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Multi-dimensional characterization of apoptosis in the tumor
microenvironment and therapeutic relevance in melanoma
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Abstract
Purpose Melanoma is widely utilized as a prominent model for the development of immunotherapy, thought an inadequate
immune response can occur. Moreover, the development of apoptosis-related therapies and combinations with other
therapeutic strategies is impeded by the limited understanding of apoptosis’s role within diverse tumor immune micro-
environments (TMEs).
Methods Here, we constructed an apoptosis-related tumor microenvironment signature (ATM) and employ multi-dimen-
sional analysis to understand the roles of apoptosis in tumor microenvironment. We further assessed the clinical
applications of ATM in nine independent cohorts, and anticipated the impact of ATM on cellular drug response in cultured
cells.
Results Our ATM model exhibits robust performance in survival prediction in multiple melanoma cohorts. Different ATM
groups exhibited distinct molecular signatures and biological processes. The low ATM group exhibited significant
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enrichment in B cell activation-related pathways. What’s more, plasma cells showed the lowest ATM score, highlighting
their role as pivotal contributors in the ATM model. Mechanistically, the analysis of the interplay between plasma cells and
other immune cells elucidated their crucial role in orchestrating an effective anti-tumor immune response. Significantly, the
ATM signature exhibited associations with therapeutic efficacy of immune checkpoint blockade and the drug sensitivity of
various agents, including FDA-approved and clinically utilized drugs targeting the VEGF signaling pathway. Finally, ATM
was associated with tertiary lymphoid structures (TLS), exhibiting stronger patient stratification ability compared to
classical “hot tumors”.
Conclusion Our findings indicate that ATM is a prognostic factor and is associated with the immune response and drug
sensitivity in melanoma.

Keywords Plasma cells � Apoptosis � Immunotherapy � Drug sensitivity � Tertiary lymphoid structures

1 Introduction

Cell death, particularly apoptosis, is undoubtedly the cor-
nerstone of numerous anti-cancer therapies, encompassing
traditional chemotherapy and radiotherapy as well as
advanced targeted therapy and immunotherapy [1].
Emerging evidence has provided insights into the intricate
involvement of apoptosis in tumor biology and the tumor
microenvironment, influencing cancer initiation and pro-
gression [2, 3]. Some researches emphasize the crucial role
of apoptotic cells in adaptive immune responses, as they
serve as a source of antigens [4]. When cellular apoptosis
occurs, dendritic cells, situated in different skin layers,
promptly phagocytize apoptotic cells, transporting antigens
to activate T and B cells, thereby stimulating B cells to
produce immunoglobulins and undergo clonal expansion
[4, 5]. Other studies [6–9] have revealed that apoptotic
cells possess a dual nature, influencing macrophage polar-
ization towards M2-like reparatory and regenerative states
that promote cancer development via diverse pathways.
Additionally, apoptotic cells are preferentially engulfed
by M1 macrophages, thus suppressing M1-mediated anti-
tumor activity [10, 11]. Collectively, these findings unveil
the dynamic plasticity of the tumor microenvironment
orchestrated by apoptosis.

However, the precise characteristics of the tumor micro-
environment associated with apoptosis in melanoma
remain poorly understood. This is particularly important
because apoptosis is without a doubt the spearhead of
many anti-cancer therapies in melanoma. Gaining
a comprehensive understanding of the impact of apoptosis
on the immune microenvironment of melanoma and its
therapeutic implications, particularly in immunotherapy,
can provide novel strategies for the treatment and combi-
nation therapies for melanoma patients. This could also
advance the identification of the patient population that
stands to gain the most from such therapies.

Accumulating evidence substantiates that the influence
of B cells on tumor prognosis and immunotherapy is

multifaceted [12–15] and context-dependent, contingent
upon their intricate interactions with other immune cells
and factors within the tumor microenvironment (TME).
Ultimately, the clinical outcomes are shaped by the com-
position and balance of these distinct B cell subsets, an
equilibrium intricately governed by the TME milieu [16].
The prevailing notion is that B cell differentiation and the
formation of long-lived plasma cells from “education”
within the GC (germinal centers), a microenvironment
characterized by elevated birth and apoptosis rates [17].
Apart from the impact of B cell and plasma cell apoptosis
per se, the influence of overall apoptosis levels on these
cells within the immune microenvironment remains
uncertain.

This study therefore aimed to develop an apoptosis-
related tumor microenvironment signature (ATM) in
melanoma and reveal a comprehensive depiction of apop-
tosis-related tumor microenvironment characterations in
multiple dimensions including bulk, single-cell transcrip-
tomics and spatial transcriptomics. Specifically, we shed
light on the central role played by plasma cells in orches-
trating the dynamic alterations related to apoptosis status
by interacting with other immune cells. Finally, our find-
ings indicate that ATM is a prognostic factor and is asso-
ciated with the immune response and drug sensitivity in
melanoma, which establish a theoretical foundation for
drug combinations and identify potential markers for
immunotherapy response.

2 Methods

2.1 Data collection and processing

2.1.1 Clinical tissue samples collection

Paraffin sections of melanoma patients, classified as
responders or non-responders to anti-PD1 treatment, were
collected from Xiangya Hospital and Fudan University
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Shanghai Cancer Center. All tissue samples were obtained
in accordance with the informed consent policy. Detailed
clinical information can be found in Tables S1 and S6 of
the Supporting Information.

2.1.2 RNA sequencing and data processing

In the in-house cohort, a total of 66 pre-treatment tumor
specimens from melanoma patients undergoing anti-PD1
treatment were subjected to RNA sequencing (RNAseq).
Prior to applying any data filtering criteria, RNA-Seq reads
underwent adaptor trimming, and data quality was assessed
using the FastQC software (https://github.com/s-andrews/
FastQC). Subsequently, the reads were mapped to the
human reference genome (GRCh38.p12 assembly) using
the default parameters of the HISAT2 [18] software. The
mapped reads were then assembled into transcripts or
genes using the Stringtie [19] software along with the
genome annotation file (http://hg38_ucsc.annotated.gtf).
To address the biases arising from sequencing depths and
gene lengths, the relative abundance of transcripts/genes
was measured using normalized metrics, namely TPM
(Transcripts per million mapped reads), and log2-
transformed. The resulting normalized expression matrix
can be found in Table S7.

