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Abstract The recent success of using methyltin(IV) cations
in constructing multidimensional structures containing the
Au—CN-Sn link with interesting physical properties will be
surveyed. The methyltin(IV)-dicyanoaurates, Me;Sn[Au
(CN)z] (1) and Me,Sn[Au(CN),], (2) containing the Au—
CN-Sn link can be easily prepared by aqueous reaction of
Me;SnCl or Me,SnCl, with stoichiometric amounts of an
aqueous solution of K[Au(CN),]. The room temperature
solid-state emission spectrum of 1 excited at 254 nm shows
two intense emission bands at 442 and 670 nm, and a
shoulder at 390 nm. When excited at 320 nm, the crystalline
sample shows two intense emission bands at 442 and
720 nm, and a shoulder at 380 nm. After 2 min of grinding,
only the blue emission band at 442 nm is observed. In
contrast, the emission spectrum of 2 shows only one emis-
sion maximum at 422 nm. The porosity of 1 and 2 was
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probed by gas sorption measurements performed at 77 K. 1
exhibited no detectable microporosity as revealed by the
inspection of the N,, H,, as well as, O, isotherms. The gas
adsorption studies reveal that only a small amount of N, and
H, (3.82 and 4.66 cm® g ', respectively) is adsorbed by the
framework of 2 at 77 K. However, a CO uptake of
11.20 cm® g ' can be reached at 1 atm. The framework of
2 can take up significant amounts of O, (23.27 cm® g '). In
addition to intriguing photoluminescence and gas sorption
behavior, these complexes also exhibit ion exchange prop-
erties in the presence of bivalent transition metal cations,
such as cobalt(IT), nickel(Il), copper(Il), and zinc(II).

Keywords Dicyanoaurate - Organotin(IV)-dicyanoaurates -
Ion exchange - Photoluminescence - Gas sorption

Introduction

The rational design and synthesis of cyanide-bridged bimet-
allic supramolecules containing cyanometallate building
blocks are the focus of widespread research interest because
of their interesting topological structures and diverse prop-
erties [1-3]. Among many metal cyanide anions, the dicya-
noaurate [Au(CN),] building block, due to its affinity to
bridge transition metal centers has been used in the con-
struction of 2D and 3D cyano-bridged bimetallic Au—CN-M
coordination polymers [4—7]. The unique ability of linear
[Au(CN),] anion to form Au—Au aurophilic interaction
plays a key role in controlling the dimensionality and topol-
ogy of these dicyanoaurate-based heterometallic polymers
[4-7]. The cyanoaurate-based heterometallic polymers may
exhibit unusual structural motifs and physical properties,
such as luminescence [8—11], vapochromism [12, 13], bire-
fringence [14—18], colossal thermal expansion [19, 20],

@ Springer



36

Gold Bull (2012) 45:35-41

magnetism [21-25] or ion exchange [26]. This dicyanoau-
rate anion also has significant importance in industrial and
medical applications. It is used in gold electroplating [27],
and it is considered as a pharmacologically active human
metabolite of several antirheumatic gold(I) complexes of
sulfur-containing ligands [28, 29]. In this light, it seems
surprising that literature describing cyanoaurate-based coor-
dination polymers of main-group metals is unusually sparse.
A series of lead(Il) coordination polymers containing the
dicyanoaurate(I) bridging ligands were prepared and struc-
turally characterized [14—18]. Some of them are highly
birefringent materials [14—18]. We have previously reported
the construction and structural characterization of multidi-
mensional structures containing the Au—CN-Sn link gener-
ated by the reaction of the hard Lewis acidic organotin
R,Sn™" cation and the soft Lewis basic dicyanoaurate
[Au(CN),] anion [26]. Single crystals of both compounds
can be obtained by slow interdiffusion of aqueous solutions
of Me;SnCl or Me,SnCl, and K[Au(CN),]. As observed
under polarized light microscopy, the crystals of both 1 and
2 display striking pleochroism (Fig. 1). Pleochroism is the
optical property of a crystal, whereby certain wavelengths of
polarized light are absorbed in different amounts in different
crystallographic directions. This may produce different col-
ors when the crystal is viewed in polarized light [30].

