costa 
Rica’s climate vulnerability. While Costa Rica belongs to the 
more developed countries of Central America (Bouroncle 
et al. 2017), about 80% of the country’s GDP is generated in 
areas highly exposed to extreme weather events (Dilley et al. 
2005). Specifically, the three main agricultural export prod-
ucts, bananas, pineapples, and coffee, are highly sensitive 
to climate change and future projections anticipate heavy 
production losses (GFA Consulting Group 2010; CEPAL 
and CAC/SICA 2014; Varma and Bebber 2019). Also, the 
production of staple food such as beans and rice is in danger 
of decline due to climate change (CEPAL and CAC/SICA 
2013). Particularly for smallholder farmers, climate change 
may undermine their livelihoods resulting in food insecurity 
and poverty (Warner et al. 2015).

Aims and scope

Given the lack of a sub-national climate vulnerability index, 
and the political importance and demand, we constructed a 
canton-level climate vulnerability index for Costa Rica. In 
the following sections, we describe the employed method-
ology. We do not consider the vulnerability for a specific 
sector but assess climate vulnerability in a general sense to 
permit a wide application of the index (Rød et al. 2015). The 
resulting index reveals several climate vulnerability hotspots 
in rural, agricultural producing border cantons (Los Chiles, 
Matina, Talamanca, Buenos Aires), but also for few central 
urban cantons (Tibas, San Jose).

3  While research has shown that more climate vulnerable countries 
receive more international adaptation aid (Betzold and Weiler 2017, 
2018), such evidence is rare at the sub-national level (Barrett 2014; 
Bouroncle et al. 2017).
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Methodology

For the selection of components to be included in the cli-
mate vulnerability index, we employed a deductive the-
ory–driven approach (Vincent 2007; Fekete 2009). Within 
the constraints of availability of spatially explicit subna-
tional data, we selected variables based on theoretical 
considerations and empirical evidence gathered through a 
thorough review of the climate-vulnerability literature and 
closely following the selection proposed by similar studies 
(Sullivan and Meigh 2005; Feyissa et al. 2018). The devel-
opment of a vulnerability index constitutes a multi-stage 
sequential process including the selection of components, 
construction of variables, aggregation, normalization, and 
weighting. During each stage, the researcher is faced with 
a choice between multiple legitimate options. There is not 
necessary a right, wrong, or even best choice of method 
(Tate 2012). For the sake of transparency, we justify our 
methodological choice with reference to the pertinent lit-
erature in the following paragraphs.

Data sources

Table 1 provides relevant information on the various data 
sources and the respective years for which we obtained the 
data.

To validate our climate vulnerability index, we make use 
of the DesInventar Sendai data collection, which provides 
georeferenced information on disaster occurrence and 
associated losses for Costa Rica (UNDRR 2019). DesInventar 
Sendai is sponsored by the United Nations Office for 
Disaster Risk Reduction (UNDRR) and the United Nations 
Development Programme (UNDP) and has been widely used 
for research on natural hazards (Marulanda et al. 2010; Runfola 
et al. 2016; Panwar and Sen 2020; Quesada-Román et al. 2021).

Variable construction

We constructed the climate vulnerability index at the canton-
level. Cantons (N = 82) are defined by the Costa Rica gov-
ernment and constitute the second level of administrative 

Table 1   Sources of various data 
used for the computation of the 
climate vulnerability index

Notes: CRU-TS, Climate Research Unite-Time Series (CRU-TS) data (v3.22) (Harris et al. 2014) accessed 
via the IPUMS-Terra extract system (Nawrotzki et  al. 2016; Ruggles et  al. 2018); The rivers poly-line 
shapefile (Ríos de Costa Rica) as well as the roads poly-line shapefile (Carreteras de Costa Rica) was 
obtained from ArcGIS Online (ESRI 2019); A Digital Elevation Model (DEM) derived from the Shuttle 
Radar Topographic Mission (SRTM), at 1 arc second (~30 m) resolution (NASA JPL 2013) was used for 
computations of elevation and slope; Land Cover Land Use (LCLU) classification (15 m resolution) and 
Tree cover (30 m resolution) raster data sets were generated as commercial product by East View Geospa-
tial (https://​geosp​atial.​com/) using Landsat 8 data; Microdata (10 % Extract) from the 2011 full popula-
tion census of Costa Rica, collected by Dirección General de Estadística y Censos, was obtained via the 
IPUMS International (MPC 2018) extract system; A polygon shapefile of soil classifications was obtained 
from Centro de Investigaciones Agronomicas (CIA) (CIA 2016); Various sociodemographic variables were 
obtained from Instituto Nacional de Estadistica y Economia (INEC) (http://​www.​inec.​go.​cr/)

Dimension Component Year Source

Exposure Heat months 1961–2013 CRU-TS
Drought months 1961–2013 CRU-TS
Flood risk — vicinity to rivers 2014 ArcGIS Online
Flood risk — coastal flooding 2000 SRTM DEM
Flood risk — land cover class 2015 East View Geospatial
Flood risk — flat slope 2000 SRTM DEM
Flood risk — impermeability of soil 2015 CIA

Sensitivity Asset index 2011 IPUMS International
Work in climate sensitive industry 2011 IPUMS International
Population density 2015 INEC
Tree cover 2015 East View Geospatial

Adaptive capacity Employment 2011 INEC
Literacy 2011 INEC
Remittances received 2011 INEC
Infant mortality 2011 INEC
Road density 2016 ArcGIS Online
Distance from health centers 2004 Ministerio de Salud

https://geospatial.com/
http://www.inec.go.cr/
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division.4 This is the smallest administrative unit for which 
most socio-economic data was available, improving on prior 
work on climate vulnerability conducted predominantly at 
the first level (provinces) (e.g., Bouroncle et al. 2017). While 
the following paragraphs explain important steps in the vari-
able construction, more details can be found in the Appen-
dix. In line with a common trend in climate vulnerability 
assessment (Rød et al. 2015; Woodruff et al. 2018; Shukla 
et al. 2021), we heavily employ Geographical Information 
Systems (GIS) and geoanalytical scripting tools in the vari-
able construction (see Appendix 1).