2.1.3 Melanoma datasets collection

mRNA expression and clinical data from skin cutaneous
melanoma (SKCM) samples from The Cancer Genome
Atlas (TCGA) were downloaded from the TCGA data
portal (https://portal.gdc.cancer.gov/) [20]. 4 GEO skin
cutaneous melanoma cohorts (GSE19234, GSE22153,
GSE54467, GSE65904) without treatment from Gene-
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) were included for further analysis (detail infor-
mation; see Table S1).

2.1.4 Immunotherapy-associated datasets collection

Multiple datasets with anti-PD-L1/PD1/CTLA4 cohort were
collected in the study to investigate the association between
ATM and immunotherapy efficacy and prognosis. The
Riaz N cohort [21] (GSE91061: Anti-PD1-treated advanced
melanoma) was obtained from Gene-Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/); The Van Allen,
E. M cohort [22] (phs000452.v3: anti-PD1/CTLA4-treated
metastatic melanoma) was downloaded from dbGaP data-
base (https://www.ncbi.nlm.nih.gov/gap/). Balar AV cohort
was collected from IMvigor210, a single-arm Phase 2
study investigating atezolizumab in metastatic urothelial
carcinoma (mUC) patients [23, 24]. The Braun DA cohort
[25]: anti-PD-1-treated advanced clear cell renal cell

carcinoma was collected from prospective clinical trials
(NCT01668784) (detail information; see Table S1).

2.1.5 Melanoma single cell and spatial transcriptome
datasets collection

Processed gene expression profiles for melanoma were
retrieved from TISCH (http://tisch.comp-genomics.org/)
under accession numbers GSE123139 [26] (46,612 immune
cells from 25 melanoma patients), and GSE120575 [27]
(16,291 immune cells from 48 tumor samples of melanoma
patients treated with checkpoint inhibitors). The spatial data
of melanoma was obtained from 10x Genomics (https://
www.10xgenomics.com/resources/datasets/human-melanoma
-if-stained-ffpe-2-standard) (detail information; see Table S1).

2.1.6 Drug response related data

The AUC data and the gene expression matrix for cancer
cell lines were downloaded from the CTRP (https://portals.
broadinstitute.org/ctrp.v2.1/) [28, 29].

2.2 Construct the ATM model and identify its
impact on the prognosis

We calculated the Apoptosis score by a single-sample
gene set enrichment analysis (ssGSEA) [30] and validated
our apoptosis score using experimental data from four
distinct datasets with well-documented apoptotic states
(GSE196610, GSE147256, GSE137574, GSE242151).
Then, weighted gene co-expression network analysis
(WGCNA) was used to obtain the apoptosis score asso-
ciated modules in this study. We analyzed the association
between module and immune. Furthermore, we con-
structed the ATM signature comprising 19 genes through
lasso regression, leveraging 216 genes from the apopto-
sis-related ME_black module. The coefficients of the
model genes were optimized using multi-Cox regression
(Fig. 1d). Subsequently, the ATM was computed using the
predict function of the survival R package [31]. The ATM
score, which exhibits a strong correlation with the apop-
tosis score, was employed for stratifying melanoma
patients. Survival analysis and multivariate Cox regres-
sion model analysis were performed on the TCGA-SKCM
cohort.

2.3 Stratification of tumor samples from TCGA-
SKCM cohort and differential analysis, pathways
enrichment analysis, and correlation analysis

The TCGA-SKCM samples were divided into two parts by
the median cut-off of the ATM score (Table S2). We
further compared the differential expression genes between
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high ATM and low ATM groups in the TCGA-SKCM
cohort (Table S3). Significant features were identified by
the criterion: mRNA expression |fold change| > 4, FDR <
0.05. These significant features were further subjected to
GSEA enrichment analysis (Benjamini and Hochberg cor-
rection, FDR < 0.05) by using the fgsea package [32] and
the clusterProfiler Package (Table S4) [33]. Then
CIBERSORT was used to estimate the differential relative
proportions of 22 infiltrating immune cell types between
high ATM and low ATM groups based on normalized gene
expression data. Furthermore, we evaluated the association
between ATM and various clinical features of melanoma,
assessing the differences using the Wilcoxon test. The
richness value of the T cell receptor/B cell receptor
(TCR/BCR) was obtained from Thorsson et al. [34]
(ht tps: / /gdc.cancer.gov/about-data/publ icat ions/
panimmune).

2.4 Single-cell RNA-seq and spatial RNA-seq
analysis of melanoma datasets

We utilized Seurat v3 [35]. R package to pre-process,
normalize, and cluster data from two melanoma sample
cohorts (GSE120575 and GSE123139) separately. We
performed Principal Component Analysis (PCA) on the
top 2000 highly variable genes (HVGs) using Seurat v3
[35]. Single-cell ATM scores were calculated based on
the model genes and their corresponding coefficients.
Uniform Manifold Approximation and Projection
(UMAP) embeddings of single-cell RNA-seq profiles
enabled the visual representation of annotated cell

types and ATM expression. Using subpopulation annota-
tion within the GSE120575 cohort, we extracted B cells
and plasma cells for subpopulation annotation. We
used ssGSEA [30] to calculate the MHCII signature
obtained from Thorsson et al. [34] and compared differ-
ential expression across cell types. In addition, we
examined the impact of plasma cell ratio on the
prognosis and immune response of melanoma patients
in the GSE12575 cohort using the Survminer
package.“AddModuleScore” function was used to calcu-
late the malignant cell signature score based on the
melanoma cell related genes (MLANA, TYR) and the
plasma cell signature score based on plasma cell genes
(IGHG1, IGHG2) [36].

2.5 Cell-cell interaction analysis of melanoma
datasets

To assess the potential cell-cell interactions involving
plasma populations and other cell types, we utilized
the “CellChat” package, a recently developed tool in
R.4.1.2 software [37]. For further analysis of ligand-
receptor pairs and individual signaling pathway net-
works, we selected 10 individual samples characterized
by superior survival rates and the highest plasma ratio
from the GSE120575 cohort. Default parameterizations
were employed throughout the analysis, focusing on
Secreted Signaling, ECM-Receptor, and Cell-Cell
Contact relationships.