The X-ray structural analysis of 1 showed that each Me;Sn
unit is linked to two others by two Au(CN), units and form
infinite cyanide-bridged chains [26], as illustrated in Fig. 2.
These cyanide-bridged chains are further crosslinked by Au—
Au interactions of 3.12(1) A into a 2D grid. The void space of
these 2D grids is filled by the arrays of zigzag chains joined
by weak Au-Au interactions of 3.42(1) A.

The X-ray structural analysis of 2 showed that each
Me,Sn unit is connected to four others by four Au(CN),
bridges [26], so that an infinite set of self-penetrating layers
are formed (Fig. 3). These cyanide-bridged networks are
also joined by aurophilic interactions of 3.29(1) and 3.45
(2) A. By treating the Me,Sn units as nodes and connecting
them according to the connectivity defined by the Au(CN),
linkers, there are a set of cyanide-bridged uninodal four-
connected 3D networks with 6>-8 topology. This topology
corresponds to the CdSO, prototype [26].

Fig. 1 The crystals of both 1 and 2 display pleochroism as observed
under polarized light microscopy

@ Springer

Fig. 2 Structure of complex 1 showing the arrays of interpenetrating
cyanide-bridged {Me;Sn—NC—Au—CN},, chains. Hydrogen atoms have
been omitted. Color scheme: Au, yellow; Sn, green; N, blue; C, gray

Recently, we have shown that the solvent-free mechano-
chemical method (grinding stoichiometric amounts of
K[Au(CN),] and metal chlorides in a mortar with a pestle) is
a fast, simple, and efficient route to the synthesis of
cyanoaurate-based heterometallic coordination polymers [31].
This mechanochemical method was successfully applied also
to main group metals to obtain Ph3Sn[Au(CN),] and 2 [31].

In this paper, we report the infrared characterization, as
well as the luminescence and gas sorption properties of these
multidimensional structures 1 and 2, as well as, the ion
exchange properties of 2.

Results and discussion

The IR spectra of both organotin(IV)-dicyanoaurates 1 and 2
are consistent with their solid-state structures. Thus, the pres-
ence of a sharp vcy band at 2,169 cm ' shows that all of the
bridging cyanide groups are in an identical coordination
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Fig. 3 Structure of complex 2 showing the arrays of fourfold-

interpenetrated cyanide-bridged networks. Hydrogen atoms have been
omitted. Color scheme: Au, yellow; Sn, green; N, blue; C, gray
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environment in both compounds. This band is shifted toward
higher energy with respect to the 2,141 cm ™' vy stretching
vibration of K[Au(CN),] [32]. As observed for other organo-
tin(IV)-cyanometalates, the IR spectra of 1 and 2 exhibit vg,¢
stretching at 554 and 596 cm ' [33, 34]. The Vayc stretching
band is found at 455 cm ™' in 1 and at 459 cm ' in 2. This
band is also shifted toward higher energy with respect to the
corresponding 427 cm ' v oyc stretching of K[Au(CN),] [32].
In the absence of low-frequency Raman spectra, we can
tentatively assign bands at 62 (1) and 64 cm ' (2) to the
Vauau Stretching mode [35, 36].

The importance of the aurophilic interactions in influ-
encing the luminescence properties of gold(I) compound is
now well recognized [37]. The Au—Au bond distance in
complexes showing aurophilic interactions ranges from
2.70 to 3.50 A [38—41], and owing to this interaction, the
gold(I) complexes are potentially luminescent. In the crys-
tal structure of 1, there are aurophilic interactions with
lengths of 3.12 and 3.45 A, and indeed, this complex is
emissive when exposed to UV light at room temperature.
Upon irradiation with 254 nm UV light, the crystals of 1
exhibit intense pink luminescence. The room temperature
solid-state emission spectrum of 1 excited at 254 nm shows
two intense emission bands at 442 and 670 nm, and a
shoulder at 390 nm (Fig. 4). Thus, the visually observed
pink-colored emission was generated by additive color
mixing of the red and blue emissions. The excitation spec-
trum shows a maximum at 278 nm.