Exposure

In this study, we incorporate three exposure components 
(layers) that measure changes in temperature, precipitation, 
and the risk of flooding.

In Costa Rica seasonal occurrences of heat and drought 
events influence various industries including agriculture 
(Warner et al. 2018) and tourism (Little and Blau 2020). 
To capture these effects, we extracted a time series of 
monthly temperature and precipitation information from 
the University of East Anglia Climate Research Unit 
(Harris et  al. 2014) via the IPUMS-Terra data extract 
system (Nawrotzki et al. 2016; Ruggles et al. 2018). This 
information is available as high resolution (0.5 degree) 
gridded data and summarized by IPUMS-Terra at the 
canton level. Following an established method (Nawrotzki 
and Bakhtsiyarava 2017; Nawrotzki et  al. 2017), we 
generated measures of drought and heat months during 
the 2011-2013 observation period. More specifically, we 

computed the number of months during the observation 
period in which the maximum temperature was more than 
1 standard deviation (SD) above and precipitation was 
more than 1 SD below the 30-year (1961–1990) climate 
normal period.5 Figure 2 shows canton aggregates of heat 
and drought months for Costa Rica.

An increase in heat months occurred largely on the west-
ern pacific coast. In contrast, the largest increase in drought 
months was obvious for cantons in the east, bordering 
Panama.

For Costa Rica floods constitute the climate risk 
associated with the largest economic damages (Quesada-
Román 2022). The risk of flooding is a function of various 
geospatial conditions (Feyissa et al. 2018). First, we assume 
that the risk of flooding is highest in areas up to 100 m 
around a river. As such we obtained a polyline layer of all 
rivers in Costa Rica from the ArcGIS Online data collection 
(ESRI 2019), constructed a 100 m buffer around the lines, 
and ultimately rasterized the layer. Appendix 2 (Flood risk 
layers) provides images of the various layers. Second, we 
accounted for the risk of coastal flooding. Using a high-
resolution (30 m) Digital Elevation Model (DEM) (NASA 
JPL 2013), we identified pixels that were below 5 m in 
elevation and up to 1 km from the coastline following an 
established procedure (Leppert et al. 2018). Pixels at risk 
for coastal flooding were coded 1 and otherwise coded 0. 
Third, the particular land use will determine the risk of 
flooding. As such, we purchased a high resolution (15 m) 

Fig. 2   Heat and drought expo-
sure months by canton for the 
period 2011–2013. Notes: Heat 
and drought exposure months 
were computed for a 36-month 
observation period (2011–2013) 
in reference to a 30-year long-
term climate normal period 
(1961–1990)

4  Costa Rica has now 84 cantons. Two new cantons (Monteverde and 
Puerto Jiménez) were created in 2021/2022 and are located in the 
province of Puntarenas.

5  The period 1961–1990 is the standard climate normal period rec-
ommended for the computation of climate change indicators by the 
World Meteorological Organization (Arguez and Vose 2011). Our 
measures capture climate change above and beyond the usually pre-
vailing climatic conditions. For example, a given month is only 
counted as a “drought month” if the monthly precipitation is consid-
erably lower during the observation period as compared to the long-
term baseline climate normal conditions.
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raster layer, generated using Landsat 8 data, and classified 
by EastView Geospatial according to an updated version 
of the land cover and land use (LCLU) classes developed 
by the United States Geological Survey (USGS) (Anderson 
et al. 1976). We reclassified the various LCLU classes as 
high flood risk (coded 1) and low flood risk (coded 0) (see 
Appendix 2 for details on the reclassification). Fourth, we 
used the DEM to detect pixels with a slope of less than 2% 
(Feyissa et al. 2018). Based on the assumption that those 
regions with a flat slope are particularly at risk for flooding 
if surrounded by a steep hillside, we assigned pixels a value 
of 1 if they were flat (2%) and within 500 m of a steep 
slope (slope of 30%). Fifth, the soil type will determine 
the drainage capacity of an area. To this end, we obtained 
a polygon layer classified according to the United States 
Department of Agriculture (USDA) soil taxonomy (USDA 
and NRCS 2014) by the University of Costa Rica Centro de 
Investigaciones Agronomicas (CIA) (CIA 2016). Informed 
by a thorough literature review, we first reclassified soil 
types based on their drainage capacity as having a high 
(coded 1) or low (coded 0) risk of flooding. Mixed soil 
types composed of high and low flood risk are considered 
having a medium flood risk (coded 0.5). Following the 
recoding, we rasterized the layer. After weighting, we 
combined the five layers to an additive scale, conceptually 
following Feyissa et al. (2018). We employed the following 
weighting schema reflecting importance in descending 
order: vicinity to rivers (w = 0.25), vicinity to coast (w 
= 0.25), LCLU class (w = 0.20), flat slope (w = 0.20), 
soil type (w = 0.10). We then used zonal statistics to 
compute the average flood risk score for each canton (see 
Appendix 2 for details). Figure 3 depicts the final flood 
risk layer.

Figure 3 (b) shows highest flood risk for the small central 
cantons as well as several cantons in the north. This pattern 
has been confirmed by other studies of flood risks in Costa 
Rica (Quesada-Román 2022).

Sensitivity

We make use of four components (layers) to capture 
sensitivity including an asset index, employment in 
climate sensitive industry, population density, and tree 
cover (for details see Appendix  3: Sensitivity layers). 
First, we constructed an asset index using seven variables 
derived from census microdata (10% extract) via IPUMS-
International for the year 2011 (MPC 2018).6 These 
variables measure household possessions (computer, cars), 
building materials (floor, walls), and services (cooking fuels, 
trash collection, internet) and were combined to an additive 
asset index (Cronbach’s alpha = 0.75). Access to services, 
possessions, and high-quality housing considerably reduces 
the sensitivity of a household to climate impacts (c.f., 
Vincent 2007). For example, a home built of solid material 
such as bricks will reduce structural sensitivity to floods, 
storms, and heat waves (Bouroncle et al. 2017; Feyissa et al. 
2018).