2.6 Identify the impact of the model on prognosis
and response to immunotherapy in independent
melanoma cohorts

To assess the prognostic and immune response efficacy
impact of ATM, we analyzed four melanoma cohorts
(GSE19234, GSE22153, GSE54467, GSE65904) compris-
ing untreated samples, an in-house cohort, and four immu-
notherapy-associated datasets involving anti-PD1 or anti-
PD1/CTLA4 treatment. We utilized the Survminer package
for analysis and performed multivariate Cox regression
model analysis to determine if ATM could function as an
independent prognostic factor when considering other con-
founding factors. Moreover, we compared the proportion
of response/non-response patients between high and low
ATM groups and the differential ATM values in response
and non-response groups using the Wilcoxon test.

2.7 Analysis of drug response in apoptosis status

ATM scores were calculated for each melanoma cell based
on gene expression data obtained from the Cancer
Therapeutics Response Portal (CTRP). To evaluate the

⊳Fig. 1 Establishment of the apoptosis-related tumor microenviron-
ment signature (ATM) and its independent prognostic impact in
melanoma a The overall analytical procedure adopted in our study.
b The correlation analysis of merged modules and apoptosis score
and other clinical features in the TCGA-SKCM cohort. Asterisks
denoted p-value. c The functional enrichment analysis of module
genes. The barplot, in the left part, shows the differential hallmark
score between module group high and module group low in TCGA-
SKCM cohort. The right part shows the GSEA results of module
genes. d The multicox coefficient of 19 apoptosis-related model
genes. Red (positive coefficient) or Blue (negative coefficient).
e The correlation between ATM score and Apoptosis score.
f Kaplan–Meier curves for patients with high-ATM and low-ATM
scores in the TCGA-SKCM cohort show that patients with low-ATM
scores (blue) exhibited better overall survival. g Kaplan–Meier curves
for patients with high-ATM and low-ATM scores in 4 validation
cohorts (GSE65904, GSE19234, GSE54467, GSE22153) show that
patients with low-ATM scores (blue) exhibited better overall survival.
h Forest plot indicates ATM score independently other clinical
features influence the prognosis of melanoma patients by the
multivariate cox regression analysis in TCGA-SKCM cohort and
4 validation cohorts (GSE65904, GSE19234, GSE54467,
GSE22153). Asterisks denoted p-value. (“*”p < 0.05; “**”p < 0.01;
“***”p < 0.001; “****”p < 0.0001; ns was the abbreviation of no
significance)
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drug response in melanoma cell lines, we examined the
Spearman correlation between the area under the curve
(AUC) and ATM values of cancer cell lines from CTRP,
considering correlations with |Rs| > 0.2 and FDR < 0.05 as
statistically significant. A positive Spearman correlation
indicated drug resistance, while a negative Spearman cor-
relation indicated drug sensitivity. Specifically, we com-
pared the differential AUC values between the high-ATM
and low-ATM groups for apoptosis inducer agents and
agents targeting VEGF signaling using the Wilcoxon test.

2.8 Statistical analysis

The Wilcoxon rank sum test was employed to compare the
observed differences. The Survminer package was utilized
to determine the cutoff point of survival information for
each dataset, based on the association between ATM and
overall patient survival. To identify the maximum rank
statistic and mitigate batch effects, the “surv-cutpoint”
function was applied to dichotomize ATM, repeatedly test-
ing all potential cutting points. Subsequently, patient
samples were stratified into the high-ATM group and the
low-ATM group based on the maximum log-rank statistics.
Kaplan-Meier comparative survival analyses were con-
ducted for prognostic analysis, and the log-rank test was
employed to ascertain the significance of observed differ-
ences. To assess ATM’s independence as a predictor,
multivariate Cox regression model analysis was perfor-
med, incorporating age, gender, and stage as variables.
Spearman correlation was employed to calculate the corre-
lation coefficient between the ATM score and apoptosis
score, as well as between ATM and panimmune prognosis
factors or the AUC value of drugs (|Rs| ≥ 0.2 and FDR <
0.05 indicating statistical significance). All statistical ana-
lyses were two-sided, with P
< 0.05 considered statistically significant.

3 Results

3.1 Establishment of the apoptosis-related tumor
microenvironment signature (ATM) and its
independent prognostic impact in melanoma
patients

To investigate the characteristics of the tumor microenvir-
onment in patients with distinct overall apoptosis statuses,
we calculated the Apoptosis score by a single-sample gene
set enrichment analysis (ssGSEA) [30] and validated
our apoptosis score using experimental data from four
distinct datasets with well-documented apoptotic states
(GSE196610, GSE147256, GSE137574, GSE242151)
(Fig. S1a). Then, weighted gene co-expression network

analysis (WGCNA) was used to obtain the apoptosis
score associated modules. We identified a module that
exhibited a collective biological function significantly
associated with apoptosis score, independent of other clin-
ical characteristics (e.g., age, gender, stage, Clark level,
Breslow depth, mitotic count rate, melanoma ulceration
indicator, etc.). This selection was based on rigorous analy-
sis of the data, as illustrated in Figs. 1b and S1b. The genes
comprising this module were found to be significantly
enriched in signaling pathways related to immunoglobulin
complexes, antigen binding, Fcgr activation, and the initial
triggering of complement, as determined through Geneset
Enrichment Analysis (GSEA) (Fig. 1c). Moreover, we
observed that the high module score group with a higher
apoptosis score exhibited the highest hallmark scores in
seven immune-related hallmarks, demonstrating that these
module genes reflect immune-related changes in the tumor
immune microenvironment (Figs. 1c and S2). Next, we
constructed an apoptosis-related model comprising 19
genes using lasso regression, utilizing 216 genes from the
apoptosis-related ME_black module. The coefficients of the
model genes were optimized using multi-cox regression
(Fig. 1d). Subsequently, the apoptosis-related tumor micro-
environment signature (ATM) was calculated using the pre-
dict function of the survival R package [31]. The ATM
score, which exhibited a negative correlation with the
apoptosis score (R = -0.37, P = 1.1e-15), was utilized for
stratifying melanoma patients (Fig. 1f). The results
consistently indicated a negative association between ATM
score and apoptosis score across multiple datasets (TCGA-
SKCM, GSE19234, GSE22153, GSE54467, GSE65904)
(Figs. 1e and S3).

To assess the impact of ATM on the prognosis of mel-
anoma patients, we conducted survival analysis and per-
formed multivariate Cox regression model analysis using
the TCGA-SKCM cohort. The results revealed that sub-
groups with low ATM scores exhibited improved overall
survival (OS) and ATM serves as an independent prognos-
tic factor even when considering other potential confound-
ing factors (e.g., age, gender, stage, Clark level, Breslow
depth, mutation status) (Figs. 1f and S4a).

