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Abstract Foot-and-mouth disease is an acute, highly con-
tagious infection of domestic and wild cloven-hoofed ani-
mals, which can be transmitted to humans. In many cases,
the existing vaccines are not quite effective. The purpose
of this study was to test the possibility of using gold nano-
particles as an antigen carrier and an adjuvant. The immu-
nogenic properties of gold nanoparticles were assessed by
conjugating the particles to a synthetic peptide of the VP,
capsid protein of the foot-and-mouth disease virus. The
resulting conjugate (with or without the use of complete
Freund’s adjuvant), a commercial vaccine, and the native
peptide served to immunize guinea pigs. The titer and sen-
sitivity of the raised antibodies were maximal for the com-
bination comprising the nanoparticle-peptide conjugate
and complete Freund’s adjuvant. Antibody biosynthesis
was accompanied by increased production of proinflam-
matory cytokines (especially IFN-y) and by stimulation
of the respiratory activity of peritoneal macrophages. The
use of gold nanoparticles as a hapten carrier enhanced the
immune response even when complete Freund’s adjuvant
was not used.
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Introduction

Foot-and-mouth disease (FMD) is an acute, highly contagious
infection of domestic and wild cloven-hoofed animals, which
can be transmitted from animals to humans. It is caused by a
filterable RNA-containing aphthovirus of the family
Picornaviridae. On the basis of antigenic structure, seven se-
rotypes of the FMD virus (FMDV) have been identified, each
of which includes several variants (about 80 in total) [1]. The
number of recorded FMD outbreaks has been increasing sig-
nificantly since the early 2010, and in Russia, there were 14
outbreaks in five regions in the first half of 2013 alone.
Vaccination is a major means of preventing FMD. For pro-
phylactic vaccinations, various monovalent and polyvalent
inactivated FMD vaccines are employed [2], but no live vac-
cines have so far been developed. Although existing vaccines
are in many cases effective against the disease, they have
several essential disadvantages: The immune response de-
velops slowly; vaccinated animals can become infected before
an immune response is generated; and animals can become
virus carriers even after being successfully vaccinated [3, 4].
Furthermore, it is known that during the recent systematic
FMD vaccination in Europe, up to half the disease outbreaks
recorded annually have been due to “underinactivated” for-
mulations and to their residual infectivity [5]. Therefore, the
search for new vaccines is continuing, examples being the
recently proposed recombinant peptide vaccines [6] and ex-
perimental procapsid and synthetic peptide vaccines [7, §]. A
search is also in progress for the most effective adjuvants [9].
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Much work on synthetic peptide vaccines has been done
with the FMDV. This became possible once it was established
that the virus protein VPy, in particular a major neutralizing
immunogenic site (amino acids 135-159) and an additional
site near the C terminus of this polypeptide [10, 11], is re-
sponsible for the induction of FMDV-neutralizing antibodies.
In Volpina et al. [12], a synthetic peptide with amino acids
135-159 of VP, was made, which was linked to keyhole
limpet hemocyanin and supplemented with Freund’s adju-
vant. The vaccine induced neutralizing antibodies in guinea
pigs, pigs, and cattle and protected against infection with a
virulent FMDYV strain. However, the antibody response after
immunization with the peptide was 10 times lower than that
observed after immunization with whole virions. Synthetic
peptides corresponding to the neutralizing epitopes of VP,
of FMDVs of three serotypes had different antigenic and
immunogenic activities. Peptides specific for serotypes A
and O induced protective immunity in guinea pigs, whereas
the peptide specific for serotype C proved less active.
Peptides with the amino acid sequences of VP, of all seven
FMDV serotypes elicited neutralizing antibodies in guinea
pigs. The antibodies were mostly serotype-specific [12].
The possibility of preparing a bivalent peptide vaccine
against FMD was next established by Volpina et al. [13],
who synthesized two peptides for different serotypes in tan-
dem. The dipeptide vaccines induced synthesis of neutraliz-
ing antibodies to two FMDYV serotypes. A synthetic peptide
corresponding to the 135-159 region of VP, of FMDV type
A was administered to guinea pigs, sheep, and cattle together
with Freund’s adjuvant, resulting in a high level of neutraliz-
ing antibody and resistance to infection with a homologous
virulent FMDV strain. Immunity was found to depend on the
affinity of the antibodies induced by the synthetic peptide.
Immunization with the synthetic peptide construct ensured
that experimentally infected pigs were protected against the
disease [14].