In addition, we computed the percentage of household 
heads working in climate sensitive industries (agriculture, 
forestry, fishery) also based on IPUMS-International micro-
data records. Although climate change will influence various 
industries, the agricultural sector is particularly sensitive to 
adverse climate impacts (IPCC 2022a).

Directly from the Costa Rica Instituto Nacional de Esta-
distica y Economia (INEC), we derived canton-level infor-
mation on population density (INEC 2019). We conceptu-
ally assume that an increase in population density leads to 

Fig. 3   Flood risk layer for Costa 
Rica. Notes: (a) representa-
tion of the raster layer (30-m 
resolution) and (b) flood risk 
aggregated to the canton level

6  The IPUMS International data extract system specifies a random 
sample of 10% of data points as the default extract size. This ensures 
full national representativeness but at the same time reduces the 
amount of data for processing. As such, 10% constitutes a common 
extract size in the field of population-environment research using cen-
sus data (Nawrotzki and DeWaard 2018; Nawrotzki et al. 2022).
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higher sensitivity as more people will be affected by cli-
mate impacts and because of an increased pressure on vital 
resources such as food, water, and services (Klein Goldewijk 
et al. 2010; Sietz et al. 2017).

Finally, we purchased a high-resolution (30 m) raster 
layer of the percentage of tree cover, generated by East-
View Geospatial based on Landsat 8 data for the year 2015. 
Using zonal statistics, we computed the average (mean) tree 
cover value for each canton. Vegetation and tree coverage 
have many benefits, such as absorbing access rainwater and 
preventing floods and landslides (Quesada-Román 2022), 
protection against temperature extremes through shad-
ing (Akbari et al. 2001), and as source of food, resources, 
and income (Walter 2001). In sum, these beneficial effects 
reduce the sensitivity to adverse climatic changes.

Adaptive capacity

We use six components (layers) to account for adaptive 
capacity (for details see Appendix 4: Adaptive capacity 
layers). The employment rate, literacy rate, the remittances 
received, and the infant mortality rate were obtained directly 
from INEC as canton-level aggregates (INEC 2019). Rela-
tive to the unemployed, people that are formally employed 
usually have higher socioeconomic status and better access 
to resources, enabling the adaptation to climate impacts and 
changes (Bouroncle et al. 2017; Feyissa et al. 2018). Lit-
eracy is an indicator for employability but also facilitates 
access to information and knowledge important to cope and 
adapt (Shukla et al. 2021). Remittances provide an addi-
tional source of income when climate impacts lead to harvest 
failure and can be used to finance climate adaptation tech-
nologies (Nawrotzki et al. 2015). Infant mortality is a gen-
eral indicator of development status, well-being, and health 
of a population and frequently used as measure of adaptive 
capacity (Mortreux and Barnett 2017). Higher infant mortal-
ity indicates lower adaptive capacity.

For the computation of road density, we obtained a pol-
yline shapefile of all major roads of Costa Rica from Arc-
GIS Online (ESRI 2019). We then performed an intersection 
operation to obtain separate line-segments for each canton, 
computed the total road length per canton, and expressed 
the total road length relative to the area of each canton (unit: 
km/km2). Road density is a proxy indicator for infrastruc-
ture access and development, frequently used to approximate 
adaptive capacity (Feyissa et al. 2018; Parker et al. 2019). 
Good access to roads may permit redirecting shipment 
routes or to access alternative markets and job opportuni-
ties, thus, increasing adaptive capacity (Cinner et al. 2018).

Finally, we computed the distance to hospitals and clin-
ics in Costa Rica. We employed a polypoint layer of health 
centers, georeferenced based on information from the Costa 
Rica Ministry of Health. We first rasterized the points, and 

then computed a distance grid, indicating for each pixel the 
distance to the nearest health center. We then computed the 
average distance (in km) for each canton. Climate change is 
directly and indirectly associated with various adverse health 
impacts that can be best treated at health centers (Watts et al. 
2015; Bakhtsiyarava et al. 2018). As such, we assume that 
better access to health infrastructure permits people to better 
cope with adverse climate impacts (Rød et al. 2015).

Normalization

To combine different components into one composite index, 
we need to transform the variables to a common scale. To 
this end, we employed an established normalization proce-
dure known as minimum-maximum transformation (UNDP 
2006; Fekete 2009; Rød et al. 2015; Bouroncle et al. 2017; 
Sietz et al. 2017). We used Equation (1), if the component 
had a positive functional relationship with the dimension 
(e.g., increase in sensitivity), and Equation (2), if the com-
ponent had a negative functional relationship (e.g., decline 
in sensitivity) (Iyengar and Sudarshan 1982; Feyissa et al. 
2018).

In Equations (1) and (2), Xij represents the i-th component 
(i = 1, 2,..., m) of a given dimension (i.e., exposure, sensi-
tivity, adaptive capacity) measured for the j-th canton (j = 
1, 2, ..., n). Max (Xij) and Min (Xij) are the maximum and 
minimum values of the distribution (Xi1, Xi2,..., Xin). The 
normalized values Yij then vary from 0 to 1 (0 < Yij < 1).

