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Abstract
Purpose  Hepatocellular carcinoma (HCC) responds poorly to immunotherapy, and the durable response rate is 10-20%. Here, 
we aim to characterize HCC classifications based on lactate genes to identify patients who may benefit from immunotherapy.
Methods  Lactate-related genes were applied for HCC classification in the current study, and lactate Cluster 1 (LC1) and 
lactate Cluster 2 (LC2) were defined. Differential genes from LC1 and LC2 helped define the following lactate phenotype 
clusters: lactate phenotype Cluster 1 (LPC1), lactate phenotype Cluster 2 (LPC2) and lactate phenotype Cluster 3 (LPC3). 
Based on the cluster annotation, the lactate score was defined and analyzed to evaluate the immunotherapy response.
Results  All the classified clusters were analyzed, and they showed different immune signatures. The survival rate of LPC3 
was higher than that of LPC2 (LPC3 vs. LPC2, P = 0.027) and LPC1 (LPC3 vs. LPC1, P = 0.027). Then, the lactate score 
was annotated and confirmed to be effective in predicting responses to immune checkpoint blockade therapy.
Conclusion  In the current study, we developed a classification system for HCC and defined the lactate score, which was 
validated to be partially effective in estimating responses among tumor patients.
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1  Introduction

Lactate is primarily located in the tumor microenvironment. 
In most cancer cells, despite sufficient oxygen, glycolysis 
will be utilized for energetic accumulation. Excessive lac-
tate will be formed, leading to the Warburg effect [1]. It has 
long been thought that lactate is the end product of the cell 
formation process and is a metabolic side product. In recent 
years, lactate has been reported to be a molecule with special 

biological functions. Lactate plays a crucial role as a carbon 
source and in transducing signals to receptor cells. A large 
body of literature indicates that lactate plays roles in modu-
lating the tumor microenvironment, regulating escape from 
immune surveillance and influencing cancer cell prolifera-
tion, metastasis and tumor angiogenesis [2].

As an important metabolite of aerobic glycolysis, lactate 
is highly involved in tumor initiation and progression. Dur-
ing carcinogenesis, metabolic reprogramming is considered 
a hallmark of cancer [3]. In addition, metabolism process-
related genes were utilized for hepatocellular carcinoma 
(HCC) classification.

Primary liver cancer ranks sixth in cancer incidence and 
is the third leading cause of cancer mortality worldwide. 
HCC comprises 75%-85% of liver cancer cases [4]. In recent 
years, advances have been made in elucidating the molecu-
lar pathogenesis of HCC, yet limited therapeutic options 
are currently available [5]. Growing numbers of reports 
have established various analytical approaches to classify 
HCC into multiple subtypes to expand the HCC therapeutic 
arsenal.
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More recently, immune checkpoint blockade therapies 
have shown remarkable efficiency in solid cancer treatment. 
Such agents have also been introduced in HCC treatment, 
yet the overall response rate is only 10%-20% [6–8]. Thus, 
establishing a molecular classification of HCC, especially 
immune checkpoint blockade therapy-related classification, 
will help guide appropriate treatments that are suitable for 
patients. Herein, our lactate score from lactate phenotype 
clusters displays promising predictive value for immuno-
therapy response.

Intriguingly, HCCs were efficiently classified from a 
metabolic perspective, and 3 subclasses with active, inter-
mediate and exhausted metabolic activities were proposed 
[9]. This implies the possibility that metabolite lactate might 
be used for HCC classification. In this study, we analyzed 
lactate-related genes and the lactate phenotype gene expres-
sion panel from 871 human HCC samples. Lactate-related 
gene data allowed us to identify lactate Cluster 1 (LC1) and 
lactate Cluster 2 (LC2) of HCC, which helped identify the 
lactate phenotype genes. Intriguingly, the following three 
HCC cohorts were also identified: lactate phenotype Cluster 
1 (LPC1), lactate phenotype Cluster 2 (LPC2) and lactate 
phenotype Cluster 3 (LPC3). Based on lactate phenotype 
cluster involvement in HCC patient survival, clinical charac-
terization and immune cell infiltration, the lactate score was 
defined as a promising approach to evaluate patient progno-
sis and response to immunotherapy.

2 � Materials and methods

2.1 � Selection of lactate‑related genes

A total of 206 lactate-related genes were retrieved from 
previous literature [10–16], and the gene list is provided in 
Supplementary Table 1.

2.2 � Patients and samples

The gene expression profile and clinical data of HCC used 
in this study were obtained from The Cancer Genome Atlas 
(TCGA, http://​cance​rgeno​me.​nih.​gov/), the International 
Cancer Genome Consortium (ICGC, www.​icgc.​org), and 
the Gene Expression Omnibus (GEO, http://​www.​ncbi.​
nlm.​nih.​gov/​geo/). Of these, 418 samples from patients with 
HCC (368 tumor samples and 50 normal samples) from the 
TCGA-LIHC were used for the training cohort. A total of 
232 and 221 HCC samples from the LIRI-JP cohort and 
GSE14520, respectively, served as the validation cohort. 
Three solid cancer cohorts (melanoma, urothelial cancer and 
gastric cancer cohorts) and a total of 159 diffuse large B cell 
lymphoma and Burkitt lymphoma samples from GSE4475 
were utilized as an immunotherapy response evaluation.

