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Abstract
A non-targeted metabolomics method was employed to study metabolic characteristics in subjects with different glucose toler-
ance. Plasma samples of 120 participants with normal glucose tolerance (NGT), impaired glucose regulation (IGR), and type 2
diabetes (T2D) were collected. Gas chromatography/mass spectrometry (GC/MS) was used to profile and compare the plasma
metabolome among the three groups. Through the use of multivariate statistical analysis, we found distinct metabolome change
from NGT to IGR and to T2D. ANOVA found that the IGR and T2D groups had perturbations of monosaccharide and lipid
metabolism, disorders of glucogenic amino acids, and branched-chain amino acid catabolism. Furthermore, we also found that
the levels of 2-hydroxybutyrate and 2-ketoisocaproate were progressively increased with glucose tolerance severity. The results
from this study help us better understand the relationship between plasma metabolism and glucose tolerance states and also
suggest that 2-hydroxybutyrate and 2-ketoisocaproate may be closely associated with the development of T2D.
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Introduction

Diabetes is one of the most common metabolic disorders
worldwide, seriously impacting human health, labor force,
and economic status. As living standards improve, population
aging, and increasing incidence of obesity, the prevalence of
diabetes, especially type 2 diabetes (T2D), is rapidly acceler-
ating year by year. Impaired glucose regulation (IGR), also
known as pre-diabetes, is an abnormal intermediate state that
exists between normal glucose tolerance (NGT) and T2D.
According to the International Diabetes Federation and the
American Diabetes Association, patients with T2D almost
always undergo the period of IGR. Therefore, it is warranted

to perform the proper investigations on the different states of
glucose toleration, in order to help us penetrate into the disease
progress process of diabetes and obtain insightful clues of
early diagnosis and effective interventions for preventing or
delaying the course of diabetes.

Metabolomics, profiling the global state of metabolites in
biological fluids and tissues, is emerging as a field with tre-
mendous promise in extending Bomics^ from the gene to the
small molecule [1]. It measures the dynamic metabolic re-
sponses to pathophysiological stimuli or genetic modifications
[2]. Metabolomics investigations combined with multivariate
analysis serve in characterizing the offset of the body metab-
olism caused by physiological and/or pathophysiological
changes through abundant endogenous information, which
can easily reveal the differences in metabolism among various
groups. In addition, metabolomics has begun to play a more
important role in discovering and identifying potential bio-
markers discriminating normal from abnormal states.
Recognition of the differential metabolites can provide insight
into the underlying molecular mechanism and is helpful in
clinical diagnosis.

Since type 2 diabetes is a typical metabolic disease with a
chronic dysfunction of metabolic system, many researchers
have successfully used the platform of metabolomics to inves-
tigate metabolic alterations of pre-diabetes and/or diabetes in

Yan Gu and Peng Zang contributed equally to this work.

* Zhuang-yan Zhu
zhuzhuangyan33@163.com

1 School of Medicine, Shan xi Datong University, 1 Xingyun Road,
Datong 037009, People’s Republic of China

2 Datong NO.3 People’s Hospital, Datong 037008, People’s Republic
of China

3 Tianjin Electronic Information College, Tianjin 300350, People’s
Republic of China

International Journal of Diabetes in Developing Countries (July–September 2019) 39(3):478–485
https://doi.org/10.1007/s13410-018-0662-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s13410-018-0662-x&domain=pdf
mailto:zhuzhuangyan33@163.com


the last decade [3–7]. To date, published findings suggest that
amino acid (branched-chain amino acids and glucogenic ami-
no acids), lipid (phospholipids, sphingomyelins, free fatty
acids and acylcarnitines), carbohydrate (glucose, mannose,
galactose and fructose), and bile acid (cholate and
deoxycholate) metabolism present the complex abnormalities
in individuals with pre-diabetes and diabetes compared with
control subjects. More recently, metabolomics research based
on diabetes has mainly focused on the identifying novel pre-
dictive biomarkers associated with pre-diabetes and diabetes
by using prospective study designs. Current evidence revealed
the close correlation of branched-chain and aromatic amino
acids with insulin resistance and future development of diabe-
tes [8, 9]. The hexose sugars (fructose, mannose, galactose,
and inositol) were strongly associated with higher risk of pre-
diabetes and diabetes in these prospective studies [10, 11].
Lipidomics has also revealed that a number of lipids may be
predictive of type 2 diabetes [12, 13], but inconsistent results
have been reported in different studies [14]. Additionally, a
few studies also identified some novel predictors of type 2
d iabe tes , inc lud ing 2-aminoad ip icac id [15] , 2 -
ketoisocaproate [16], α-hydroxybutyrate [17], and so on.
However, T2D is rarely a static condition, but rather one that
evolves and changes over time during the lifespan of an indi-
vidual [18]. Therefore, more attention should be paid to find
the relationship between plasma metabolome and different
states of glucose tolerance and further look for the metabolites
that may be changed gradually with the glucose tolerance
progression from NGT to IGR and to T2D.