Computation of weights

There are many ways in which relative importance can be 
assigned to the components of an index. Methods include 
equally weighting all components (Cutter et  al. 2003; 
o’Brien et al. 2004; Shukla et al. 2021), assigning weights 
based on theoretical considerations and qualitative informa-
tion (Alcamo et al. 2008; Bouroncle et al. 2017), quanti-
tatively optimizing weights based on an external standard 
(Rød et al. 2015), and assigning weights based on data 
variability (Feyissa et al. 2018).7 We opted for a weighting 

(1)Yij =
Xij −min

(
Xij

)

max
(
Xij

)
−min

(
Xij

)

(2)Yij =
max

(
Xij

)
− Xij

max
(
Xij

)
−min

(
Xij

)

7  Some authors have suggested the use of “fuzzy” methods (e.g., 
fuzzy logic), which explicitly consider uncertainty in the construction 
of weights, but at the cost of precision (Eakin and Bojórquez-Tapia 
2008; Cheng and Tao 2010).
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schema that account for differences in variability of the 
components following an established methodology (Iyengar 
and Sudarshan 1982; Feyissa et al. 2018). Highly variable 
components receive a lower weight than more stable ones. 
This method helps to prevent highly volatile components 
from dominating the pattern of the resulting composite index 
(Feyissa et al. 2018). “It is well-known that, in statistical 
comparisons it is more efficient to compare two or more 
means after equalizing their variances” (Iyengar and Sudar-
shan 1982, p. 2049). As such, we computed weights accord-
ing to Equations (3) and (4) (Iyengar and Sudarshan 1982; 
Feyissa et al. 2018).

Let wi represent the component-specific weight for a 
given dimension, with var (Yi) the variance of normalized 
component Yi and k representing a constant. All weights 
have values that fall between 0 and 1 (0 < wi < 1) and sum 
up to 1 (w1 + w2 + .... + wm = 1). We computed weights 
separately for each dimension (d = exposure, sensitivity, 
adaptive capacity) and generated dimension specific indices 
(Id) (Equation (5)).

Computation of index

We computed the final climate vulnerability index (CVI) 
according to Equation (6). We first normalized the dimen-
sion specific sub-indicators. Conceptually, we assume that 
exposure and sensitivity increase vulnerability, while adap-
tive capacity decreases vulnerability. As our theoretical 
framework is agnostic regarding the relative importance of 
each dimension for the overarching concept of climate vul-
nerability, we assigned equal weights (e.g., wd = 0.33) to all 
three dimensions. As with the individual components, val-
ues of the normalized canton-specific climate vulnerability 
index range from 0 to 1 with higher values indicating higher 
vulnerability.

To facilitate interpretation and use, we categorized 
the CVI and its components into five equal classes: very 

(3)
wi =

k√
var

(
Yi

)

(4)k =
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i=1
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�
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1
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1
+ w

2
Y
2
+⋯ + wmYm

(6)
CVI =

(
0.33 ∗ IExposure + 0.33 ∗ ISensitivity

)
− 0.33 ∗ IAdaptive Capacity

low (0–0.2), low (0.201–0.4), moderate (0.401–0.6), high 
(0.601–0.8), and very high (0.801–1).

Validation measure

From the DesInventar Sendai data repository (UNDRR 
2019), we extracted information on disaster occurrence 
and damage for the period of 1994 to 2021. We focus 
on disasters caused by climatic events (e.g., droughts, 
floods, storms), computing the cumulative damage (in 
US dollars) for each canton. Floods are the most frequent 
climate event (49.4%) in Costa Rica attributable to losses 
of 1.37 billion USD across the 28-year time period. 
We log-transformed the disaster damage variable to 
approximate normality. We then computed Spearman’s 
rank correlations (Zar 2005) for the damage variable and 
our climate vulnerability index following Shukla et al. 
(2021).

Outliers

We investigated variables for the presence of outliers using 
an upper and lower threshold of three times the median 
absolute deviation (MAD) (Leys et al. 2013). While their 
detection is a routine operation, it remains a contested 
topic in the methods literature what to do with outliers 
(see Osborne and Overbay 2004; Aguinis et al. 2013). The 
treatment depends on the causes of the outlier, which can 
be grouped into two major categories: (a) errors in the data 
(e.g., measurement-, computing-, reporting-, recording- 
error) or (b) inherent variability of the data. Outliers should 
be removed if they are the result of an error (Osborne and 
Overbay 2004; Cousineau and Chartier 2010). Yet, if outliers 
are the result of true variability, they accurately reflect 
reality and should be retained (Orr et al. 1991; Aguinis et al. 
2013). We checked outliers and confirmed the plausibility 
of more extreme values (e.g., large values on population 
density of urban cantons in the greater metropolitan area). 
It is important to stress that we employ validated and 
quality-checked publicly available data sources that have 
been extensively screened for data errors (see individual 
codebooks and documentation).

Software

We performed all geospatial analysis using various spatial 
packages including sp (Bivand et al. 2013), rgdal (Bivand 
et al. 2019), raster (Hijmans 2019), rgeos (Bivand and Run-
del 2018), sf (Pebesma 2018) within the R Statistical Envi-
ronment (R Core Team 2022). Maps were generated using 
ggplot2 (Wickham 2016) and ggmap (Kahle and Wickham 
2013).
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Results and discussion

Climate vulnerability in Costa Rica

We computed the dimension-specific sub-indices using the 
weights displayed in Table 2.

Employing the above weighting scheme, we were able to 
construct sub-indicators of the three dimensions: exposure, 
sensitivity, and adaptive capacity.

The visual depiction reveals distinct patterns for each 
dimension.

Exposure

As Fig. 4(a) shows, the highest exposure can be observed 
in the small central and south-central cantons of the greater 
metropolitan area8. Our flood exposure layer suggests strong 
flood risks for urban cantons in line with evidence from 
recent hydro-meteorological studies (Quesada-Román et al. 
2021; Quesada-Román 2022). The increased risk of flood-
ing in these cantons has been attributed to a combination of 
geographic location, inefficient sewer systems, and dam fail-
ures (Durán and Quesada-Román 2017). Yet, during El Nino 
years droughts are also common phenomena in this region 
(Quesada-Román et al. 2021) with adverse impacts on water 
supplies, hydroelectric power generation, and peri-urban 
agriculture. Finally, the central cantons in the greater met-
ropolitan area have experienced an increase in the number of 

heat months relative to a long-term historical baseline period 
(Fig. 2a). This may be in parts attributable to the urban heat 
island effect observed for various Latin American metro 
areas (Palme and Carrasco 2022). The combination of high 
flood risks, drought- and heat-months results in high and 
very high exposure ratings for several of the central cantons 
of the greater metropolitan area.