To ascertain the prognostic capability of the ATM in
melanoma patients, we gathered four independent cohorts
(GSE19234, GSE22153, GSE54467, GSE65904) for sub-
sequent survival analysis. The results consistently demon-
strated that melanoma patients in the low ATM group
exhibited improved overall survival (OS), thus confirming
the predictive value of ATM (Fig. 1g). Furthermore, we
performed multi-cox analysis on these four datasets,
encompassing a total of 389 patients. Remarkably, the
results consistently revealed that ATM can serve as an
independent prognostic factor for predicting the prognosis
of melanoma patients, surpassing other factors such as age,
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gender, tissue location, mutation status, and stage (Figs.
1h and S4b). The consistent outcomes across multiple
independent cohorts strengthen the validity and general-
izability of ATM as a reliable predictor of melanoma
patient outcomes.

3.2 Plasma cells as pivotal contributors in model
interpretation: implications for enhanced
prognosis and immune response

To uncover the molecular characteristics of the TME asso-
ciated with apoptosis in melanoma patients, we conducted
differential expression analysis comparing the high and
low ATM groups within the bulk samples of the TCGA-
SKCM cohort. This analysis revealed distinct patterns of
gene expression, particularly in relation to chemokines
such as CXCL13, CXCL11, CXCL10, as well as other
factors including PTPRC, JCHAIN, IGKJ5, and IFNG.
Notably, these genes exhibited significantly higher expres-
sion levels in the low ATM group, indicating a strong
potential for antibody secretion within this subgroup (Fig.
2a). Next, we conducted a GSEA analysis to investigate
the mRNA-level differences between the high and low
ATM groups. Remarkably, the low ATM group exhibited
significant enrichment in immune-related signaling path-
ways. Notably, these pathways included the B cell receptor
signaling pathway, B cell activation, immunoglobulin com-
plex, positive regulation for B cell activation, etc. (Figs.
2b and S1d). These findings highlight the pronounced
involvement of B cell-related immune pathways in the
low ATM group, suggesting a heightened B cell-mediated
immune response in this subgroup. Conversely, the high
ATM group primarily displayed enrichment in pathways
associated with epidermal development, keratinization,
keratinocyte differentiation, and skin development (Figs.
2b and S1c). We also analyzed the differential hallmark
score between the two ATM score groups in the TCGA-
SKCM cohort. We observed that the low ATM score group
exhibited significantly higher scores in six immune-related
hallmarks, demonstrating that ATM score reflects immune-
related changes in the tumor immune microenvironment
(Fig. S6). Collectively, these results provide valuable
insights into the distinct molecular signatures and biologi-
cal processes associated with different ATM groups.
Besides, to investigate clinical features associated with
ATM in melanoma patients, we evaluated ATM across
different clinical features, showing that patients with Age
< 60, Clark levels I–III and IV had lower ATM relative to
those with Clark level V (Fig. S5).

In addition to the insights gained from bulk sample
analysis, we extended our investigation to explore the
ATM at a single-cell resolution to better understand intra-
tumor heterogeneity. Employing graph-based principal

component clustering combined with marker-based anno-
tations, we classified cells from the GSE120575 dataset
into 14 clusters based on the RNA_snn_res.0.55 and cells
from the GSE123139 dataset into 10 clusters based on the
RNA_snn_res.0.15, revealing distinct cellular subpopula-
tions (Figs. 2c, d and S7a, b). Notably, plasma cells exhib-
ited the lowest ATM score, further highlighting their
potential role as pivotal contributors in our model inter-
pretation (Fig. 2c, d, g, h). Moreover, analyzing the spatial
transcriptomic data of Human Skin Melanoma obtained
from the official 10X platform consistently demonstrated
that plasma cells had the lowest ATM score (Fig. 2i).
Interestingly, plasma cells adjacent to tumor cells demon-
strates its beneficial spatial location to play its further anti-
tumor immunity.

Furthermore, within the GSE120575 cohort, we found
that a higher plasma cell ratio was associated with
improved survival and enhanced immune response (Fig.
2e, f). Through further analysis, it was determined that this
particular cell population predominantly exhibited IgG
expression, with a subset displaying IgA (Fig. S7e, f).
Moreover, previous investigations corroborated the corre-
lation between IgG+ plasma cells and enhanced survival
[38, 39].

3.3 Plasma cells orchestrate a wide spectrum of
immune activation state by interacting with
cellular constituents of the immune
microenvironment

Further, cell communication analysis provides the oppor-
tunity to study cell-cell interactions based on ligand-
receptor binding. Cellchat is thus utilized to conduct an in-
depth analysis of the interplay between plasma cells and
other cells, elucidating their pivotal role in orchestrating an
effective anti-tumor immune response. 10 individual sam-
ples exhibiting superior survival rates and the highest
plasma ratio from the GSE120575 cohort were taken for
an in-depth examination of cellular interactions. The find-
ings unequivocally demonstrated the significant involve-
ment of plasma cells as primary senders and influencers
within the MIF signaling pathway network. Remarkably,
plasma cells also assume a crucial role as senders
and influencers within the SEMA4 signaling pathway net-
work (Fig. 3a, b). It is widely acknowledged that the
cytokine macrophage migration inhibitory factor (MIF),
a proinflammatory cytokine, plays a key role in inflamma-
tory diseases with chemokine receptors CXCR2, CXCR4,
and CD74/CXCR4 complexes as functional receptors. By
activating CXCR2, CXCR4, or CD74/CXCR4 complexes,
MIF displays chemokine-like functions and acts as a major
regulator of inflammatory cell recruitment such as mono-
cytes, T cells, and B cells [40–42]. According to our
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findings, plasma cells within the MIF signaling pathway
exhibit robust chemotactic capabilities towards B cells,
pDC and Tfh (Fig. 3a, c), leading to their migration
towards the effector site and fostering opportunities for
cellular interactions. Moreover, plasma cells in the
SEMA4 signaling pathway engage in interactions with
B cells, promoting their aggregation through SEMA4D
and CD72 ligand receptors [43] (Fig. 3b, c). Notably, our
results highlight that B cells play a central role as the
primary senders in the MHC-II signaling pathway, facil-
itating antigen presentation to M1, Monocyte, pDC, Tfh,
and Treg (Fig. 3d). We utilize the ssGSEA [30] to estimate
the score of MHC.II gene signatures (Fig. 3e) from
Thorsson et al. [34]. It is noteworthy that germinal center
B cells (GCB) demonstrate the most pronounced MHC-II
signature within the B cell subpopulation (Fig. 3e). Several
studies have indicated that follicular helper T (Tfh) cells
are essential for germinal center formation, affinity matura-
tion, and the development of most high-affinity antibodies
and memory B cells [44]. Recent study has also high-
lighted that pDCs were identified as a component of the
T cell zone of TLS, which are major regulators of adaptive
antitumor immunity [45]. Collectively, these findings
imply that plasma cell chemotaxis facilitates the aggrega-
tion of B cells and Tfh which contribute to germinal center
formation, allowing GCB to present antigens to Tfh,
thereby contributing to subsequent B cell differentiation
and the formation of long-lived plasma cells.