There is a great current interest in using nanoparticles of
various natures as platforms for vaccines [15-19]. Gold nano-
particles (AuNPs) are some of the most promising antigen
carriers for immunization [20-22] owing to their adjuvant
properties [23, 24]. AuNPs were first used as part of an anti-
viral vaccine to carry the protein antigen of the tickborne
encephalitis virus capsid [25]. Although not containing adju-
vants, the proposed experimental vaccine offered better pro-
tection than did its commercial counterparts. Subsequently,
AuNPs have been used to generate antibodies and design
experimental vaccines (both peptide and carbohydrate)
against influenza A virus [26, 27], transmissible gastroenter-
itis virus [28], West Nile virus [29], the respiratory syncytial
virus [30], as well as against tuberculosis [31, 32] and other
bacterial infections [33—37]. In addition, AuNPs are being
used in the development of experimental vaccines against
tumors [38, 39].
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The purpose of this study was to investigate the possibility
that AuNPs could serve as a carrier of an FMDV synthetic
peptide and as an adjuvant in the immunization of animals.
AuNPs were chosen because they have been employed suc-
cessfully in designing prototypes of peptide vaccines against
several viral and bacterial infections. In Volpina et al. [12, 13],
the synthetic peptides were not coupled to a nanosized carrier,
and the vaccination efficacies were insufficient. We now pro-
pose the use of peptide antigen—AuNP conjugates to improve
the efficacy of vaccination.

Materials and methods
Peptide antigen

The antigen used for immunization was a lyophilized com-
mercial synthetic peptide spanning the 135—-159 region of the
FMDV capsid protein VP, (Cytokine Co., Russia). The pep-
tide contained 25 amino acid residues [amino acid sequence,
KYSAGGMGRRGDLEPLAARVAAQLP; brutto formula,
C111H186N3603381; molecular mass, 2584.96 Da (Wlth ac-
count taken of the natural isotope content); and isoelectric
point, 10.32]. The peptide was dissolved in 0.01 M
phosphate-buffered saline (PBS), pH 7.4, to 1 mg ml™".

The control was a commercial inactivated tissue culture
FMD vaccine (Federal Centre for Animal Health
“ARRIAH,” Russia) that contained an oil adjuvant
Montanide ISA 206. The amount of protein present in
the commercial vaccine was estimated by the colorimetric
method of Lowry [40] with a Genesys 10S UV—vis spec-
trophotometer (Thermo Scientific, USA).

Preparation of antigen—AulNP conjugates

Spherical AuNPs (15 nm mean diameter) were prepared ac-
cording to Frens [41] by the reduction of tetrachloroauric acid
(Sigma-Aldrich, USA) with sodium citrate (Fluka,
Switzerland). A 242.5 ml portion of 0.01 % aqueous
tetrachloroauric acid was heated to 100 °C on a magnetic
stirrer in an Erlenmeyer flask fitted with a water-cooled reflux
tube. This was followed by the addition of 7.5 ml of 1 %
aqueous sodium citrate to the flask. The total preparation time
was 45 min.

The particle diameter was determined with a Specord S 250
UV-vis spectrophotometer (Analytik Jena, Germany), a Libra
120 transmission electron microscope (Carl Zeiss, Germany),
and a Zetasizer Nano-ZS particle size and zeta potential ana-
lyzer (Malvern, UK), as described by Khlebtsov and Dykman
[42].

To prepare antigen—AuNP conjugates, we determined the
“gold number” (minimal amount of antigen that protects the
sol against salt aggregation) for the peptide solution. To this
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end, 20 pl of an antigen solution in PBS (initial concentration,
1 mg ml™") was titrated twofold on a 96-well microtiter plate.
Each well received 200 pul of AuNPs and 20 pl of 1.7 M NaCL
The minimal stabilizing concentration was determined visual-
ly by the change in the color of the AuNP solution from red to
blue in the wells of a microtiter plate. The minimal stabilizing
concentration for the antigen was 12.5 ug ml™'. Conjugation
was done by simple mixing (without the use of coupling
agents) [43].

