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Introduction

Colloquially described as modern day “Gold Rush”, use of
gold in catalysis is a research area attracting intensive and
increasing attention. This is evidenced, for example, by
nearly exponential increase in publications appearing in
the past decade in the field of homogeneous catalysis with
gold [1]. Molecular gold or in the form of nanoparticles/thin
films prove to be efficient catalysts offering benefits over
other transition metals, properties that relate, in no small
part, to electrophilic nature of gold which, in turn, is corre-
lated with reduction in energy of the 6s2 atomic orbital,
owing to relativistic effects [2]. Such is the propensity for
molecular gold to associate with alkynes, in particular, the
term alkynophilicity is often used to describe this property.
Other advantages of gold often relate to gold not being
likely to be involved in oxidative addition or reductive
elimination reactions unlike square planar palladium(II),
for example. Not surprisingly, there are many recent and
thorough reviews of gold in the catalysis literature e.g., [3–7].

Given that gold is a carbophilic Lewis acid, the question
then arises: does this property influence the type of supra-
molecular association formed by gold in its crystal
structures?

Gold holds a special fascination for crystal engineers
owing to its propensity to form Au…Au or aurophilic in-
teractions [8, 9]. Not only do Au…Au interactions lead to
fascinating supra-molecular architectures, the fact that the
energy of stabilisation afforded to their crystal structures can
match that provided by conventional hydrogen bonding [10]
led to competition studies between these synthons [11–14].
By contrast, considerably less attention has been directed to
ascertaining formation of Au…π(arene) interactions [15];
analogous interactions are well established in the supra-
molecular chemistry of the main group elements [16–18].
Herein, an overview of Au…π(arene) interactions, formed
both intra- and inter-molecularly, operating in the crystal
structures of molecular gold compounds is given, and
their presence in macro-molecular structures is also
discussed, along with future prospects for this type of
interaction.

Background

Before embarking on a survey of Au…π(arene) interactions,
some general remarks are in order. These will address search
protocols, nature and energy of this type of interaction as
well as their prevalence. Au…π(arene) interactions may be
classified in an analogous fashion as for cation (or
anion)…π(arene) interactions [19, 20] as illustrated in
Fig. 1.

When a gold atom approaches an arene ring, it can do so
from various directions. In cases where the gold atom is
directed exclusively towards a single carbon atom, the in-
teraction is described as localised. When directed to one
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bond within a ring, the term semi-localised is applied.
Finally, if the gold atom is (approximately) equally
disposed from all six carbon atoms of the arene ring,
the term employed is de-localised. Herein, the discus-
sion is largely focussed upon de-localised Au…π(arene)
interactions.

Au…π(arene) interactions were identified from a survey
of the Cambridge Structural Database [21], whereby a de-
localised Au…π interaction was considered significant if
the distance between the gold atom and the ring centroid
was less than 4.0 Å, based on van der Waals radii consider-
ations [15], and the angle of inclination between the vector
between the gold atom and the ring centroid of the arene
ring, and the vector normal to the ring was less than 20°
[15]. Progressive relaxation of the angle restraint will indi-
cate formation of semi-localised and localised Au…π in-
teractions. Relative prevalence of these interactions can be
estimated by a search of all crystal structures having gold
and at least one phenyl ring, i.e., 3,636 structures. There are
approximately 60, 360 and 100 examples of de-localised,
semi-localised and localised Au…π interactions, respective-
ly. As yet, no detailed analysis of semi-localised and local-
ised Au…π interactions is available but in this context, it is
salutary to consider emerging discoveries on rare
Au…π(alkene) interactions [22, 23], an example of which
is described below. There has been little detailed theoretical
analysis of the energy associated with intermolecular Au…π
interactions but the aforementioned Au…π(alkene) interac-
tions provide a benchmark. Thus, based on variable temper-
ature Nuclear Magnetic Resonance (NMR) spectroscopy,
the energy of interaction between gold and an alkene is
approximately 10 kcal mol−1 [22], a value that must be
considered an upper estimate for Au…π(alkene) interac-
tions described herein.

Intra-molecular Au…π(arene) interactions

Intra-molecular Au…π(arene) interactions in molecular gold
structures are comparatively rare and have not attracted signif-
icant systematic study with relatively few notable exceptions.