Sensitivity

For the sensitivity sub-indicator, we find a somehow dif-
ferent spatial pattern (Fig. 4b), resembling socioeconomic 
sensitivity observed by IMN (IMN 2012). Highest levels of 
sensitivity are visible in the border cantons, particularly in 
the north (border to Nicaragua) and the southeast (border to 
Panama). The resulting pattern can be explained with refer-
ence to the underlying components including the asset index, 
work in climate sensitive industry, population density, and 
tree cover (see Appendix 3 for maps of all components). For 
example, employment in the agricultural sector results in 
considerable sensitivity to climate impacts. Explaining the 
observed patterns in Fig. 4b, studies found highest levels 
of agricultural dependency along the Atlantic coast and the 
Nicaragua and Panama border (Bouroncle et al. 2015). In 
this region, most of Costa Rica’s bananas and pineapples 
are grown, as Costa Rica’s most important export products 
(BASIC 2016; FAO 2018). Particularly the pineapple pro-
duction is sensitive to adverse weather events such as floods 
and tropical storms (FAO 2017). As such, existing sensi-
tivity may likely increase in the future as climate change 
leads to an increase in severe weather events (IPCC 2014a). 
The border cantons also experience lowest values on the 
asset index (see Appendix Figure 12a). Poverty in the bor-
der regions is known to be high due to a lack of economic 

Table 2   Functional relationship, 
variances, and weights 
for components (layers) 
contributing to the dimensions 
of the climate vulnerability 
index

Notes: Relationship = Functional relationship of a particular component with its dimension; Weights were 
computed based on Equation (3)

Dimension Component Relationship Variance Weight

Exposure Heat months + 0.054 0.324
Drought months + 0.066 0.294
Flood risk + 0.039 0.382

Sensitivity Asset index − 0.061 0.223
Work in climate sensitive industry + 0.061 0.223
Population density + 0.029 0.324
Tree cover − 0.058 0.230

Adaptive capacity Employment + 0.056 0.154
Literacy + 0.038 0.187
Remittances received + 0.047 0.167
Infant mortality − 0.046 0.169
Road density + 0.045 0.171
Distance from health center − 0.057 0.152

8  The greater metropolitan area comprises 35 cantons, covering an 
area of 1779 km2. It contains four large cities (San José, Heredia, 
Alajuela, and Cartago) and their peripheries, home to approximately 
65% of Costa Rica’s population (Quesada-Román et al. 2021).



483Journal of Environmental Studies and Sciences (2023) 13:473–499	

1 3

opportunities and limited access to markets (Andam et al. 
2010). This results in high sensitivity as economically poor 
rural dwellers lack the resources to cope with adverse cli-
mate impacts (Tanner et al. 2015). For some of these rural 
households, access to natural resources that can be extracted 
from surrounding forests may serve as a safety net in times 
of distress (Shackleton and Shackleton 2004).

We also find high sensitivity in some of the small urban 
cantons in the greater metropolitan area. The population 
density in these cantons is on the rise and people are forced 
to settle in floodplains and on mountain slopes at risk of 
floods and landslides (Quesada-Román et al. 2021), resulting 
in elevated levels of sensitivity.

Adaptive capacity

Overall, high levels of adaptive capacity (Fig. 4c) can be 
found particularly in the small central cantons of the greater 
metropolitan area, while lower adaptive capacity is con-
centrated along the border to Nicaragua, Panama, and the 
Atlantic Coast. Contributing to this pattern is the influence 
of employment, literacy, remittances, infant mortality, road 

density, and distance to health centers (see Appendix 4 for 
maps of these components).

The high levels of adaptive capacity in several south-cen-
tral cantons, results from their disproportionately large receipt 
of remittances (see Appendix Figure 15a). Compared to the 
national average, twice as many households in these cantons 
have migrant relatives (Gatica López 2017). In these regions, 
remittances have strong positive economic effects leading to 
substantially reduced poverty rates (Céspedes Torres 2009), 
and thereby increasing the populations adaptive capacity.

The two infrastructure layers (Appendix 4, Figure 16 
and 17) also show distinct patterns that in sum produce the 
observed levels of high adaptive capacity in the south-cen-
tral cantons. In these cantons, a dense road network connects 
places and the distance to the next hospital is usually less 
than 5 km (Rosero-Bixby 2004).

Lowest levels of adaptive capacity are observed in the 
border cantons in the north (border to Nicaragua) and in 
the south-east (border to Panama). The underlying causes 
are low literacy rates (Appendix 4, Figure 14), and high 
infant mortality rates (Appendix 4, Figure 15). While at the 
national level, infant mortality has dropped substantially in 

Fig. 4   Exposure, sensitivity, 
and adaptive-capacity sub-indi-
cators for Costa Rica. Note: The 
sub-indices were categorized 
into five equal classes: very 
low (0–0.2), low (0.201–0.4), 
moderate (0.401–0.6), high 
(0.601–0.8), and very high 
(0.801–1); black line around the 
smaller central canons deline-
ates the greater metropolitan 
area
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Costa Rica over the past decades (Dow and Schmeer 2003), 
the situation remains challenging in the remote border 
regions, where people are frequently economically poor, 
uneducated, and lack access to important health infrastruc-
ture (Rosero-Bixby 2004; Quesada-Román 2022). The over-
all socioeconomic status of populations in the border can-
tons is shaped by a large migrant population from Nicaragua 
, Panama, and recently the African continent (Bouroncle 
et al. 2015; Winters and Mora Izaguirre 2019).

Climate vulnerability index

Ultimately, we combined the three dimension sub-indicators 
to generate the final climate vulnerability index (Fig. 5). We 
have labeled cantons with very high vulnerability in Fig. 5. 
We found strongest climate vulnerability in the rural agri-
cultural production cantons on the Atlantic coast (Matina) 
and on the border to Nicaragua (Los Chiles) and Panama 
(Talamanca, Buenos Aires). As an example, Buenos Aires 
is characterized by moderate exposure, high sensitivity, 
and low adaptive capacity, resulting in an overall very high 
climate vulnerability. Pineapple production is the primary 
economic activity in Buenos Aires offering employment for 

many residents of the canton (González et al. 2022). The 
agricultural sector in general (Thornton et al. 2014) and 
pineapple production in particular is highly vulnerable to 
climate impacts such as floods and tropical storms (FAO 
2017), explaining the high ranking of Buenos Aires on the 
climate vulnerability index.