Additionally, plasma cell chemotaxis also influences
CD8+Tem migration (Fig. 3a, c), thereby enabling CD8
+Tem cells to exert their anti-tumor immune function at
the effector site. Moreover, plasma cells exhibit chemo-
tactic effects on monocytes (Fig. 3a, c). Our results also
indicate that within the APRIL and BAFF signaling path-
ways, M1, M0, and pDC cells reciprocally interact with
plasma cells as senders through the TNFSF13B-

TNFRSF17 ligand-receptor interaction (Fig. 3f–h),
thereby promoting the longevity of plasma cells [46].
Furthermore, plasma cells, as sender and receiver, played
an important role in a series of cell adhesion-related
signaling pathways (e.g. CADM, LAMININ) (Fig. 3i, j).
Numerous investigations have provided evidence of the
involvement of CADM1 (Cell adhesion molecule 1), an
immunoglobulin superfamily member, in cell-cell interac-
tions [47]. Furthermore, molecules such as LAMININ,
which are part of the ECM-Receptor signaling pathway,
offer specific opportunities for interactions between cells
and the ECM. These intricate interactions exert direct or
indirect control over cellular activities encompassing
adhesion, migration, differentiation, and proliferation
[48]. Notably, research has highlighted the significance
of the adhesion phenotype of plasma cells within the
B-cell compartment, contributing to their differentiation
and homing [49]. Recent studies have also suggested that
chemoattractant cytokines (chemokines), in conjunction
with tissue-specific adhesion molecules, coordinate the
migration of antibody-secreting cells (ASCs) from lym-
phoid tissues, where they undergo antigen-driven differ-
entiation, to effector tissues [50]. Taken together, these
suggest that this adhesion phenotype of plasma cells is in
a “being ready” state for further differentiation or homing
to target effector tissues to play anti-tumour immune
effects.

These findings highlight the antitumor immune proper-
ties of plasma cells themselves, as well as their involve-
ment in coordinating a broad spectrum of immune
activation states through interactions with other cells
within the immune microenvironment. Consistent results
were observed in the immune infiltration analyses of the
TCGA-SKCM, GSE54467, GSE65904, and GSE19234
datasets through cibersort [51]. Specifically, the low ATM
group exhibited higher proportions of plasma cells,
Memory B cells, M1 macrophages, activated CD4+ mem-
ory T cells, and CD8+ T cells, indicative of an immunoac-
tivated state. In contrast, the high ATM group displayed
higher proportions of M0 macrophages and M2 macro-
phages, suggesting an immunosuppressive immune micro-
environment (Fig. 3k).

In order to investigate the association between ATM and
immune checkpoints, we conducted a comprehensive ana-
lysis of the correlation between stimulatory immune check-
point expression and ATM in TCGA-SKCM cohort, as
well as four additional GEO cohorts (GSE65904,
GSE22153, GSE54467, GSE19234). Remarkably, our find-
ings consistently revealed a negative correlation between
ATM and the majority of immune checkpoints (Fig. 3l,
Table S5). Notably, the stimulatory immune checkpoints
(CD40, IL2RA, CD96, ICOS, CD28, TNFRSF4,
BTN3A1) exhibited a consistent negative correlation with

⊳Fig. 2 Plasma cells as pivotal contributors in model interpretation:
implications for enhanced prognosis and immune response
a Differential expression genes between the high ATM group and
the low ATM group. b The top 10 enriched Gene Ontology (GO)
signaling pathways associated with differential expression genes
between the high ATM group and the low ATM group. c, d UMAP
plot colored by various cell types or ATM score in GSE120575 and
GSE123139 cohorts. e Kaplan–Meier curves for patients with high
and low plasma ratio in the GSE12575 cohort show that patients with
high plasma ratio(red) exhibited better overall survival. f The box
plot illustrates that immunotherapy responders exhibited a higher
plasma ratio in the GSE120575 cohort. g, h Violin diagram shows
the ATM score across various cell types in GSE120575 and
GSE123139 cohorts. i Spatial UMAP plot colored by Malignant
signature score, plasma cell signature score, and ATM score in 10x
Genomics Human Melanoma Spatial Gene Expression Data. j The
correlation between ATM score and plasma cell signature score in
10x Genomics Human Melanoma Spatial Gene Expression Data
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ATM across all five datasets. These findings suggest
a potential regulatory relationship between ATM and the
expression of key immune checkpoints, indicating their
coordinated involvement in shaping the tumor immune
microenvironment. Subsequently, in order to elucidate the
potential mechanism underlying the role of ATM in immu-
notherapy, we conducted an examination of the association
between established immunotherapy biomarkers including
tumor mutation burden (TMB), T-cell receptor (TCR),
B-cell receptor (BCR), and ATM. We observed the nega-
tive correlation between ATM and these biomarkers, indi-
cating a potential interplay between ATM and the
immunotherapy response (Fig. 3m).

3.4 ATM serves as a predictor of immunotherapy
efficacy

The aforementioned analysis reveals a robust anti-tumor
immune response orchestrated by plasma cells in colla-
boration with other immune cell populations. To investi-
gate the association between ATM and immunotherapy
efficacy and prognosis, multiple datasets with anti-PD-L1
/PD1/CTLA4 cohorts were collected in the study. The in-
house anti-PD1 treatment melanoma patients cohort, two
public melanoma patients cohorts with immune checkpoint

therapy (the Riaz N cohort [21]/GSE91061: Anti-PD1-
treated advanced melanoma (Nivolumab)), and the Van
Allen, E. M cohort [22]: Anti–CTLA4-treated metastatic
melanoma) and other cohorts with immune checkpoint
therapy (the Balar AV cohort [23]/IMvigor210: Anti-PD-
L1-treated locally advanced and metastatic urothelial car-
cinoma and the Braun DA cohort [25]: anti-PD-1-treated
advanced clear cell renal cell carcinoma) were taken for
analysis.