However, they can and do exist with polymorphic structures of
bis(diphenylphosphino)methane-di[chloridogold(I)],
(Ph2PCH2PPh2)(AuCl)2, a good entrée to this topic. In initial X-
ray crystal structure determination of (Ph2PCH2PPh2)(AuCl)2
reported by Schmidbaur et al. [24], a distorted A-frame was
found that was stabilised by an intra-molecular Au…Au inter-
action (Fig. 2a). A subsequent study by Healy [25] revealed a
second polymorph, where a rearrangement of the original struc-
ture had occurred that allowed for the formation of an intra-
molecular Au…π(arene) interaction at the expense of the Au…
Au contact; no intermolecular Au…Au interaction was formed
in the crystal structure. Such structural diversity suggests that
the energy of stabilisation imparted by Au…Au and
Au…π(arene) interactions can be of the same order of
magnitude.

This latter comment is neatly borne out in a series of
catalytically active phosphanegold(I) chlorido structures
designed to feature intra-molecular Au…π(arene) interac-
tions to enhance stabilisation of intermediate species formed
during the catalytic cycle to obviate the need for silver-based
co-catalysts [26]. In one of these tetra-nuclear structures

Fig. 1 a Localised, b semi-localised and c de-localised Au…π(arene)
interactions

Fig. 2 Molecular structures of bis(diphenylphosphino)methane-
di[chloridogold(I)], (Ph2PCH2PPh2)(AuCl)2: a monoclinic polymorph
featuring an intra-molecular Au…Au interaction (3.34 Å) and b mono-
clinic polymorph with an intra-molecular Au…π(arene) interaction
(3.58 Å). Colour codes for this and subsequent figures: orange, gold
any halide, cyan phosphorous, pink carbon, grey, gold and black
hexagons aryl rings. Hydrogen atoms have been omitted for clarity.
Rings participating in Au…π(arene) interactions are highlighted in
gold. Both Au…π(arene) and Au…Au interactions are shown as gold
dashed lines
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(see chemical structure in Fig. 3a), with one and a half
molecules in the crystallographic asymmetric unit, i.e., six
independent gold atoms, there are both Au…π(arene) and
Au…Au interactions. As seen from Fig. 3b, one arene ring,
located about the centre of inversion, bridges two gold
atoms (d=3.53 Å) and a second independent gold atom
interacts with a ring (d=3.73 Å) as well as with another
gold atom via a Au…Au contact (d=3.36 Å). The remaining
gold atoms form Au…Au interactions exclusively (d=3.10
and 3.51 Å). In this way, molecules self-assemble into a
supra-molecular chain.

Following a similar theme, cationic phosphanegold π-
allene compounds, e.g., Fig. 4a, have been developed
[27], as such species are crucial in many catalytic ap-
plications of gold [28]. X-ray crystal structure determi-
nation shows the π-allene ligand to be coordinated at
the least congested side (Fig. 4b). An intra-molecular
Au…π(arene) interaction is also found, showing that
such interactions are capable of stabilising cationic gold
π-allene species. In the present case, the Au…π(arene)
interaction is best described as being localised (Fig. 1a)
as the gold atom is 3.00 Å from the ispo-carbon atom,

the next closest distances (3.21 and 3.23 Å) are formed
with the carbon atoms on either side of the ipso-carbon
atom, and the Au…C distances increase to a maximum
of 3.99 Å.

Similar intra-molecular Au…π(arene) interactions have
been noted previously in other systematic investigations, for
example, in cationic phosphanegold compounds of simple
η2-bound arenes [29] as well as in neutral acylic
diaminocarbene goldchlorido structures [30]. Attention is
now directed to deliberately tailoring of ring-bound sub-
stituents to promote the formation of intra-molecular
Au…π(arene) interactions.

Phospanegold thiolate molecules of the general formula:
R3PAu[SC(OMe)=NR′], where R, R′=aryl and alkyl
(Fig. 5a), exhibit linear P–Au–S coordination geometries
and in the overwhelming majority of cases, feature
intra-molecular Au…O interactions [31]. However, it
proved possible to fine tune the electronic structures of
the substituents in the arene rings to promote the for-
mation of Au…π(arene) interactions. Figure 5b displays
the molecular structure of Ph3PAu[SC(OMe)=NPh] [32],
where the conventional Au…O interaction is found
(3.05 Å). When the phosphorous-bound phenyl rings
were substituted with comparatively electron-rich p-
tolyl rings to give (p-tol)3PAu[SC(OMe)=NPh], the gold

Fig. 3 a Chemical structure of {(Ph2PCH2)2NC6H4N(CH2PPh2)2}
(AuCl)4; only interacting species are represented in this and subsequent
chemical structures with innocent counter ions and solvent molecules
omitted for clarity. b Portion of the supra-molecular chain showing the
co-existence of Au…Au and Au…π(arene) interactions. Additional
colour code: light blue nitrogen