We also find high levels of climate vulnerability for the 
two central urban cantons of Tibas and San Jose. San Jose, for 
instance, shows very high exposure, very high sensitivity, but 
also very high adaptive capacity, resulting in an overall classifi-
cation of very high climate vulnerability. While through different 
pathways, non-agricultural production will also be impacted by 
climate change (Hsiang 2010). Urban areas face unique climate 
threats (IPCC 2014b, 2022a) associated with an increased risk 
of flooding due to sealed surfaces and insufficient drainage infra-
structure (Durán and Román 2017), as well as the heat island 
effect (Kleerekoper et al. 2012). San Jose is one of the cantons 
most effected by floods in Costa Rica (Quesada-Román 2022), 
explaining the classification of “very high” climate vulnerability.

We find the lowest climate vulnerable for peri-urban can-
tons on the outskirts of the greater metropolitan area north 
of Tibas, a pattern confirmed for other countries of Central 
America (Bouroncle et al. 2017).

Fig. 5   Climate vulnerability 
index (CVI) for Costa Rica. 
Note: The climate vulnerability 
index (CVI) was categorized 
into five equal classes: very low 
(0–0.2), low (0.201–0.4), mod-
erate (0.401–0.6), high (0.601–
0.8), and very high (0.801–1); 
Cantons with very high climate 
vulnerability are labeled; black 
line around the smaller central 
canons delineates the greater 
metropolitan area
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Methodological considerations

Different approaches to measure vulnerability exist includ-
ing cluster analysis and composite indices. For example, 
Sietz et al. used a cluster analysis to determine the compo-
sition of factors contributing to climate-vulnerability among 
farmers in the Peruvian highlands (Sietz et al. 2012), and to 
identify archetypes of vulnerability across African drylands 
(Sietz et al. 2017). Each method comes with a unique set 
of assumptions, limitations, advantages, and disadvantages. 
We selected the composite indicator approach, given several 
desired properties: (a) reduction in complexity and a final 
map that permits identification of vulnerability hotspots; 
(b) transparency regarding the inclusion of components and 
their relative importance (e.g., weights).

Other factors to consider are the spatial scale of the analy-
sis (Vincent 2007). We constructed a vulnerability index at 
the canton level for Costa Rica. While the canton level can be 
considered “high resolution”, we aggregated area-based as 
well as population-based information. Aggregation may mask 
local variations in vulnerability and patterns may differ at each 
level of aggregation (Vincent 2007; Eakin and Bojórquez-
Tapia 2008). Yet, for the purpose of the present analysis, the 
canton level seems an appropriate scale as policies and pro-
grams in Costa Rica frequently operate at this level.

Validation

Validating a climate change vulnerability index is 
challenging because vulnerability is a multidimensional 
theoretical construct and not directly observable (Tate 
2012). Some studies employ qualitative case studies in an 
attempt of ground-truthing results (o’Brien et al. 2004; 
Sietz et al. 2012). Another approach has become known 
as “outcome-based” validation (Sietz et al. 2012; Shukla 
et al. 2021). In this approach, an independent data source is 
used to triangulate results (Fekete 2009). Frequently direct 
(Shukla et al. 2021) and indirect (Sietz et al. 2012) measures 
of climate-related damages have been employed. A positive 
correlation between climate-related damage and the climate 
vulnerability index is then considered proof of validity 
(Shukla et al. 2021). We follow this approach and make 
use of the DesInventar Sendai database (UNDRR 2019). 
Specifically, we computed correlations between our final 
climate vulnerability index and the damage in US dollars 
caused by climate events. We find a positive correlation (r 
= 0.54), indicating that cantons ranked as highly vulnerable 
on the CVI have indeed experienced high climate-related 
disaster damages over the past 28 years. The strength of the 
positive correlation in our validation exercise is similar to 
those observed in other studies (Shukla et al. 2021), leading 
us to conclude that our vulnerability index is able to explain 
observed vulnerability-related outcomes sufficiently well.

Sensitivity analyses

We estimated the relative importance of the various com-
ponents in our final vulnerability index using the approach 
known as “local sensitivity analysis” (Tate 2012). Specifi-
cally, we estimated changes in rank order when one of the 
components is omitted from the construction of the final 
composite measure (Shukla et al. 2021). Figure 6 shows 
boxplots of the changes in CVI when omitting any of the 
13 underlying components. The magnitude of change 
indicates the relative importance of a component in deter-
mining the vulnerability score. The results show that the 
omission of any exposure or sensitivity component has a 
stronger effect on the resulting vulnerability index than 
omitting any adaptive capacity component. Omitting the 
asset or the flood risk component leads to the highest mean 
shift of about 7% in vulnerability rank scores. The mag-
nitude of the observed sensitivity is comparable to other 
studies (Shukla et al. 2021), indicating an overall high 
degree of robustness of the final index.

Conclusions

Summary

The primary purpose of this study was to develop a sub-
national climate vulnerability index that can be used 
by policy makers and program managers to identify 
vulnerability hot spots in Costa Rica. We combined 13 
geographic layers into a variance-weighted index, capturing 
exposure, vulnerability, and adaptive capacity. We find 
highest climate change vulnerability for the cantons of 
Tibas, San Jose, Los Chiles, Matina, Talamanca, and 
Buenos Aires. The strength of our climate vulnerability 
index is its independence from direct climate-hazard 
information (Fekete 2009). Our index captures vulnerability 
to climate change that would not be identified by a pure 
climate hazard assessments (c.f., Runfola et al. 2016). Yet 
it is important to note that vulnerability is context and scale 
specific (Vincent 2007) and researchers should consider 
these dimensions when constructing similar indices for 
other countries.