In Braun DA cohort, Balar AV cohort, and in-house
cohort (579 patients), immunotherapy responders were
shown to have lower ATM (p-value = 0.016 in the Braun
DA cohort; p-value = 0.0043 in the Balar AV cohort;
p-value = 0.0081 in the in-house cohort) and the results
of the chi-square analysis showed that the proportion of
responder would be higher in the low ATM group (p-value
= 0.033 in the Braun DA cohort; p-value = 0.058 in the
Balar AV cohort; p-value = 0.012 in the in-house cohort)
(Fig. 4a, b). Three immunotherapy datasets showed better
OS in the group with low ATM, and the Braun DA cohort
showed better OS and PFS in the group with low ATM
(Fig. 4c, d). All these results exhibited that ATM has
a robust independent prognostic ability and predictive
power of immunotherapy efficacy.

3.5 Influence of apoptosis-related tumor
microenvironment signature (ATM) on anti-cancer
drug response

Massive studies have demonstrated that apoptosis can
affect drug response mostly in chemotherapy. In order to
explore the potential efficacy of influencing other drugs’
sensitivity by apoptosis and develop novel therapeutic
hypotheses, we comprehensively depicted the associations
between apoptosis-related tumor microenvironment and
drug response. We calculated the correlation between the
ATM and imputed drug data of drugs in CTRP [28, 29].

A total of 51 genes are targeted by 46 drugs including 6
Food and Drug Administration (FDA)-approved drugs, 10
clinically used drugs, and 30 probes that are associated
with ATM, most of which are targeted therapy (Fig. 5a).
Among these drugs, the area under the curve (AUC value)
of 45 drugs is negatively correlated with ATM which
means that these drugs are more sensitive in patients with
low ATM. CHIR-99021 which is the GSK3B inhibitor is
negatively correlated with ATM indicating that it is more
sensitive in patients with low ATM with better prognosis
(Figs. 4b and 5a). A previous study has also demonstrated
that it may function as an antagonist of MYC degradation
pathways to transiently elevate MYC levels and then con-
fer chemosensing within a narrow window [52].

Notably, six of these drugs are majoring in the VEGF
signally and the AUC of targeting VEGF signaling drugs

⊳Fig. 3 Plasma cells orchestrate a wide immune activation state by
interacting with cellular constituents of the immune microenviron-
ment a, b Heatmaps showing the relative importance of each cell
population based on the computed network centrality measures of
MIF signaling pathway network (a) and SEMA4 signaling pathway
network (b) in GSE120575 cohort. c The significant ligand-receptor
pairs that contribute to the signalings (MIF, SEMA4) sending from
plasma to other cell populations. The dot color and size represent the
calculated communication probability and p-values. p-values are
computed from one-sided permutation test. d Heatmaps showing
the relative importance of each cell population based on the com-
puted network centrality measures of MHC-II signaling pathway
network in GSE120575 cohort. e Violin diagram shows the MHC.II
signature expression level across various cell types in GSE120575
B cell subpopulation. f The significant ligand-receptor pairs that
contribute to the signalings (APRIL, BAFF) sending from other cell
populations to plasma cell. g–j Heatmaps showing the relative impor-
tance of each cell population based on the computed network cen-
trality measures of APRIL signaling pathway network (g), BAFF
signaling pathway network (h), CADM signaling pathway network
(i), and LAMININ signaling pathway network (j) in GSE120575
cohort. k Bar plot shows the cell types with significantly different
cell proportions between two ATM groups which were revealed by
the Wilcox test in TCGA-SKCM cohort and 3 validation cohorts
(GSE65904, GSE19234, GSE54467). Asterisks denoted p-value.
l Correlation between ATM score and immune checkpoints in TCGA-
SKCM cohort and 4 validation cohorts (GSE65904, GSE19234,
GSE54467, GSE22153). m The correlation between ATM score and
TMB, TCR, and BCR in TCGA-SKCM cohort. Asterisks denoted p-
value. (“*”p < 0.05; “**”p < 0.01; “***”p < 0.001; “****”p <
0.0001; ns was the abbreviation of no significance)
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such as linifanib, tivozanib, quizartinib, and vandetanib are
significantly higher in the group with low ATM (Fig. 5b,
c). In addition, two apoptosis inducer agents (SZ4TA2,
gossypol) are also significantly higher in the group with
low ATM (Fig. 5c).

3.6 Apoptosis-related tumor microenvironment
signature (ATM) is significantly associated with
tertiary lymphoid structures (TLS), exhibiting
stronger patient stratification ability compared to
classical “hot tumors”

To explore the association between ATM score and tumor
categorization, we compiled genes related to cold and hot
tumors from the study by Dong Wang et al., encompassing
12 hot tumor-related genes (CXCL9, CXCL10, CXCL11,
CXCR3, CD3, CD4, CD8a, CD8b, CD274, PDCD1,
CXCR4, and CCL5), and 3 cold tumor-related genes
(CXCL1, CXCL2, and CCL20) [53]. In the TCGA-
SKCM cohort, our analysis revealed that the ‘Hot’ group
exhibited significantly improved overall survival, aligning
with prior research findings. Notably, we further stratified
patients based on ATM score and Hot tumor signature.
Intriguingly, we observed that irrespective of tumor type
(hot or cold), the low ATM group consistently displayed
superior survival outcomes compared to the high ATM
group. Most importantly, the high ATM score has the
capability to identify high-risk patient groups even within
‘hot’ tumors, thus offering crucial insights for patient stra-
tification compared to the conventional ‘hot’ and ‘cold’
tumor classifications. (Fig. 6b, c).

Furthermore, we observed that among patients with
either hot or cold tumors, the enriched signaling path-
ways of the differential gene functional analysis between
patients with low ATM scores and those with high ATM
scores contained a greater representation of B cell, cell-
cell adhesion, tissue remodeling and humoral immune-
related pathways (e.g., B cell receptor signaling path-
way, humoral immune response mediated circulating
immunoglobulin, adaptive immune response based on
somatic recombination of immune receptors, regulation
of B cell differentiation, lymphocyte costimulation,

regulation of tissue remodeling, positive regulation of
leukocyte cell-cell adhesion, humoral immune response,
etc.) (Fig. 6d, e). This is consistent with the coordinated
anti-tumor immune response underscored in our results,
focusing on the role of plasma cells. And the observa-
tion of plasma cells in a highly adhesive state suggests
their readiness for further differentiation or homing to
specific effector tissues, enabling them to effectively
carry out their anti-tumor immune effects. We further
conducted an analysis of the correlation between ATM
score and the Tertiary Lymphoid Structure (TLS) signa-
ture [54–56], and in all five datasets, we consistently
observed that a low ATM score is associated with
a higher TLS signature (Fig. 6f–h).