Fig. 4 a Chemical structure of the cation in [(t-Bu2PC6H4Ph)Au(H2C
=C=CMe2)][SbF6]·0.5CH2Cl2. b Molecular structure showing the
localised Au…π(arene) interaction. Additional colour code: green
hydrogen
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atom was activated and a Au…π(arene) interaction
(3.36 Å) was formed instead (Fig. 5c). This was the
general observation for tolyl-phosphane derivatives ex-
cept when steric hindrance proved decisive. Altering the
electronic structure of the thiolate arene ring also proved
determinant. Thus, the addition of highly electronegative nitro
groups to the thiolate-arene ring in the tolyl-phosphane deriv-
ative, (p-tol)3PAu[SC(OMe)=NC6H4NO2-p], was sufficient
to restore the status quo, i.e., Au…O interactions were
formed. Interestingly, in this instance, Au…Au interac-
tions (3.09 Å) were formed but not in any other members of
the series [32].

Intermolecular Au…π(arene) interactions

As mentioned in the “Introduction”, intermolecular
Au…π(arene) interactions are known to provide stability
to the crystal structures of molecular gold-containing com-
pounds [15]. Herein, a brief survey of common supra-
molecular motifs sustained by these interactions will be
presented. The simplest motif is zero-dimensional and man-
ifests in three different forms. The first of these is a two-
molecule aggregate sustained by a single Au…π(arene)
interaction (3.92 Å) between the two crystallographically
independent molecules comprising the asymmetric unit,
such as in the crystal structure of [MeNC(=O)CH2CH2]
Ph2PAuCl [33] (Fig. 6a and b). From the chemical compo-
sition, one notes the presence of an amide functionality that
might be expected to form directional hydrogen bonding
interactions. Indeed, these form to stabilise a supra-
molecular chain. The Au…π(arene) interactions operate in
a different dimension and, in fact, serve to link these chains
into a supra-molecular array. This example emphasises that
the Au…π(arene) interactions presented herein operate in
isolation of other supra-molecular contacts and stabilise
aggregation patterns in a given dimension independently.
Whilst this example again features gold(I), gold(III) centres
may also participate in such interactions as the following
two examples demonstrate.

Two components of a gold(III) salt [34] interact via a single
point of contact (3.48 Å) (Fig. 7a), i.e., cationic
[(phen)Au(CN)2]

+, with the central ring of a neutral phen
molecule, as shown in Fig. 7b; phen is 1,10-phenanthroline.
Anionic gold(III) species are also known to formAu…π(arene)
interactions as evidenced in the structure comprising
tris(perylenium) trans-bis[(2-(trifluoromethyl)acrylonitrile-
1,2-dithiolato]gold(III) [35] (Fig. 7c), where a single point of

Fig. 5 a Generic chemical structure of R3PAu[SC(OMe)=NR′], where
R, R′=aryl and alkyl. The red arrow indicates flexibility in the
orientation of the thiolate ligand that is usually orientated so that
the oxygen atom is in close proximity of the gold atom. With
careful tailoring of R and R′, an orientation can be promoted
whereby the aryl ring is orientated over the gold atom, held in
place by a Au…π(arene) interaction. b Molecular structure of
Ph3PAu[SC(OMe)=NPh] featuring an Au…O interaction (3.05 Å).
c Molecular structure of (p-tol)3PAu[SC(OMe)=NPh] featuring a
Au…π(arene) interaction (3.36 Å). Additional colour codes: yellow
sulphur, red oxygen

Fig. 6 a Chemical structure of [MeNC(=O)CH2CH2]Ph2PAuCl. b The
single Au…π(arene) interaction between the two independent mole-
cules comprising the asymmetric unit
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contact (3.78 Å) with a peripheral ring connects the ions into a
zero-dimensional aggregate (Fig. 7d).

Zero-dimensional aggregation is also found in the
structure of (3-ferrocenylpyridine)pentafluorophenylgold(I)
[36] (Fig. 8a). Here, centrosymmetric molecules associate
into dimers via two Au…π(arene) interactions (3.51 Å)
(Fig. 8b). Further aggregation between these molecules
via Au…Au interactions (3.30 Å) occurs so that a supra-
molecular chain ensues. Thus, this is another example
exhibiting the cooperative nature of Au…π(arene) and
Au…Au interactions.