Limitations

While our climate change vulnerability index was carefully 
constructed, this work shares the general and well-docu-
mented limitations of indicator-based approaches, result-
ing from the process of selecting components, transforma-
tion, aggregation, and weighting (Tate 2012; Shukla et al. 
2021). We tried to limit the sources of uncertainty through 
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transparent explanations of index composition and construc-
tion, as well as validation and robustness tests. Yet a few 
specific limitations deserve mention:

First, we did not incorporate future predictions of climate 
change in the exposure layer (Thornton et al. 2008; IMN 
2012; Shukla et al. 2021). There is still a large degree of 
uncertainty involved in climate change scenarios (o’Brien et al. 
2004; Shukla et al. 2021) and we decided to employ a more 
conservative approach of identifying climate change hotspots 
based on historically observed patterns (see Vincent 2007).

Second, we included exclusively quantitative informa-
tion in our climate vulnerability index. Yet, qualitative 
evidence may add a more nuanced understanding for cer-
tain aspects of vulnerability (Kelman et al. 2017). As such, 
future work may amend the vulnerability index by quali-
tative evidence and local scale case studies (Sietz et al. 
2011), or by involving local actors in the validation of 
vulnerability classifications (Rød et al. 2015).

Third, while we incorporated a large number of 
variables based on the pertinent literature and prior work 
(Feyissa et al. 2018), we were limited by data availability. 
For example, we were not able to consider the quality 

of drainage systems in our flood risk layer (Durán and 
Román 2017). Moreover, it would be beneficial to update 
the climate vulnerability index periodically as new data 
(e.g., new census) become available.

Outlook

The sub-national vulnerability index presented in this 
article may be used employing a forward- and backward-
looking perspective.

Employing a backward-looking perspective, the index 
may be used to evaluate the international development 
portfolio of Costa Rica. It will allow answering the question 
to what extent the most vulnerable regions have received 
climate change adaptation projects in the past or if other 
factors dominated allocation decisions (Thornton et al. 
2008).

In addition, the index may serve as a strategic tool for 
future decisions (forward-looking perspective) to implement 
climate change adaptation interventions in the most climate 
vulnerable regions of Costa Rica (Sullivan and Meigh 2005; 

Fig. 6   Estimate of relative 
importance of components for 
the climate vulnerability index 
(CVI). Note: CVI scale ranges 
from 0 to 1; absolute change in 
CVI (rank order) is displayed on 
the x-axis
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Thornton et al. 2008). Particularly for the most climate-
vulnerable cantons, programs and policies should aim 
at reducing vulnerability by focusing on the underlying 
dimensions of exposure, sensitivity, and adaptive capacity. 
Reduction of exposure requires a collective global approach 
to reduce greenhouse gas emission as the anthropogenic 
cause of climate change (IPCC 2022b). Research predicts 
an increase in hydro-meteorological events for Costa Rica 
(Imbach et al. 2018). While only a measure of last resort, 
resettlement might be an option to remove populations 
from highly exposed regions (de Sherbinin et  al. 2011). 
In this context, development programs might support and 
incentivize voluntary migration to safer areas (Stojanov et al. 
2021). Given that a reduction in exposure will be difficult to 
accomplish, policies and development programs need to focus 
on reducing sensitivity and increasing adaptive capacity.

Sensitivity in urban cantons is related to weaknesses in 
hydrological infrastructure and settlement in at-risk areas 
(Quesada-Román et al. 2021). Development projects may 
address these issues through infrastructure improvement 
projects and regulation of settlement patterns. In rural 
border cantons, the greatest source of sensitivity is the 
overall poverty status and lack of resources to cope with 
adverse climate impacts. For the rural poor, economic 
development projects may lead to a reduction in overall 
sensitivity and increase resilience (Tanner et al. 2015). 
This may include providing vocational trainings to 
improve the possibility for livelihood diversification 
and employment in less climate-dependent industries. In 
addition, climate insurance schemes may help vulnerable 
populations to recover after severe climate events have 
destroyed their livelihoods (Surminski et al. 2016).

In Costa Rica, adaptive capacity may be strengthened 
through projects in the following thematic areas: First, 
remittances may provide the necessary economic resources 
for households to invest in climate change adaptation 
technologies (e.g., installing a functional drainage system 
on farms) (Bendandi and Pauw 2016). Our data shows that 
receipt of remittances is concentrated in few southwestern 
cantons (Gatica López 2017). Projects may address obstacles 
to sending remittances including high fees for wiring 

money and at the same time increasing knowledge about 
efficient climate change adaptation strategies (Maduekwe 
and Adesina 2022). Second, the quality and access to 
infrastructure is unequally distributed across Costa Rica 
with a spatial concentration in the small central cantons of 
the greater metropolitan area. Communities with inadequate 
access to health care and road infrastructure could be 
targeted with infrastructure development programs (Rosero-
Bixby 2004). Third, particularly the border regions in the 
north (Nicaragua) and southeast (Panama) are characterized 
by low adaptive capacity given high infant mortality coupled 
with low literacy rates. Public health programs that address 
the sources of infant mortality such as infectious diseases 
and hygiene (Jiménez and Romero 2007) with a particular 
focus on migrant populations may be particularly well 
placed in the border regions.

In sum, our study adds to a small but growing repository 
of sub-national climate change vulnerability indicators. 
Specifically, we offer a detailed vulnerability map 
identifying vulnerability hotspots in Costa Rica. Policy 
makers and program managers may use this information 
to reduce vulnerability and build resilience to prepare the 
Costa Rican society for a future of increasingly severe 
climate impacts.

Appendix 1. Methodology

We make frequent use of the geoanalytical tool “zonal statis-
tics”, available in all major GIS software and scripting tools. 
Zonal statistics select all raster cells within a given polygon 
(e.g., canton), compute the average (mean) value across the 
selected raster cells, and ultimately assign the mean value 
to the polygon. Zonal statistics are commonly used to com-
pute land use changes in related research (Sierra-Soler et al. 
2015; Youneszadeh et al. 2015; Rahman 2016).