The emission spectra of K[Au(CN),] consists of two
bands at about 390 and 630 nm, when excited with
337 nm [42]. The separation between the gold atoms in
K[Au(CN),] is 3.64 A [37, 42], which is longer than those
found in 1. The emission peak at 390 nm in K[Au(CN),] has
been attributed to this weak aurophilic interaction between
the dicyanoaurate units [42]. An emission peak at 436 nm is
observed for [CsH;oNH,][Au(CN),] and attributed to a
short aurophilic interaction (3.10 A) between the dicyanoau-
rate units arranged into columns [43]. Thus, the peak at
442 nm observed for 1 could be tentatively attributed to
aurophilic interaction. As in the case of K[Au(CN),] and
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Fig. 4 Solid-state emission (A =254 nm) and excitation spectra of 1
at room temperature

TI[Au(CN),], the low-energy band at 670 nm in 1 is prob-
ably due to luminescence traps caused by imperfections in
the microcrystalline sample [10, 42]. The emission band at
670 nm (full width at half-maximum is 230 nm) is much
broader than the peak at 442 nm (full width at half-
maximum is 100 nm), which gives an indication of longer
lifetime of the low-energy band.

The room temperature solid-state emission spectrum of
crystalline sample of 1 excited at 320 nm shows two intense
emission bands at 442 and 720 nm, and a shoulder at
380 nm (Fig. 5). Interestingly, after 2 min of grinding in a
mortar with a pestle, this pink-emitting solid was converted
into a solid exhibiting intense blue emission (maximum at
444 nm). As shown in Fig. 5, gently scrapping and pressing
of 1 with a spatula progressively decreases the intensity of
the 720 and 380 nm bands. After total conversion, only the
blue emission band at 442 nm is observed.

In contrast, the emission spectrum of 2 shows only one
emission maximum at 422 nm (Fig. 6). The excitation
spectrum of 2 shows two strong bands at 298 and 367 nm.
The room temperature luminescence behavior of 2 is very
similar to that of (3- and y-polymorphs of Zn[Au(CN),],,
which have only one emission maximum at 450 and
440 nm, respectively. In crystal structures of these poly-
morphs, the network interpenetration is supported by Au—
Au interactions with lengths of 3.15-3.29 A [12].

Recently, Long and others published a series of paper
using Prussian blue analogues for hydrogen storage at 77 K
[44, 45]. In addition to the promising H, storage materials,
the cyano-bridged frameworks may be useful for CO, stor-
age and separation applications [46, 47]. Accordingly, we
studied the gas sorption properties of these organotin(IV)-
dicyanoaurates. To our knowledge, these are the first gas
sorption measurements reported for organotin(IV)-dicya-
noaurates. Thus, the porosity of 1 and 2 was probed by
gas sorption measurements performed at 77 K. 1 exhibited
no detectable microporosity as revealed by the inspection of
the N,, H,, as well as, O, isotherms. The gas adsorption
studies reveal that only a small amount of N, and H, (3.82

crystalline powder
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Fig. 5 Solid-state emission (A.x=320 nm) spectra of 1 in various states

(crystalline and solid samples scrapped and pressed with spatula for 5
to 20 s)
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Fig. 6 Solid-state emission (=300 nm) and excitation spectra of 2
at room temperature

and 4.66 cm® g !, respectively) is adsorbed by the frame-
work of 2 at 77 K (Fig. 7). However, a CO uptake of
11.20 cm® g ' can be reached at 1 atm. In contrast, as seen
in Fig. 7, the framework of 2 can take up significant
amounts of O, (23.27 cm® g '). This complex adsorbs

higher amounts (more than six times) of O, than N, at 77 K.