One-dimensional supra-molecular chains sustained solely
by Au…π(arene) interactions are also known. An example of
a chain sustained by an average of one Au…π(arene) interac-
tion (3.96 Å) per molecule is found in the crystal structure of
Ph3AsAuCl [37]. Whilst this chain has a helical topology
(Fig. 9a), chains with linear and zigzag topology are also
known [15]. Chains may also be consolidated by an average
of two Au…π(arene) interactions per molecule as found in the
structure of bis[(2,6-xylylisocyano)thiocyanatogold(I)] [38]

(Fig. 9b). Molecules are centrosymmetric featuring Au2S2
cores arising from secondary Au…S interactions and assem-
ble into a supra-molecular chain with a linear topology via an
average of two Au…π(arene) interactions (3.56 Å) per
molecule.

Whilst, thus far, the focus has been upon Au…π(arene)
interactions, the discussion would be incomplete without a brief
discussion of complementary Au…π(aromatic) interactions
[39] where the ring carries at least one non-carbon atom,
i.e., the π-system is hetero-aromatic. Cationic bis(4-
phenylpyridine)gold(I) [40] molecules (Fig. 10a), assemble
into a linear supra-molecular chain sustained by an average
of two Au…π(pyridyl) interactions (3.49 Å) per molecule
(Fig. 10b). In a sulphur-containing analogue, bromido[1-(4,6-
dimethylthiine-2-yl)propene-2-thiolato]gold(I) [41] (Fig. 10c),
centro-symmetric aggregates that are sustained by two
Au…π(thiine-2-yl) interactions (3.65 Å) (Fig. 10d) are
found.

Finally, it is noteworthy that the chelate ring does not
necessarily have to be “organic” in nature but can be a
chelate ring. Metallo-aromatic character has been ascribed
to chelate rings owing to their significant π-character [42]
and these π-systems are increasingly becoming recognised
as participating in C–H…π and, indeed, π…π interactions
[43–46]. In this context, the crystal structure containing the
chlorido(2-pyridineformamide thiosemicarbazonato)gold(III)

Fig. 7 a Chemical structures of cationic dicyano(1,10-phenanthroline)
gold(III) and 1,10-phenanthroline. b Molecular structure showing a
Au…π(arene) interaction occurring between a cationic gold(III) centre
and a neutral molecule. c Chemical structures of tris(perylenium) trans-
bis[(2-(trifluoromethyl)acrylonitrile-1,2-dithiolato]gold(III). d Molecular
structure showing a Au…π(arene) interaction occurring between an anion-
ic gold(III) centre and a cationic molecule

Fig. 8 a Chemical structure of (3-ferrocenylpyridine)penta
fluorophenylgold(I). b Dimeric aggregate sustained by two
Au…π(arene) interactions that, in turn, are linked into a supra-molecular
chain via Au…Au interactions. Additional colour code: olive green iron
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cation [47] (Fig. 11a) is of particular interest. The crystallo-
graphic asymmetric unit comprise two independent mole-
cules. The first of these self-assembles over a centre of
inversion via Au…π(pyridyl) interactions (3.48 Å) to form a
dimeric aggregate (Fig. 11b). The second independent mole-
cule also self-assembles but about a twofold axis of symmetry
and by Au…Au (3.56 Å) as well as Au…π(chelate) (3.64 Å)
interactions (Fig. 11c).Whilst the Au…π(chelate) interactions
are not operating in isolation, this aggregate demonstrates the
potential of such interactions in the supra-molecular chemistry
of gold compounds.

From the above, it is evident that de-localisedAu…π(arene)
and analogous interactions can play a significant role in
stabilising the crystal packing of gold-containing molecules.
The shortest Au…π(arene) contact distance is 3.43 Å and the
contacts extend out to 4.0 Å, i.e., the search limit (see “Back-
ground”). The supra-molecular aggregates that are stabilised
by these interactions are either zero-dimensional, comprising
similar or dissimilar pairs of molecules, or one-dimensional,
supra-molecular chains of varying topology. It has been dem-
onstrated that Au…π(arene) interactions occur in both neutral
and charged gold(I)- and gold(III)-containing molecules
and it has been estimated that when they potentially can
form are found in approximately 2 % of their structures. To a

first approximation, the nature of the interaction can be de-
scribed as electron donation from the aromatic ring to the gold
atom, akin to the C–H…π(arene) interactions and in accord
with the isolobal analogy between gold and hydrogen [48].
This being the case, it might be anticipated that increasing the
electron density of the aromatic ring, say, by the incorporation
of a nitrogen atom, should enhance the propensity of forming
such interactions and their strength. Whilst correlating weak
intermolecular interactions with distances is unwise [39, 49], it
is interesting to note that the likelihood of forming
Au…π(pyridyl) over Au…π(arene) interactions is at least
double [39].