Prior to performing any geospatial operation, all layers 
were reprojected using the coordinate reference system 
UTM Zone 16 with the WGS84 datum and ellipsoid (unit 
= meters).
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Appendix 2. Flood Risk layers

Figure 7 (a) shows the 100-Meter buffer radius surrounding each river. In this area, we expect a high chance of river flooding. 
Figure 7 (b) shows the rasterized version of the buffered rivers.

Figure 8 shows pixels in regions of Costa Rica that have a high risk for coastal flooding. These pixels are close to the 
coastline (< 1 km) and show a low elevation (< 5 m)

Fig. 8   Coastline of Costa Rica.  Note:  Inset shows the port city of 
Puerto Limon 

Fig. 7   Rivers of Costa 
Rica. Note: Inset shows the area 
surrounding San Jose enlarged
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Figure 9(a) shows the original land cover land use (LCLU) classifications (15 m resolution), while Figure 9(b) illustrates 
the reclassification in high and low flood risk pixels. High flood risk: Open water, Developed – Medium Intensity, Devel-
oped – High Intensity, Barren Land (Rock/Sand/Clay), Cultivated Crops, Emergent Herbaceous Wetlands. Low flood risk: 
Developed – Open Space, Developed – Low Intensity, Deciduous Forest, Evergreen Forest, Mixed Forest, Shrub/Scrub, 
Grassland/Herbaceous.

Pixels (30 m resolution) were classified as moderate risk of flooding when the slope was below 2% and as high risk of 
flooding when the flat slope was within 500 m of a steep slope (>30%) (Fig. 10). With this coding, we account for the added 
risk of flooding in valleys surrounded by steep hillsides that may function as a funnel and lead to higher levels of rainwater 
run-off.

Fig. 9   Land cover and land use 
classification of Costa Rica in 
2015

Fig. 10   Regions of low slope in Costa Rica
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Figure 11(a) shows the original soil types using the USDA soil taxonomy. Figure 11(b) presents a reclassified layer in 
which soil types were categorized as high, medium, and low flood risk. We classified soils based on their texture and com-
position following an established approach (Feyissa et al. 2018). Fine textured soils with a high clay content have a low 
drainage capacity while coarse textured soils with a high sand content have a high drainage capacity (Brown 2003). Soils 
with low drainage capacity and high risk of flooding include Vertisols (Sawe 2017), Alfisols, Inceptisols, Utisols and Mol-
lisols (Aydinalp 2013; FAO and ITPS 2015). Soils with high drainage capacity and associated low risk of flooding include 
Andisols, Spodosols, Entisols, and Histosols (Yenter 1984; Nanzyo et al. 1993; Hong et al. 2013; Balasubramanian 2017).

Fig. 11   Soil types in Costa Rica
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Appendix 3. Sensitivity layers

The asset index and the percentage of household heads working in climate sensitive industries were constructed using 
microdata from IPUMS-International (MPC 2018). We initially considered 13 variables for the asset index. Performing a 
factor analysis (based on principle components and varimax rotation) we identified seven variables with high factor loadings 
(computer, cars, floor, walls, cooking fuels, trash collection, internet) indicative of the presence of a latent construct (i.e., 
“wealth”). Factor analysis is frequently employed as a method for variable reduction when generating vulnerability indices 
with the goal to measure a latent or underlying construct (Fekete 2009). We then combined these variables to form an addi-
tive asset index (Cronbach’s alpha = 0.75) (Fig. 12).

Fig. 12   Asset index, population density, and household heads working in climate sensitive industry. Note: HH = household head
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Population density was available as canton aggregate from the Costa Rica statistical office (INEC 2019). For all 
INEC data, we adjusted values for the recently formed canton Río Cuarto and its original source canton Grecia to bet-
ter reflect the demographic properties of the new administrative divisions. Until May 19, 2017, Río Cuarto was part of 
the canton Grecia but was geographically removed and showed a very different sociodemographic profile. As such, the 
Costa Rican statistical office (INEC, personal communications) recommended adjusting the values for Grecia and Río 
Cuarto. When underlying district data was available (population density, employment rate), we used this information 
to directly compute values for Río Cuarto and Grecia. When no district-level but only canton-level data was available 
(variables: infant mortality, literacy, remittances), we computed the value for Río Cuarto as the average (mean) of its 
surrounding neighbor cantons. For Grecia, we adjusted the value by removing the influence of Río Cuarto using popula-
tion and household weights.

Figure 13(a) shows the original raster layer (30 meter resolution) of percentage tree cover while Figure 13(b) shows the 
aggregated values (mean) for each canton.

Fig. 13   Tree cover for Costa Rica year 2015
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Appendix 4. Adaptive capacity layers

Fig. 14   Employment and literacy in Costa Rica, 2011. Note: Data were obtained as canton-level aggregates from the Costa Rica statistical office 
(INEC 2019)

Fig. 15   Remittances and infant mortality in Costa Rica, 2011. Note: Data were obtained as canton-level aggregates from the Costa Rica statisti-
cal office (INEC 2019)
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Figs. 14 and 15 show spatial patterns of employment, literacy, remittances, and infant mortality as important components 
of adaptive capacity.

Figure 16 (a) shows the original polyline layer of roads in Costa Rica. We performed an intersection operation with the 
canton shapefile which assigned each road segment a specific canton ID. Using a by-group operation, we were able to com-
pute the sum of all road segments for each canton. We then related the combined road length to the area of each canton to 
obtain a measure of road density as graphically depicted in Figure 16(b).

Figure 17(a) visually shows the location of all health centers (Hospitals: N = 36; Clinics: N = 291) and the distance for each 
grid cell (30 m resolution) from the nearest health center. Figure 17(b) depicts the aggregate (mean) distance for each canton.

Fig. 16   Road density in Costa Rica

Fig. 17   Distance to health centers
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