Some cyanometallates also show high selectivity for ox-
ygen over nitrogen [48]. This could be due to the fact that the
unsaturated metal centers of the framework interact with O,
more strongly than with N, [49]. Other cyano-bridged coor-
dination solids containing coordinatively unsaturated metal
centers have been shown to interact with H, at high loading
[44, 45]. The maximum O, uptake is 3.39 wt.%, which
corresponds to approximately 0.67 O, molecules per formula
unit of 2. To our knowledge, there are only few cyano-
bridged frameworks that adsorb O, at 77 K [48, 50]. The
oxygen plot represents a type I isotherm characteristic for
microporous materials. The surface area, which was deter-
mined from the O, adsorption data by applying Langmuir
equation, was 67.8 m*/g. This result is comparable to the
49 m?*/g estimated for dehydrated Prussian blue [51]. The
pore volume of 0.029 cm?/g calculated from O, isotherm is
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Fig. 7 Gas adsorption isotherms of 2 for N, (green), CO (black), H,
(red), and O, (blue) at 77 K
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in good agreement with the pore volume (0.027 cm>/g)
estimated from the crystal structure of 2.

In contrast to porous metal-organic frameworks and other
zeolite-like materials, which upon standard ion exchange
reactions preserve their original crystal structure, 1 shows
unusual ion exchange behavior [26]. As we previously
reported, the Me;Sn" cations are removed completely from
cyanide-bridged {Me;Sn—NC—Au—CN},, chains and replaced
by Me,Sn*" or bivalent transition metal cations [26]. In a
concentrated aqueous solution of Me;SnCl, the dimethyltin
(IV)-, cobalt(Il)-, and nickel(II)-dicyanoaurates can be easily
converted back into the starting compound 1. However, the
metathesis of zinc(I)-dicyanoaurate with Me;SnCl afforded
partial reaction, but for copper(Il)-dicyanoaurate, no reaction
occurs [26].

Now, we performed subsequent metal exchange experi-
ments to study the ion exchange behavior of 2 containing
Me,Sn®" framework ions. In this regard, 2 was soaked in
concentrated aqueous solutions of bivalent transition-metal
Co*", Ni**, Cu?", and Zn*" cations (ten times excess). After
2 days, the microcrystalline white powder displayed obvious
color changes in the case of Co®", Ni**, and Cu®" (Fig. 8). As
was confirmed by IR spectroscopy, the Me,Sn”" cations are
exchanged with bivalent transition metal cations, and 2 con-
verted into corresponding Co(H,0),[Au(CN),], [52, 53],
Ni(H,0),[Au(CN),], [54], Zn[Au(CN),], [12], and
Cu(H;0),[Au(CN),], [13, 54] transition-metal dicyanoau-
rates. Consequently, these transition-metal dicyanoaurates
were soaked into the concentrated aqueous solution of
Me,SnCl, (ten times excess) for 40 days. In striking contrast
to 1, these transition-metal dicyanoaurates cannot be con-
verted back into the starting compound 2.

Experimental

General procedures and materials All chemicals and sol-
vents used for the syntheses were of reagent grade. The
solvents for synthesis were used without further purifica-
tion. All reactions were carried out at room temperature. The
elemental analysis has been carried out with an Elementar
Vario EL III apparatus at the Laboratory of Organic Analy-
sis, Institute of Organic Chemistry, Research Centre for

Co(H,OLAUCN)], Ni(HOLAUCN),  ZnAuCN)l,  Cu(HOMAU(CN)],
Fig. 8 Transition metal dicyanoaurates M(H,0),[Au(CN),], (M=Co*",
Ni** and Cu*") and Zn[Au(CN),], obtained in metathesis reactions of 2

with corresponding MCl, salts
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Natural Sciences, Hungarian Academy of Sciences. Infrared
spectra were recorded in the 500 to 4,000 cm ' spectral
range on a Bio-Rad (Digilab Division) FTS-60A FTIR
spectrometer equipped with UMA-500 infrared microscope
with Ge plate and in the 50 to 500 cm ™' spectral range on a
PIKE GladiATR spectrometer with diamond plate. Steady-
state luminescence spectra were recorded on an Edinburgh
Instrument FS920 spectrofluorometer. Spectral corrections
were applied using excitation and emission correction func-
tions of the instrument. Powder samples were placed on a
Quartz Suprasil plate in a front-face sample holder. Long-
pass filters were used to exclude the scattered excitation
light. The adsorption isotherms were measured by static
volumetric method using fully automated Autosorb 1C
(Quantachrome) equipment. Prior to analysis, the sample
was heated and kept at 25°C under vacuum for 24 h to
remove all the previously adsorbed gases from the surface
and the pores. All the measurements were carried out at the
boiling temperature of liquid nitrogen (77.3 K).