Determination of the gold number presupposes that the
antigen molecules, when being adsorbed onto the AuNP sur-
face, protect the Au sol against salt aggregation. If there are
not enough antigen molecules to cover the particle surface, the
addition of an electrolyte results in particle aggregation, giv-
ing a blue color to the solution. In our case, such an effect was
observed when the antigen concentration was 6.25 pg ml .
Thus, at the 12.5 ug ml™' concentration, either all added pep-
tide was adsorbed on the AuNPs or there was a slight excess of
it. It should be noted that a slight excess of soluble antigen not
only does not interfere with immunization but also facilitates
an increase in antibody elaboration [44].

The use of a minimal stabilizing concentration presupposes
that all of the peptide is conjugated to AuNPs and is almost
absent from solution. Nevertheless, to remove all traces of
unbound antigen, we centrifuged the conjugate at 13,000x g
for 15 min, decanted the supernatant liquid, and redissolved
the pellet in PBS.

Animals

Fifteen male albino guinea pigs, weighing 300-350 g by the
time the experiment started, were used in this study. Animal
care and handling were in accordance with the Guide for the
Care and Use of Laboratory Animals, the European
Convention for the Protection of Vertebrate Animals Used
for Experimental and Other Scientific Purposes, and the leg-
islation of the Russian Federation.

Immunization procedure

For immunobiological studies, the guinea pigs were divided
into five groups of three in each on the basis of their body
weight (deviation of the body weight within a group, =10 %).

The animals were immunized subcutaneously at 10 points
along the spinal column by two injections with an interval of
10 days between. The antigen doses used are given in Table 1.

The guinea pigs in group 1 were injected with 0.5 ml of the
commercial vaccine according to the instructions supplied by
the manufacturer. Group 2 received 1 ml of AuNP—peptide
conjugates mixed 1:1 with complete Freund’s adjuvant
(CFA; Becton Dickinson, USA); group 3, 1 ml of AuNP-
peptide conjugates without CFA; group 4, 1 ml of a peptide
solution in PBS mixed 1:1 with CFA; and group 5 (control), a
1.7 M NaCl solution. Thus, group 2 received 29 pg Au, and
group 3 received 58 g Au. The animals were killed 10 days
after the last injection.

Isolation of peritoneal macrophages and splenic
lymphocytes

For peritoneal macrophages, the animals were killed and then
fixed on their backs. An incision was made along the midline
of the anterior abdominal wall, and the skin flap was carefully
separated, with care taken to keep the peritoneum intact. After
a puncture had been made with a needle connected to a sy-
ringe, 50 ml of PBS, pH 7.2, was injected into the peritoneal
cavity. The anterior abdominal wall was then gently mas-
saged, and after 5—7 min, peritoneal fluid was collected with
a Pasteur pipet through a cut made in the peritoneum and was
filtered into a test tube through a nylon filter. The cells were
washed three times by centrifugation in PBS at 750% g, after
which they were redissolved in 1 ml of PBS and counted in a
Goryaev chamber. Peritoneal macrophages were cultured by
standard procedures [45].

For splenic lymphocytes, an incision was made along the
white line of the peritoneum after peritoneal macrophages had
been isolated, and the spleen was removed. The spleen was
minced with scissors, and the tissue pieces were mashed
through a fine sieve into a petri plate containing sterile PBS.
The resulting suspension was subjected to Ficoll-Urografin
density-gradient centrifugation. The lymphocyte ring was col-
lected into a new test tube. The lymphocytes were washed
three times by centrifugation in PBS, pH 7.4, at 750xg for
10 min, and the cell pellet was redissolved in 1 ml of PBS. The
lymphocytic cells were counted with a HaemaScreenvet he-
matology analyzer (Hospitex Diagnostics, Italy).

Table 1 Immunization

parameters No.  Animals Antigen construction administered Amount (ml)  Dose of protein/peptide
administered (pg)
1. Guinea pigs (n=3)  Commercial FMD vaccine 0.5 25
2. Guinea pigs (n=3)  Au NP—peptide conjugate + CFA (1:1) 1 6.25
3. Guinea pigs (n=3)  Au NP—peptide conjugate 1 12.5
4. Guinea pigs (n=3)  Peptide solution + CFA (1:1) 1 6.25
5. Guinea pigs (n=3) 1.7 M NaCl solution 1 -
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Analysis of biochemical and immunological parameters

Sera were biochemically examined with the use of a BA-88A
analyzer (Mindray, China) and a standard reagent kit (Diakon-
DS, Russia). The interleukin concentration in the sera was
measured with the use of a Plate Screen analyzer (Hospitex
Diagnostics, Italy) and reagent kits for the immunoenzymatic
determination of IL-1, IL-6, and IFN-y (Vector-Best,
Russia).