Having established the importance of Au…π(arene) inter-
actions, occurring either intra- or inter-molecularly for molec-
ular gold-containing compounds, for completeness it was

Fig . 10 a Chemica l s t ruc ture of the ca t ion in [b i s (4 -
phenylpyridine)gold(I)][PF6]. b Supra-molecular chain sustained by
an average of two Au…π(pyridyl) interactions per molecule. c Chem-
ical structure of bromido[1-(4,6-dimethylthiine-2-yl)propene-2-
thiolato]gold(I). d Centro-symmetric dimeric aggregate sustained by
two Au…π(thiine-2-yl) interactions

Fig. 9 a Helical supra-molecular chain sustained by an average of one
Au…π(arene) interaction per molecule in the structure of Ph3AsAuCl.
b Chemical structure of bis[(2,6-xylylisocyano)thiocyanatogold(I)]. c
Supra-molecular chain with a linear topology sustained by an average
of two Au…π(arene) interactions per molecule. Additional colour
code: pink arsenic
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thought of interest to examine the Protein Data Bank [50] for
the presence of Au…π(aromatic) interactions in macro-
molecular structures.

Au…π(aromatic) interactions in macro-molecular
structures

Gold(I) compounds are well established to present effica-
cious activity for treatment of rheumatoid arthritis [51].
Besides this pharmacological role, gold(I), and indeed
gold(III), compounds continue to be developed as potential
therapeutic agents for a range of ailments such as tropical
diseases, viruses and, especially, cancer [52–54]. This being
the case, it is not surprising that the interaction of gold
compounds with biological macro-molecules attracts atten-
tion. Moreover, gold(I), e.g., AuCl, AuCN and [Au(CN)2]

−,
and gold(III), e.g., AuCl3, compounds, are sometimes
employed in macro-molecular crystallography in order to
provide suitable species for the solution of the structure

by exploiting the anomalous dispersion characteristics of
gold.

A search of the Protein Data Bank [50] revealed 55
macro-molecular structures containing gold and in these, a
total of 285 independent gold species were found. Gold was
found in a sole example of a RNA molecule and in three
examples of a protein/DNA complex with the remaining
structures being of proteins. Gold was usually present as a
cation, i.e., Au+ or Au3+, but there were six examples of
gold being present as a dicyanoanion, i.e., [Au(CN)2]

−.
Manual sorting revealed that gold forms Au…π(arene) and
related interactions in 26 of these structures. Semi-localised
Au…π interactions were found in 16 examples with a
representative example illustrated in Fig. 12, where the gold
atom of a [Au(CN)2]

− anion interacts with the C–N bond of
the pyrrole ring of a tryptophan residue (Au…C, N=3.30
and 3.14 Å) in the crystal structure of beta-lactamase [55].

The remaining ten Au…π interactions identified in
macro-molecular crystal structures are de-localised Au…π
interactions with an example shown in Fig. 13 of a Au+

cation interacting with a phenyl ring of a phenylalanine
residue (3.37 Å) in the crystal structure of Arabidopsis

Fig. 11 a Chemical structure of the cation in [chlorido(2-
pyridineformamide thiosemicarbazonato)gold(III)]Cl·MeOH. b Su-
pra-molecular dimer sustained by two Au…π(pyridyl) interactions. c
Dimeric aggregate (twofold symmetry) sustained by Au…Au and two
Au…π(chelate) interactions

Fig. 12 An example of a semi-localised Au…π interaction occurring
between the gold atom of a [Au(CN)2]

− anion with the C–N bond of a
pyrrole ring in the crystal structure of beta-lactamase

Fig. 13 An example of a de-localised Au…π interaction occurring
between the Au+ cation and the phenyl ring of a phenylalanine residue
in the crystal structure of a protein known to be involved in transcrip-
tion regulation
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abscisic acid-responsive NAC (NAC is an acronym derived
from the names of the three genes first described as
containing the domain, namely NAM (no apical meristem),
ATAF1,2 and CUC2 (cup-shaped cotyledon)) protein,
known to be involved in transcription regulation [56].

Conclusion

From the foregoing, it is evident that gold is capable of
forming intra- and inter-molecular Au…π interactions with
a variety of π-systems, both in molecular and macro-
molecular species. Supra-molecular synthons based on
Au…π interactions may be zero- or one-dimensional. In
summary, a complete analysis of a molecular and crystal
structure of a gold-containing species needs to take into
account an analysis for putative Au…π interactions.
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