In our present work, we performed a non-targeted metabo-
lomics study based on GC/MS to illustrate the plasma metab-
olome change in different developing states of diabetes and
find the progressively changed metabolites related with glu-
cose tolerance. This study will help us profoundly realize the
development process of diabetes and explore the underlying
molecular mechanism.

Material and methods

Chemicals

Methoxyamine hydrochloride, MSTFA (N-methyl-
N-(trimethylsilyl)trifluoroacetamide), pyridine, tridecanoic
acid, and methyl laurate were obtained from Sigma-Aldrich
(St. Louis, MO, USA). HPLC-grade methanol was purchased
from Tedia (USA).

Sample collection

Plasma samples were collected by Datong NO.3 People’s
Hospital. Totally, 120 age-, gender- and body mass index-
matched subjects were included for non-targeted metabolomic

analysis. Thirty-nine subjects had NGT (fasting plasma glu-
cose < 5.6 mmol L−1 and 2-h glucose < 7.8 mmol L−1), 40
subjects had IGR (fasting plasma glucose between 5.6–
7.0 mmol L−1 and/or 2-h glucose between 7.8 and
11.1 mmol L−1), and 41 subjects had T2D (fasting plasma
g lucose > 7 .0 mmol L− 1 and /o r 2 -h g lucose >
11.1 mmol L−1). All of the T2D participants were newly di-
agnosed without any anti-diabetic drugs. Plasma samples
were collected after an overnight fasting in the standard pro-
tocol and immediately stored frozen at − 80 °C until use. The
study was conducted in accordance with the principles of the
Declaration of Helsinki.

Sample preparation

Prior to metabolomic analysis, the plasma samples were
thawed at 4 °C, and 20 μL tridecanoic acid (250 μg mL−1 in
methanol) was added to a 100-μL aliquot of sample as an
internal standard. Subsequently, 400 μL of methanol was pi-
petted into the mixture for protein precipitation. After
vortexing for 30 s and centrifuging at 15,000 rpm for
20 min, the supernatant (450 μL) was transferred to a glass
sampler vial and lyophilized at 10 °C. The dried extract was
oximated using 65 μL of methoxyamine hydrochloride
(20 mg mL−1 in pyridine) at 40 °C for 90 min, and then
trimethylsilylated using 65 μL of MSTFA for 60 min at
40 °C. The final solution was spiked with 20 μL external
standard solution (0.9 mg mL−1 methyl laurate dissolved in
pyridine).

Metabolomic analysis

Metabolomic analysis was performed using an Agilent 7890/
5975C-GC/MSD system (Agilent Co.,USA). Separation was
achieved on a fused-silica capillary column (30 m × 0.25 mm
i.d.) chemically bonded with 0.25 μm DB-5 stationary phase
(J&W Scientific, Folsom, CA, USA). The injection tempera-
ture was 300 °C and the split ratio was 10:1. Helium was used
as the carrier gas with a constant velocity of 1.0 mL min−1.
The column temperature was initially kept at 70 °C for 2 min,
changed to 90 °C at 3 °C min−1 and then increased to 200 °C
at 2 °C min−1, finally to 320 °C at a rate of 15 °C min−1, and
held for 5 min. The effluent was introduced into the electron
ionization source. The following parameters were used: inter-
face temperature, 280 °C; ion source temperature, 230 °C; and
the detector voltage, 1.38 kV. Full scanmodewas employed in
the mass range of 33–500 amu at a rate of 3.1 spectra s−1. The
solvent delay time was set at 8.5 min.