4 Discussion

In this study, we elucidate the unclear role of apoptosis in
the melanoma microenvironment by establishing an apop-
tosis-related tumor microenvironment signature (ATM) and
investigating its multidimensional alteration features. Our
investigation reveals a correlation between ATM and an
increased abundance of plasma cells, thereby enhancing
the prognostic outlook for patients with melanoma. The
chemotactic capability of plasma cells enables the attrac-
tion of B cells, Tfh cells, and myeloid cells, consequently
fostering their coalescence and facilitating intercellular
interactions. As a result, the emergence of long-lasting
plasma cells is promoted, establishing an adhesive milieu
within the plasma that, in turn, facilitates supplementary
plasma cell chemotaxis and the subsequent secretion of
antibodies. Notably, plasma cells also exhibit chemotactic
tendencies towards CD8+Tem cells, effectively guiding
them towards effector sites, where they can exert
anti-tumor immune functions. Our study elucidates
a comprehensive portrait of apoptosis-associated tumor
microenvironment features, highlighting the central role
played by plasma cells in orchestrating these dynamic
alterations related to apoptosis. Additionally, we discern
their potential clinical applications, particularly in the
prognostic assessment and predicting immunotherapy
responses, accompanied by their insightful implications in
evaluating drug sensitivity.

The majority of ATM model genes (13/19) were also
observed that they could invole in various biological func-
tions or provided potential prognostic value by previous
studies (Table S8). For example, TENT5C was identified
as a tumor suppressor, exerting its function by inhibiting
Plk4 activity in melanoma [57]. Shilpak et al. discovered
that the anti-tumor efficacy of T cell therapy could be
significantly enhanced by inhibiting PIM kinase in mela-
noma mice undergoing adoptive T cell therapy (ACT) [58].

⊳Fig. 4 ATM serve as a promising predictor of immunotherapy effi-
cacy a Differentiation of ATM in response and non-response groups
in two independent immunotherapy cohorts (Braun DA and Balar AV
cohorts) and In-house cohort. b The proportion of response/non-
response patients in high- and low-ATM groups in the Braun DA
and the Balar AV cohorts and In-house cohort. c, d Kaplan–Meier
curves for patients with high ATM and low ATM in four independent
immunotherapy cohorts (the Van Allen, E. M; the Balar AV; Braun
DA; and the Riaz N cohorts) and In-house cohort show patients with
lower ATM (blue) exhibited better overall survival and/or progres-
sion-free survival
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In Hong et al.’s study, a set of 10 genes, including IGKJ5,
was constructed to assess the expression levels of TLS,
which is important for anti-tumor immune [59]. Previous
studies have employed genes such as IGKV1D-42, IGLV5-
37, IGKV2D-29, IGHV3-7, IGKV3D-11, and LINC00582
to construct prognostic models for tumors such as
melanoma [60–64]. These genes served as pivotal
components in our model, and were closely correlated
with B/plasma cell functions, underscoring the potential
significance of B/plasma cells in anti-tumor immune
microenvironment, which was further discussed as below.

An enigmatic facet of the apoptosis program, particu-
larly within the context of the tumor microenvironment,
lies in the apoptotic cell’s ability to influence its surround-
ing tissue milieu beyond mere clearance. Prior inves-
tigations have revealed the active involvement of
tumor-associated macrophages (TAMs) in the elimination
of apoptotic cells, with their accumulation and pro-
oncogenic activation intricately linked to tumor growth
and angiogenesis. Consequently, the elevated apoptosis
levels observed in several cancer types have been impli-
cated in the poorer prognoses of afflicted patients [6–9].
However, in our study, the results show that melanoma
patients with low ATM and high apoptosis score exhibit
more infiltration of plasma cells. More interestingly, the
results of cell-cell communication analysis suggest the
adhesion phenotype of plasma cells is in a “being ready”
state for further differentiation or homing to target effector
tissues to play anti-tumour immune effects. Meanwhile,
plasma cells exhibit chemotactic properties and can
guide CD8+Tem cells to migrate to the effector site,
thereby facilitating their anti-tumor immune functions.
Furthermore, the chemotaxis of plasma cells attracts
B cells, Tfh cells, and myeloid cells, fostering cellular
interactions among them. During the crucial process of
antigen presentation by B cells, the chemotactic properties
of plasma cells present a unique opportunity for B cells to
effectively present antigens to Tfh cells.

Previous investigations have convincingly established
that Germinal center B cells (GCBs) seize antigens through
the B cell receptor (BCR) and subsequently present

processed antigens via MHC complexes to Tfh cells.
Enhanced BCR affinity directly corresponds to heightened
antigen capture, resulting in a higher density of peptide-
MHC complex presentation on the B cell surface [65].
Consequently, this culminates in an amplified T cell help,
which intricately governs the selection process. Notably,
GC-Tfh cells not only regulate the selection of high-
affinity GC B cells but also play a pivotal role in driving
the development of long-term humoral immunity by direct-
ing GC B cell differentiation into memory B cells and
long-lived plasma cells [66–70]. In our findings, we also
observed a strong interaction between B cells and GC-Tfh
cells in the MHCII signaling pathway, indicating the
receipt of assistance from GC-Tfh cells, which signifi-
cantly contributes to the development of long-term
humoral immunity. This partially elucidates why patient
groups with low ATM levels demonstrate improved prog-
noses and enhanced immunotherapy efficacy.