The titer of antibodies in the sera was estimated by enzyme-
linked immunosorbent assay (ELISA) with horseradish
peroxidase-labeled antibodies against guinea pig I1gG
(Jackson ImmunoResearch, UK). The synthetic peptide was
used as the immobilized antigen. The reaction results were
recorded on a Plate Screen microplate spectrophotometer.
Briefly, the antigen was diluted 1:100 in 0.01 M PBS and
incubated overnight at 4 °C. The free binding sites were
blocked with 200 pl of 2 % fat-free powdered milk in
0.01 M PBS on a shaker for 1 h. Each well then received
100 pl of serum from the immunized animals, which was
diluted 1:10 in PBS and then serially twofold in PBS.
Incubation was done on a thermoshaker at 37 °C for 1 h.
The wells were washed three times for 10 min each with
200 ul of PBS on the shaker, and then, each well received
100 pl of horseradish peroxidase-labeled antibodies
(Jackson ImmunoResearch, USA) diluted 1:500 in PBS.
Incubation was done on the thermoshaker at 37 °C for 1 h,
after which the wells were washed three times for 10 min each
with 200 pl of PBS on the shaker. The antigen—antibody re-
action was developed with 100 ul of 0.006 % o-
phenylenediamine in 0.1 M sodium citrate buffer containing
0.01 % hydrogen peroxide. The reaction was stopped with
100 pl of 0.1 M sulfuric acid.

Respiratory activity was determined conventionally [46]
by the ability of cells to reduce nitrotetrazolium blue [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) (Sigma-Aldrich)] to formazan. Briefly, suspensions
of known concentrations of isolated animal cells (macro-
phages and lymphocytes) were centrifuged at 1000xg for
10 min, and the pellet was resuspended in 1 ml of 0.05 %
MTT and incubated at 37 °C for 1 h. After incubation, the
cells were centrifuged at 4000xg and the pellet was resus-
pended in 0.5 ml of dimethyl sulfoxide (Fluka, Switzerland).
The amount of reduced formazan was measured with a
Genesys 10S UV-vis spectrophotometer at 490 nm. To con-
struct the calibration curve, we used commercial formazan
(Sigma-Aldrich) at 0.002, 0.02, 0.2, and 2 mg ml ', The con-
centration of reduced formazan was converted to that per cell.

Dot immunoassay

The peptide (double dilutions; initial concentration,
1 mg ml™") was applied as a series of spots onto a Western S
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polyvinylidene fluoride membrane (Millipore, USA). The
membrane was blocked for 1 h with 2 % fat-free powdered
milk diluted in 0.01 M PBS, pH 7.2, dipped into a solution of
animal blood serum diluted 100-fold in 1 ml of 0.01 M PBS,
pH 7.2, and incubated at room temperature for 1 h. When there
was a biospecific interaction, the serum antibodies bound to
the antigen adsorbed on the membrane. The membrane was
then washed free of nonspecifically bound antibodies and was
immersed in a solution of AuNPs conjugated to staphylococ-
cal protein A (4559=0.5) (IBPPM, Russia) [43]. After 5—
60 min, the binding of the conjugate to the antigen—antibody
complex could be observed visually as a series of red spots.

Statistics

The obtained results were statistically processed by the stan-
dard procedures integrated in Excel 2007 software (Microsoft
Corp., USA). After the arithmetic mean and the standard de-
viation for a given data sample had been found, we deter-
mined the standard error of the arithmetic mean and its confi-
dence limits with account of Student’s ¢ coefficient (n, p)
[number of measurements n=3, significance level = 95 %
(»p=0.05)]. These results are presented as histograms. The sig-
nificance of differences between individual samples was eval-
uated by a two-sample unpaired Student’s ¢ test with unequal
variances. Differences were considered significant when the
experimentally found pey, value was <0.05.