Data analysis

GC/MS raw data were exported in the NetCDF format, and
then preprocessed by using the XCMS toolbox [19]. The
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parameters of retention time correction and peak alignment
were set to default values except for full width at half-
maximum (FWHM= 4) and group (bw = 5). The area of each
variable was normalized to the internal standard in the same
chromatogram. The resulting data were then exported into
SIMCA-P software version 11.0 (Umetrics, Umea, Sweden)
for multivariate statistical analysis. Principal component anal-
ysis (PCA) and partial least squares-discriminant analysis
(PLS-DA) were carried out to visualize the global metabo-
lome change among the different glucose tolerance groups.
Subsequently, ANOVA by the SPSS 13.0 software (SPSS,
Chicago, IL) was used to find differential metabolites among
the three groups. p < 0.05 was considered significant.
Metabolites identification was performed by searching the
NIST database installed in the equipment system, with a sim-
ilarity threshold of 75%, with all of them verified by commer-
cial standard samples.

Results

Clinical administration

The clinical practice data are shown in Table 1. Fasting plasma
glucose and 2-h plasma glucose concentrations in T2D pa-
tients were significantly higher than those in both NGT and
IGR subjects, fasting insulin, and C-reaction protein had sim-
ilar changes although were not statistically significant. As for
blood lipids, the levels of triglycerides, total cholesterol and
LDL-c were all higher in T2D patients than those in the other
two groups, while LDL-c level showed no statistical differ-
ence. Meanwhile, the concentration of HDL-c was lower in
T2D patients than in the other two groups with statistical sig-
nificance. The levels of fasting plasma glucose, 2-h plasma
glucose, and triglycerides were also remarkably higher in IGR
group than those in NGT group, as expected.

Metabolomic analysis

The plasma metabolic profile was analyzed by GC/MS.
Figure 1 gives the total ion chromatogram (TIC) of a repre-
sentative plasma sample. To verify the reproducibility and
reliability of the method including sample preparation and
instrument performance, quality control samples derived from
the equal pooling of all samples were prepared and analyzed
accompanying with real samples in the whole analytical
workflow. The relative standard deviations (RSDs) of the re-
tention time and peak area of the main peaks were less than 1
and 15%, respectively, which reflected acceptable levels of
variability for overall process. In addition, methyl laurate as
the external standard was utilized to further evaluate the sta-
bility of the analytical platform. The RSDs of the retention
time and the peak area of methyl laurate in the quality control

samples were 0.04 and 5.6%, respectively, indicating that the
instrument performance was perfectly stable during the whole
analytical process.

To learn whether or not we can distinguish the three groups
(NGT, IGR, and T2D) using the GC/MS data and understand
the relationship between plasma metabolome and different
states of glucose tolerance, we first performed a principal
component analysis (PCA) model. The score plot (Fig. 2a)
using two components (R2X = 0.66) shows a separation ten-
dency from NGT to IGR, and further to T2D group, suggest-
ing that, from the perspective of metabolomics, the metabo-
lome differences indeed existed among the three groups and
IGR was the intermediate status. A partial least squares dis-
criminant analysis (PLS-DA) model with two components
(R2Y = 0.48, Q2Y = 0.30) was also constructed in order to vi-
sualize the cluster more clearly. It is evident from Fig. 2b that a
complete separation between NGT and T2D groups was
achieved, demonstrating that the metabolic characteristics of
T2D was quite different with NGT. The data points from IGR
group mainly located in the middle, with less overlap with
NGT but more overlap with T2D, indicating that the metabol-
ic states of some subjects with IGR were already approaching
T2D. Furthermore, the results of permutation test (intercepts
R2 = 0.106, Q2 = −0.18) suggested that there was no
overfitting and the model was reliable.