Previous studies have elucidated the crucial role of
plasma cells in the tumor microenvironment, primarily
exerting their influence through tumor cell killing via
opsonization, complement fixation, antibody-dependent
cell-mediated cytotoxicity (ADCC), and antibody-
mediated phagocytosis. Additionally, plasma cells pro-
mote antigen presentation by dendritic cells and drive
cytotoxic T cell responses [71–73]. More importantly,
our study posits that plasma cells make a significant con-
tribution to the establishment of TLS, thereby creating an
immunologically favorable environment. Simultaneously,
they collaborate with cytolytic T cells and B cells, enhan-
cing immune activation. Plasma cells demonstrate the
capability to recruit B cells, Tfh cells, and myeloid cells
by activating CD74/CD44 or CD74/CXCR4 complexes
within the MIF signaling pathway. Moreover, plasma
cells play a pivotal role in promoting B cell aggregation
by mediating the interaction between the SEMA4D-CD72
ligand-receptor pair. This interaction, in turn, facilitates
the formation of tumor-associated tertiary lymphoid
structures (TLS) and supports essential cellular interac-
tions. These interactions include antigen presentation by
B cells, with a specific focus on their role in presenting
antigens from germinal center B cells to Tfh cells via the
MHC-II complex. This contribution is vital for the
maturation and isotype switching of tumor-specific
B cells, ultimately culminating in the generation of long-
lived plasma cells. Furthermore, plasma cells demonstrate
chemotactic properties towards CD8+Tem cells, guiding
them to effector sites where they can exert their crucial
anti-tumor immune functions. The observation of plasma
cells in a highly adhesive state suggests their readiness for
further differentiation or homing to specific effector tis-
sues, enabling them to effectively carry out their anti-
tumor immune effects. And in all five datasets, we

⊳Fig. 5 Influence of apoptosis-related tumor microenvironment signa-
ture (ATM) on anti-cancer drug response a The drug names, targeted
gene symbol, and drug type of the three classes of drugs whose drug
response correlates with the ATM. b Signaling paths targeted by
drugs whose drug sensitivity correlates with the ATM. Orange (nega-
tive correlation) or blue (positive correlation). c Differentiation of
AUC value in high- and low-ATM groups in Apoptosis inducer
agents (SZ4TA2; gossypol) and agents targeting VEGF signaling
(linifanib; tivozanib; quizartinib; vandetanib) was revealed by the
Wilcox test. Asterisks denoted p-value. (“*”p < 0.05; “**”p < 0.01;
“***”p < 0.001; “****”p < 0.0001; ns was the abbreviation of no
significance)
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consistently observed that a low ATM score is associated
with a higher TLS signature (Fig. 6f–h).

Supporting our characterization of plasma cell function,
another study on ovarian cancer has revealed consistent
findings [74]. Tertiary lymphoid structures (TLS) were
frequently observed to be surrounded by dense infiltrates
of plasma cells. The presence of plasma cells was asso-
ciated with the highest levels of CD8+, CD4+, and CD20+
tumor-infiltrating lymphocytes (TILs), as well as the upre-
gulation of numerous cytotoxicity-related gene products.
Therefore, we propose that plasma cells contribute to the
formation of TLS, creating an immunologically favorable
environment, while simultaneously collaborating with
cytolytic T cells and B cells to enhance immune activation.
This synergistic interplay highlights the cooperative nature
of immune responses and underscores the critical role of
plasma cells in coordinating anti-tumor immunity (Fig. 7).

Notably, we found that the group with low ATM with
relatively higher levels of apoptosis is more sensitive to
apoptosis-inducing agents such as SZ4TA2, and gossy-
pol, a clinically used drug. These results suggest
a crucial association between both spontaneous and

⊳Fig. 6 Apoptosis-related tumor microenvironment signature (ATM)
is associated with tertiary lymphoid structures (TLS), exhibiting
stronger patient stratification ability compared to classical “hot
tumors” a Kaplan–Meier curves for group hot and cold patients
based on the average expression of 12 hot tumor–related genes
(CXCL9, CXCL10, CXCL11, CXCR3, CD3, CD4, CD8a, CD8b,
CD274, PDCD1, CXCR4, and CCL5) in the TCGA-SKCM cohort
show that group hot patients (red) exhibited better overall survival.
b Kaplan–Meier curves for 4 groups of patients (Cold-High group,
Cold-Low group, Hot-High group, and Hot-Low group) based on the
average expression of 12 hot tumor and ATM score in the TCGA-
SKCM cohort. c sankey diagram for four groups of patients stratified
by hot tumor score and ATM score in the TCGA-SKCM cohort.
d, e The top 10 enriched Gene Ontology (GO) signaling pathways
associated with differential expression genes between the Hot-ATM
low group and Hot-ATM high group (d) or between the Cold-ATM
low group and Cold-ATM high group (e). f–h The correlation
between ATM score and TLS score in TCGA-SKCM cohort and 4
validation cohorts (GSE65904, GSE19234, GSE54467, GSE22153).
(ssGSEAwas applied to calculated the TLS_9 score (CD79B, CD1D,
CCR6, LAT, SKAP1, CETP, EIF1AY, RBP5 and PTGDS); TLS_12
score (CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21,
CXCL9, CXCL10, CXCL11 and CXCL13); TLS_29 score (IGHA1,
IGHG1, IGHG2, IGHG3, IGHG4, IGHGP, IGHM, IGKC, IGLC1,
IGLC2, IGLC3, JCHAIN, CD79A, FCRL5, MZB1, SSR4, XBP1,
TRBC2, IL7R, CXCL12, LUM, C1QA, C7, CD52, APOE, PTLP,
PTGDS, PIM2, and DERL3 genes)

Fig. 7 The schematic diagram of plasma cells orchestrating a wide immune activation state by interacting with cellular constituents of the
immune microenvironment
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therapeutic agent-induced apoptosis and the mitigation
of disease progression. A similar conclusion was
observed in another study focused on acute myeloid
leukemia (AML) [75]. Previous studies have found that
the ‘normalization’ of the tumor vasculature by anti-
VEGF agents plays a key role in combinatorial benefits
because VEGF inhibition could result in the pruning of
endothelial cells not covered by pericytes and
a reduction in the tortuosity and hyperpermeability of
tumor vessels which are expected to reduce tumor inter-
stitial pressure and lead to enhanced uptake of cytotoxic
agents and antibodies by the tumor [76]. This may
rationalize our findings that the group with low
ATM exhibits heightened sensitivity to VEGF signaling
antagonists. Moreover, the low ATM group demonstrates
a heightened capacity for secreting high-affinity antibo-
dies, thereby increasing the likelihood of targeting tumor
cells while utilizing VEGF signaling antagonists.
Anyway, we are dedicated to developing novel therapeu-
tic hypotheses and accelerating the discovery of
drugs matched to patients based on their different ATM
scores.
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tary material available at https://doi.org/10.1007/s13402-024-00930-0.
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