The reliability of the changes recorded in the results of each
of'the experiments described above for the entire set of antigen
formulations examined was assessed by one-way analysis of
variance (ANOVA) by using Fisher’s ratio test. The depen-
dences found were considered significant at F>F_;, where
the critical value Fi;; at =3 and m=4-5 (number of data sets)
corresponded to p=0.05 (with the number of degrees of free-
dom (df) lying between 4 and 14) and the effective value p.g
was <0.05.

Results and discussion
Characterization of AuNPs

The diameter of the synthesized AuNPs was determined by
spectrophotometry (Fig. 1), transmission electron microscopy
(TEM; Fig. 2), and dynamic light scattering (DLS; Fig. 2).
The absorption spectrum peak of the obtained sol was
Amax=519.1 nm, with the absorbance being As,0=1.2. As
found by TEM and DLS, the average diameter of the obtained
nanoparticles was 15.7 nm. The protocol used to prepare
AuNPs presupposes that the mass concentration of Au is con-
stant (58 pg per ml of sol, corresponding to Asy0=1).
Therefore, the number of particles per milliliter at As,q=1
was 1.6x10'%.
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Fig. 1 Absorption spectrum of AuNPs with an average diameter of
15 nm before (I, broken line) and after (2, solid line) conjugation to the
peptide

Evaluation of the humoral response

For each experiment, the legends to Figs. 3, 5, 6, 7, 8, and 9
give the p value obtained from a pairwise comparison of the
corresponding arithmetic mean with the mean characterizing
the effect of the commercial FMD vaccine (histogram 1). The
bars represent confidence intervals for the arithmetic means.
In addition, the legends contain the experimental values of F
and pegr (plus the values of F ;) for the sets of experimental
data being described.
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Fig. 2 The number size distribution determined by DLS (a) and TEM
images (b, ¢) of 15 nm AuNPs
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Fig. 3 Effect of the composition of the antigen constructions on the
logarithm of the antibody titer: commercial FMD vaccine (7), peptide +
AuNPs + CFA (2) (p=0.00045), peptide + AuNPs (3) (p=0.0081),
peptide + CFA (4) (p=0.038); F=57.2 (Feii=4.12), pess=2%10"°

Ten days after the twofold immunization, the titer of the
antibodies formed in the blood sera of guinea pigs was deter-
mined by ELISA (Fig. 3). The titer of sera from the animals
immunized with the AuNP—peptide conjugate plus CFA
proved to be the highest (1/32,768). It was much higher, with
statistical significance, than the titer found for the animals
immunized with the commercial vaccine (1/512). In sera from
the animals injected with physiological saline, no specific an-
tibodies were detected. The titers of sera from the immuniza-
tion with the AuNP—peptide conjugate proved to be signifi-
cantly higher than those found with the native peptide plus
CFA.

The immunization of mice with AuNP-FMDYV conjugates
was described by Chen et al. [26]. In their study, the mice were
immunized every week for 9 weeks and throughout the im-
munization period; only increases in the antibody titers were
determined. In this study, by contrast, immunization was con-
ducted twice, and apart from the antibody titer, the production
of cytokines and the biochemical parameters of blood serum
were examined.

The results of the dot immunoassay of the peptide are
shown in Fig. 4. As can be seen, the highest sensitivity was
demonstrated by sera from the animals injected with the
AuNP—peptide conjugate plus CFA (minimum detectable
amount of peptide, ~120 pg). The sensitivity of sera from
the immunization with the AuNP—peptide conjugate was
~31 ng, that from the immunization with the peptide solution
plus CFA was ~62 ng, and that from the immunization with
the commercial FMD vaccine was 125 ng.

Cytokine production in the sera of immunized animals
In the process of immunization, we determined the level of
production of the proinflammatory cytokines IL-1(3, IL-6, and

IFN-y in sera from the immunized animals (Figs. 5, 6, and 7).
It was found that the animals immunized with the AuNP—
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Fig. 4 Dot immunoassay of the peptide (double dilutions; initial
concentration, 1 mg ml™'; initial amount, 1 pg) by using sera from
immunizations with a AuNP—peptide conjugate, b peptide solution +
CFA, ¢ commercial FMD vaccine, and d AuNP—peptide conjugate +
CFA. The specific antibodies bound to the antigen were detected with
AuNPs conjugated to staphylococcal protein A

peptide conjugate plus CFA produced the largest amounts of
the proinflammatory cytokines. The highest increase in pro-
duction, as compared to the effect obtained from the use of the
commercial FMD vaccine (+62 %, p=0.0028), was observed
for IFN~y. This finding may indicate that AuNPs conjugated
to the viral antigen are able to induce T lymphocytes and NK