To better explore the different glucose tolerance-related
changes in the metabolites, ANOVA and multiple comparison
were employed to select significantly changed metabolites
among the groups. As shown in Table 2, a total of 23 metab-
olites were obviously different. In detail, compared to the
NGT, the metabolic state of T2D resulted in increased levels
of 2-hydroxybutyrate, branched-chain amino acids (isoleu-
cine, leucine, valine), 2-ketoisocaprate, inositol, monosaccha-
ride (fructose, galactose, glucose), glycerol, glycerate, and
free fatty acids (FFA C16:0, FFA C18:1, FFA C18:0), as well
as decreased levels of citrate, malate and glucogenic amino
acids including alanine, glycine, serine, threonine, phenylala-
nine, glutamine, and asparagine. Additionally, the IGR group
had striking higher concentrations of 2-hydroxybutyrate, 2-
ketoisocaprate, leucine, isoleucine, glucose, and FFA C16:0
together with lower levels of citrate, glycine, and asparagine
compared to those in NGT group. Finally, when compared
with IGR group, T2D patients had remarkably higher levels
of 2-hydroxybutyrate, 2-ketoisocaprate, valine, inositol,
glycerate, glycerol, FFA C18:0, fructose, galactose as well
as glucose, but lower levels of alanine, phenylalanine, and
glutamine. In addition to glucose, 2-hydroxybutyrate and 2-
ketoisocaproate also distinctly gradually increased from NGT
to IGR and further to T2D. The results of the current study are
well in-line with our previous preliminary investigation in
another diabetic population (unpublished data). Box plots of
the two metabolites are shown in Fig. 3 to visually present the
distribution of variables among the three groups.

480 Int J Diabetes Dev Ctries (July–September 2019) 39(3):478–485



Discussion

In order to investigate the complex perturbations of the me-
tabolism related to the glucose tolerance states, we carried out
a GC/MS-based non-targeted metabolomics study to investi-
gate plasma samples from NGT, IGR, and T2D subjects. Our
results showed a distinct metabonome change from NGT to
IGR and to T2D. Moreover, differential metabolites revealed
disturbances of various biological pathways in IGR and T2D

groups. In addition to glucose, we found that the levels of 2-
hydroxybutyrate and 2-ketoisocaproate progressively in-
creased with impaired glucose tolerance severity. Although
blood glucose level is routinely used to screen and assess
diabetes, our results suggested that glucose measurement
alone is not comprehensive and the metabolites associated
with the development of T2D should be considered.

In carbohydrate metabolism, we observed the elevation of
glucose, fructose, and galactose in IGR and/or T2D groups

Table 1 Biochemical parameters
for NGT, IGR, and T2D groups NGT (n = 39) IGR (n = 40) T2D (n = 41)

No. (male/female) 20/19 19/21 20/21

Age (year) 60 ± 1a 60 ± 1 60 ± 1

Current smokers 10 9 12

Alcohol use 7 8 8

Body mass index (kg/m2) 24.9 ± 3.3 25.2 ± 2.3 26.0 ± 3.2

Fasting plasma glucose (mmol/L) 5.34 ± 0.56 5.93 ± 0.44b 7.88 ± 1.67c,d

Fasting plasma insulin (μIU/mL) 7.32 ± 5.65 7.44 ± 5.37 26.9 ± 99.1

2 h plasma glucose (mmol/L) 6.16 ± 0.55 8.25 ± 1.41b 14.9 ± 6.20c,d

Uric acid (μmol/L) 269.4 ± 63.7 321.5 ± 115.8b 301.1 ± 88.8

Total cholesterol (mmol/L) 4.75 ± 0.85 4.80 ± 0.95 6.33 ± 0.71c,d

Triglyceride (mmol/L) 1.17 ± 0.62 1.62 ± 0.81b 1.95 ± 0.89c,d

HDL cholesterol (mmol/L) 1.42 ± 0.37 1.30 ± 0.24 0.95 ± 0.26c,d

LDL cholesterol (mmol/L) 2.82 ± 0.67 2.96 ± 0.76 3.15 ± 0.68

C-reaction protein (mg/L) 2.88 ± 2.83 4.44 ± 5.29 6.15 ± 12.1

aMean ± SD
b p < 0.05 for IGR vs. NGT
c p < 0.05 for T2D vs. IGR
d p < 0.05 for T2D vs. NGT

Fig. 1 Representative total ion
chromatograms (TIC) of plasma
sample from a participant
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compared to the NGT group. These data suggested that the
perturbations of glycolysis in IGR and T2D groups results in
the accumulation of monosaccharide, which causes harm to
the metabolism homeostasis. It has been noted that long-term
high level of fructose can stimulate lipogenesis and induce
hepatic insulin resistance [20, 21], and galactose is associated
with retinopathy [22, 23].