Synthesis of 1 and 2: The syntheses of both complexes have
been previously reported [26]. Complex 1: Anal. Calcd for
CsHoN,AuSn: C 14.55; H 2.20; N 6.79. Found: C 14.83; H
1.92; N 6.71; m. p.>300°C; IR data: 2,169 (s), 791 (b, m),
554 (m), 453 (m), 200-80 (lattice vibration), 62 (s). Com-
plex 2: Anal. Calcd for C¢HgN4Au,Sn: C 11.14; H 0.94; N
8.66. Found: C 11.44; H 0.65; N 8.58; m. p.>300°C; IR
data: 2,167 (s), 809 (b, m), 596 (w), 459 (m), 216 (w), 200—
80 (lattice vibration), 142 (w), 64 (s).

Metathesis of 2 with transition metal halides

The microcrystalline powder of 2 was immersed in concen-
trated aqueous solution of transition-metal MCl, (M=Co,
Ni, Zn, Cu) salts. After 2 days, the microcrystalline white
powder displayed obvious color changes in the case of
Co(II), Ni(II), and Cu(II). Upon decanting the metal chloride
solution, the products were washed with water. The ion
exchanged products were characterized by IR spectroscopy.

Co(H,0),[Au(CN),],: starting from 2 (90 mg,
0.139 mmol), the metathesis yielded 39.5 mg (48%) prod-
uct; IR (per centimeter): 2,999 (b, m), 2,206 (m), 2,194 (s),
2,172 (s), 2,161 (s), 1,535 (m), 889 (b, m), 748 (b, m). These
characteristic vibrations in the IR spectrum indicate the
formation of the Co(H,0),[Au(CN),], complex [26, 52, 53]

Ni(H,0),[Au(CN),],: starting from 2 (90 mg,
0.139 mmol), the metathesis yielded 64.3 mg (78%)
product; IR (per centimeter): 3,002 (b, m), 2,215 (m),
2,204 (sh), 2,172 (s), 2,165 (s), 1,540 (m), 907 (b, m),
757 (b, m). These characteristic vibrations in the IR
spectrum indicate the formation of the Ni(H,O),[Au
(CN),]» complex [26, 54].

Zn[Au(CN),],: starting from 2 (90 mg, 0.139 mmol), the
metathesis yielded 68.8 mg (88%) product; IR (per centime-
ter): 2,198 (s), 2,160 (w). These characteristic vibrations in the
IR spectrum indicate the formation of the Zn[Au(CN),],
complex [12, 26].

Cu(H;0),[Au(CN),],: starting from 2 (90 mg,
0.139 mmol), the metathesis yielded 77.6 mg (93%) product;
IR (per centimeter): 3,144 (b, s), 2,218 (s), 2,173 (s), 1,483 (b,
m) 710 (b, m). These characteristic vibrations in the IR
spectrum indicate the formation of the Cu(H,O),[Au(CN),],
complex [13, 26, 54].

Metathesis of transition metal dicyanoaurates
with Me,SnCl,

The microcrystalline powders of Co(H,O),[Au(CN),],,
Ni(H20)2[Au(CN)z]2, Cu(H20)2[Au(CN)2],, and
Zn[Au(CN);],, respectively, were immersed in concentrated
aqueous solution of Me,SnCl, and left undisturbed at room
temperature. After 40 days, the powders retained their orig-
inal colors, indicating the preservation of original transition
metal dicyanoaurates. Upon decanting the solution, the
powders were washed with successive aliquots of water
(3x10 mL), and were characterized by IR spectroscopy.
The IR spectroscopy data showed that the bivalent
transition-metal Co?", Ni2*, Cu®", and Zn>" cations are not
exchanged with Me,Sn*" cations. Thus, these transition-
metal dicyanoaurates cannot be converted back into the
starting compound 2.
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