451

40

iill

Fig. 5 Effect of the composition of the antigen constructions on the
concentration of IL-1f3 in sera from immunizations with (/) commercial
FMD vaccine, (2) peptide + AuNPs + CFA (p=0.031), (3) peptide +
AuNPs (p=0.31), and (4) peptide + CFA (p=0.034). Control (5) (p=
0.0028); F=117 (Fj;=3.48), peg=2x10"%
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Fig. 6 Effect of the composition of the antigen constructions on the
concentration of IL-6 in sera from immunizations with (/) commercial
FMD vaccine, (2) peptide + AuNPs + CFA (p=0.033), (3) peptide +
AuNPs (p=0.32), and (4) peptide + CFA (p=0.022). Control (5) (p=
0.0088); F=76.3 (Feiy=3.48), peg=2x 10"

0

1

cells to elaborate IFN-y and trigger a cascade of reactions
directed to the immunological regulation of the antiviral im-
mune response. A similar response of the immune system to
AuNPs conjugated to a viral antigen was demonstrated earlier
[47, 48]. IFN-y, which is a major mediator of inflammation in
viral infections, inhibits virus replication in cells, enhances the
specific immune response by promoting an increased expres-
sion of major histocompatibility complex II, and activates
macrophages and NK cells. It is, therefore, probable that
AuNPs conjugated to a viral antigen promote a coordinated
antiviral immune response.

It should also be noted that all the immunized animals
exhibited increased cytokinetic activity. Thus, a significant
increase in the concentration of interleukins 13 and 6 relative
to the control group (1.7 M NaCl solution, p<0.05) was ob-
served in all animals that had received the peptide in combi-
nation with various immunogens. However, the largest such
increase was observed in the animals injected with the AuNP—
peptide conjugate plus CFA and the smallest in those injected
with the native peptide plus CFA. Because IL-6 is a factor of B

40 1

W

Fig. 7 Effect of the composition of the antigen constructions on the
concentration of INF-y in sera from immunizations with (/) commercial
FMD vaccine, (2) peptide + AuNPs + CFA (p=0.0028), (3) peptide +
AuNPs (p=0.22), and (4) peptide + CFA (p=0.092). Control (5) (p=
0.00032); F=180 (Fui=3.48), peg=3x10"°

INF-y concentration (pg ml!)
— — [\ N w L)
(=1 W (=] W (=] W

wn




Gold Bull (2015) 48:93-101

99

cell differentiation and promotes the maturation of B lympho-
cytes into antibody-producing cells, the increase in its concen-
tration may indicate that vaccination with the AuNP—peptide
conjugate activated the polyclonal production of Ig.

Respiratory activity of splenic lymphocytes

Compared with the control (1.7 M NaCl solution), the respi-
ratory activity of splenic lymphocytes increased 3.7-fold (p=
0.018) in the animals immunized with the AuNP—peptide con-
jugate plus CFA, 2.1-fold (p=0.015) in those immunized with
AuNP-peptide conjugate, 2-fold (p=0.0016) in those immu-
nized with the native antigen plus CFA, and 1.7-fold (p=
0.00037) in those immunized with the commercial vaccine
(Fig. 8). This fact may indicate that the antigen constructions
being injected create a “depot” at the point of injection, there-
by facilitating the extension of the effector phase of the im-
mune response to the administered antigen.

Along with this, the respiratory activity of peritoneal mac-
rophages augmented 2.5-fold (p=0.0064) in the animals im-
munized with the AuNP—peptide conjugate plus CFA, 2-fold
(p=0.0045) in those immunized with the AuNP—peptide con-
jugate, 1.5-fold (p=0.005) in those immunized with the native
antigen plus CFA, and 1.4-fold (»=0.0059) in those immu-
nized with the commercial vaccine (Fig. 9). This is consistent
with the previous findings that AuNPs in complex with high-
and low-molecular-weight antigens stimulate the respiratory
activity of peritoneal macrophages [48].