In addition, those with IGR and/or T2D had elevated levels
of branched-chain amino acids and reduced glucogenic amino
acids, when compared to NGT. In the states of IGR and T2D,
the rate of utilization of glucose is reduced relatively, resulting
in the disturbance of energy metabolism. Therefore, the body
needs other fuel molecules to enter TCA cycle to supply suf-
ficient amount of energy. The reduced levels of glucogenic

amino acids indicate that a large number of amino acids are
catabolized and ultimately form many intermediates of TCA
cycle. The levels of branched-chain amino acids, in contrast,
increased in IGR and/or T2D groups. It has been documented
that the activity of branched-chain α-keto acid dehydroge-
nase, an enzyme in branched-chain amino acids catabolism,
is downregulated in diabetes mellitus [24, 25]. Therefore, un-
der the control of this key enzyme, the catabolism of
branched-chain amino acids in patients is blocked, and conse-
quently, the concentrations of branched-chain amino acids in
blood increased.

Furthermore, higher concentration of free fatty acids as
well as glycerol in IGR and/or T2D patients was observed. It
is due to the effects of antilipolytic and promoting fat storage

Fig. 2 a PCA and b PLS-DA
score plots for NGT (blue
squares), IGR (black triangles),
and T2D (red dots) groups
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Table 2 Identified significantly
changed metabolites in NGT,
IGR, and T2D groups

Metabolite Fold changea Fold change Fold change Biological pathways
In IGR(vs. NGT)/
p valueb

In T2D(vs. IGR)/
p value

In T2D(vs. NGT)/
p value

Valine 1.1↑/0.323 1.3↑/0.031 1.4↑/0.001 Valine metabolism

Leucine 1.2↑/0.025 1.0/0.511 1.2↑/0.023 Leucine metabolism

Isoleucine 1.1↑/0.037 1.1↑/0.414 1.2↑/0.010 Isoleucine metabolism

2-ketoisocaprate 1.2↑/0.009 1.2↑/0.015 1.4↑/1.3 × 10−4 Isoleucine metabolism

2-hydroxybutyrate 1.3↑/0.001 1.2↑/0.026 1.5↑/1.6 × 10−4 Propanoate metabolism

Alanine 1.0/0.412 0.8↓/0.025 0.8↓/0.013 Alanine metabolism

Glycine 0.7↓/0.003 1.0/0.627 0.7↓/0.009 Glycine metabolism

Serine 0.9↓/0.067 0.9↓/0.236 0.8↓/0.008 Serine metabolism

Threonine 0.9↓/0.295 0.9↓/0.291 0.8↓/0.031 Threonine metabolism

Phenylalanine 1.0/0.355 0.7↓/0.002 0.7↓/0.003 Phenylalanine
metabolism

Glutamine 0.9↓/0.203 0.8↓/0.036 0.7↓/0.001 Glutamine metabolism

Asparagine 0.7↓/1.1 × 10−4 1.0/0.632 0.7↓/3.9 × 10−5 Asparagine metabolism

Malate 0.8↓/0.072 0.9↓/0.132 0.7↓/0.014 TCA cycle

Citrate 0.8↓/0.022 1.0/0.279 0.8↓/0.030 TCA cycle

Inositol 1.1↑/0.329 1.1↑/0.041 1.2↑/0.035 Inositol phosphate
metabolism

Fructose 1.1↑/0.336 1.3↑/0.002 1.4↑/0.001 Fructose and mannose
metabolism

Galactose 1.1↑/0.224 1.2↑/0.010 1.3↑/0.002 Galactose metabolism

Glucose 1.1↑/0.030 1.4↑/2.5 × 10−5 1.5↑/5.1 × 10−6 Glucose metabolism

Glycerate 1.2↑/0.374 1.2↑/0.035 1.4↑/0.001 Pentose phosphate
metabolism

Glycerol 1.1↑/0.505 1.3↑/0.019 1.4↑/0.002 Lipid metabolism

FFA C16:0 1.1↑/0.043 1.1↑/0.150 1.2↑/0.014 Lipid metabolism

FFA C18:0 1.1↑/0.241 1.2↑/0.034 1.3↑/0.001 Lipid metabolism

FFA C18:1 1.1↑/0.378 1.1↑/0.092 1.2↑/0.025 Lipid metabolism

(↑) upregulated, (↓) downregulated
a Fold change was calculated from the mean values of each group
b p value was calculated from multiple comparison. (↑) upregulated, (↓) downregulated

Fig. 3 Box plots of 2-
ketoisocaprate and 2-
hydroxybutyrate among the three
groups
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are weakened in patients with the impaired islet function [26,
27]. High levels of circulating fatty acids may, in turn, induce
or exacerbate insulin resistance, thereby accelerating the onset
of T2D [28, 29].

On the basis of the results, we can understand the metabolic
dysregulations in the states of IGR and T2D. Reduction of
glycolysis induces the manifold utilization of glucogenic ami-
no acids, while in the meantime, the burden of glucose could
be aggravated as a result of glucogenic amino acids
transforming into glucose through gluconeogenesis. An ab-
normal high level of glucose can decrease the sensitivity of
insulin and contribute to hyperlipidemia. Conversely, hyper-
lipidemia is the basis for the pathophysiology of insulin resis-
tance and consequently exacerbates blood glucose, both as
cause and effect, a vicious circle. Ultimately, TCA cycle as
the center of metabolism is also disturbed, manifested as de-
creased levels of malate and citrate in our study.

Moreover, we also found the progressively changed metab-
olites related with different glucose tolerance besides glucose.
Distinctly, the levels of 2-ketoisocaprate and 2-hydroxybutyrate
were increased in IGR and T2D groups compared with those in
the NGT group, and their concentrations in the T2D groupwere
also higher than those in the IGR group. 2-Ketoisocaprate, de-
rived from the deamination of isoleucine, is the substrate of
branched-chain α-keto acid dehydrogenase. The gradual accu-
mulation of 2-ketoisocaprate from NGT to IGR and to T2D
indicates that isoleucine metabolism, particularly 2-
ketoisocaprate, may be correlated with the pathological process
of T2D. 2-Hydroxybutyrate is an organic acid and is produced
during the pathway of threonine catabolism or glutathione
anabolism. The accumulation of 2-hydroxybutyrate may be
due to the disorders of upstream metabolism. Firstly, many
researches have demonstrated that oxidative stress plays a crit-
ical role in the pathogenesis of diabetes mellitus [30–32]. Under
dramatically increased oxidative stress states in IGR and T2D,
large amounts of cystine are converted to cysteine to form glu-
tathione [33, 34]; meanwhile, more 2-hydroxybutyrate is re-
leased as a by-product during this process. Secondly, 2-
hydroxybutyrate is also formed from threonine catalyzed by
serine-threonine dehydratase. In our study, the decrease of thre-
onine level together with the increase of 2-hydroxybutyrate
concentration in IGR and T2D patients suggest that the en-
hancement of threonine catabolism may be another reason for
the elevation of 2-hydroxybutyrate. In other prospective stud-
ies, 2-ketoisocaprate [16] and 2-hydroxybutyrate [17] were
found as the predictor of diabetes, respectively. Overall, from
the data obtained in our study and others, we speculate that the
two metabolites including 2-ketoisocaprate and 2-
hydroxybutyrate may be not only good predictors for diabetes
but also closely associated with the dynamic development of
diabetes. Certainly, a lot of experiments are needed to verify the
hypothesis and further explore the underlying molecular mech-
anisms of the two metabolites in future.

In the current study, a non-targeted metabolomics approach
based on the combination of GC/MS and statistical analysis
was employed to study the plasma metabolic patterns of sub-
jects with NGT, IGR, and T2D. Themetabolic changes in IGR
and T2D groups included perturbations of monosaccharide
and lipid metabolism, disorders of glucogenic amino acids,
and branched-chain amino acid catabolism. At the same time,
metabolites associated with the development of diabetes were
also successfully obtained, manifested by 2-ketoisocaprate
and 2-hydroxybutyrate as highlighted above. In conclusion,
the metabolome alterations are the mirror image of different
glucose tolerance states, and recognition of the relationships
of 2-ketoisocaprate and 2-hydroxybutyrate with diabetes will
help us deeply comprehend the pathological process of
diabetes.
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