General remarks

Thus, for all the experiments depicted in Figs. 3, 5, 6, 7, 8, and
9, comparison of the effect of the AuNP—peptide conjugate
plus CFA and that of the commercial FMD vaccine shows that

2.5 4

1.5 A

b
HNEHa

1 2

Formazan concentration per lymphocyte (ng)

Fig. 8 Effect of the composition of the antigen constructions on the
respiratory activity of splenic lymphocytes: (/) commercial FMD
vaccine, (2) peptide + AuNPs + CFA (p=0.034), (3) peptide + AuNPs
(p=0.11), and (4) peptide + CFA (p=0.084). Control (5) (»p=0.00037);
F=30 (Foix=3.48), pex=1.5x10"°
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Fig. 9 Effect of the composition of the antigen constructions on the
respiratory activity of peritoneal macrophages: (/) commercial FMD
vaccine, (2) peptide + AuNPs + CFA (p=0.0039), (3) peptide + AuNPs
(p=0.0027), and (4) peptide + CFA (p=0.82). Control (5) (»=0.0059);
F=67.8 (Foi=3.48), pey=3x10""

the corresponding parameters increased from +23 to +110 %
with statistical significance (p<0.05). In all the experiments,
the use of the AuNP—peptide conjugate without CFA resulted
in an effect comparable to (Figs. 3, 5, 6, 7, 8, and 9) or signif-
icantly greater than (by about 40 %; Figs. 3 and 9) that of the
commercial FMD vaccine.

The ANOVA results (the values of F, Fi, and p.g given in
the legends to Figs. 3, 5, 6, 7, 8, and 9) also attest that the
observed relationship between the immunological parameters
and the composition of the antigen constructions had high
statistical significance.

The data available on the safety of AuNPs in vivo (espe-
cially when these are administered subcutaneously) are few
and conflicting. Nevertheless, it can be considered proven that
arapid decrease in the concentration of nanoparticles in blood
and their long-term retaining in the animal body is related to
the functioning of the hepatobiliar system. As the excretion of
accumulated particles from the liver and spleen can take up to
3 to 4 months, the question as to the injected doses and pos-
sible inflammation processes is still of great importance. At
present, one can only assume that if AuNPs are administered
for a brief time (about a week) at a daily dose not exceeding
0.5 mg kg ', no appreciable toxicity results [49]. In our ex-
periments, the injected dose and the period of administration
were inherently smaller than those.

In a biochemical study of guinea pig blood serum, we
found no significant differences between the corresponding
parameters for the antigen constructions used, as compared
with the effect of the commercial FMD vaccine and with the
control. This result indirectly indicates that the administered
Au-containing antigen constructions were not toxic to the ba-
sic physiological functions of the animals.
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Conclusions

The data generated by this study characterize the effect of
AuNPs on the immune response of the guinea pigs immunized
with a synthetic peptide of the VP, capsid protein of the
FMDYV, as compared to the responses obtained from the ani-
mals immunized with a commercial FMD vaccine and with
the native peptide. It has been established that the AuNP—
peptide conjugate mixed with CFA induced a much more
pronounced immune response than did the other antigen con-
structions. This was manifested by a significantly higher titer
of antibodies produced and by their higher sensitivity shown
in an immunoassay of the antigen. Antibody biosynthesis was
accompanied by considerably increased production of proin-
flammatory cytokines (especially IFN-y) and by stimulation
of the respiratory activity of peritoneal macrophages. That
there were almost no significant differences between the ef-
fects of the Au-containing antigen constructions and the com-
mercial FMD vaccine on one hand and the results of the con-
trol experiments in the biochemical study of blood serum on
the other indirectly indicates that the administered antigen
constructions were not toxic to the basic physiological func-
tions of the guinea pigs.

In all the experiments, the use of the AuNP—peptide con-
jugate without CFA resulted in an effect comparable to or
significantly greater than that of the commercial FMD vac-
cine. This finding suggests that AuNPs might serve as a single
adjuvant in the future work on designing peptide vaccines. In
addition, we believe that the use of a synthetic peptide in
vaccination will cause no residual infectivity.

In summary, our present results create a basis for further
research on the resistance of vaccinated animals to FMD, with
a view to developing a single-use nanovaccine against FMD.
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