2.3 � Clustering

The lactate-related gene distribution on chromatin was 
analyzed using the RCircos package in R. Principal com-
ponent analysis (PCA) was used to confirm the ability to 
distinguish tumor and normal samples. Consensus clus-
tering based on lactate-related gene expression was per-
formed by the ConsensusClusterPlus package in R. The 
distance was based on pearson correlation, and the clus-
tering method was PAM. One thousand repeated samples 
were carried out to ensure the stability of classification. 
This clustering led to the following 2 lactate clusters: lac-
tate Cluster 1 (LC1) and lactate Cluster 2 (LC2). Then, 
differential analyses between lactate clusters were con-
ducted by the DESeq2 package in R. Genes with absolute 
log2 FC > = 1 and adjusted P < 0.05 were selected, list of 
differential genes between lactate clusters is provided in 
Supplementary Table 2. Consensus clustering was per-
formed based on the expression of the selected genes as 
described above. This clustering led to the following 3 
lactate phenotype clusters: lactate phenotype Cluster 1 
(LPC1), lactate phenotype Cluster 2 (LPC2) and lactate 
phenotype Cluster 3 (LPC3).

2.4 � Generation of lactate score and performance 
validation

A one-way Cox regression analysis was performed on 
lactate-phenotype genes. The genes were defined as sig-
nificantly related to overall survival (OS) when P < 0.05, 
and dimensionality reduction was performed based on the 
prognosis-related genes. The lactate score was calculated by 
the following formula to construct a prognostic risk scoring 
model:

The formula calculates the lactate score value for sample 
“i”.

The formula was also used in the validation set 
(GSE14520 and ICGC LIRI-JP) to calculate the risk score. 
The mid-standard values were applied to determine the 
optimal threshold for samples in the high-risk and low-risk 
groups. Kaplan–Meier survival analysis was used to assess 
the predictive power of the prognostic models.

2.5 � Correlation of lactate score with tumor 
hallmarks

To evaluate the relationship of the lactate score with 
tumor hallmarks, Spearman rank correlation analysis was 

lactate score =

∑
(

PC1
i
+ PC2

i

)

176

http://cancergenome.nih.gov/
http://www.icgc.org
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Lactate score classification of hepatocellular carcinoma helps identify patients with tumors…

1 3

performed. A hallmark with a P value <0.05 and an absolute 
corR >0.1 was referred to as associated with lactate score.

2.6 � Immunotherapy response prediction using 
lactate score

A total of 159 diffuse large B cell lymphoma and Burkitt 
lymphoma samples from GSE4475 were chosen for immu-
notherapy response evaluation. The other three cohorts 
(melanoma (n = 10), urothelial cancer (n = 22) and gastric 
cancer (n = 45) cohorts) were also used for the immuno-
therapy response evaluation. The percentage of complete 
response (CR)/partial response (PR) and progressive disease 
(PD)/stable disease (SD) patients was compared between 
the high-risk and low-risk lactate score groups. The lactate 
scores of CR/PR and PD/SD patients were also analyzed.

2.7 � Statistical analysis

The statistical computation in this study was analyzed with R 
programming. In the case of normally distributed variables, 
unpaired Student’s t test was used, while the Mann–Whitney 
U test was used in the case of nonnormally distributed vari-
ables. As parametric and nonparametric methods for com-
paring three groups, one-way analysis of variance and the 
Kruskal–Wallis tests of variance were used. A two-tailed P 
value of 0.05 was considered statistically significant. Chi-
square tests or Fisher’s exact tests were used to analyze vari-
ables in the contingency tables.

3 � Results

3.1 � Characterizing the 206 lactate genes

The flow chart delineating our systematic study is shown in 
Fig. 1. A total of 206 lactate-related genes were obtained 
by analyzing the lactate-related literature [10–16]. To bet-
ter understand the lactate-related genes, we analyzed the 
gene distribution on chromatin (Fig. 2A). Almost all of the 
chromosomes contained at least 1 gene except chromosome 
Y. Notably, chromosome 2 had 15 lactate genes, including 
GCKR, EPAS1, PSME4, RPS27A, HK2, IL18R1, IL18RAP, 
RANBP2, IL1B, PSMD14, NUP35, GLS, STAT1, STAT4 and 
PSMD6. There was only 1 gene, NUP58, on chromosome 
13. To determine whether the 206 lactate genes could dis-
criminate tumor and normal tissues, PCA was applied. The 
results revealed that HCC tissues were distinct from normal 
tissues (Fig. 2B). Recently, the tumoral genomic landscape 
has been linked to antitumor immunity. We next investi-
gated the somatic mutation frequencies and the burden of 
somatic copy number variation of the lactate genes using 
the TCGA-LIHC dataset. The genes displaying high muta-
tion frequency are visualized in Fig. 2C, including PIK3CA 
(5%), EP300 (4%), NUP133 (4%), RANBP2 (3%), NUP214 
(3%), CREBBP (2%), NOS2 (2%) and PPP2R5D (2%). 
The most common mutation type was missense mutation. 
The remaining mutated lactate genes were also involved 
in cancer progression. In terms of the copy number varia-
tion (Fig. 2D), some genes showed a high level of burden 

Fig. 1   Study workflow. A total 
of 206 lactate-related genes 
were used for lactate cluster 
(LC1 and LC2) characterization. 
Differential expression analysis 
revealed lactate phenotype 
genes that led to the following 
3 lactate phenotype clusters: 
LPC1, LPC2 and LPC3. The 
lactate score was defined based 
on the analysis of the survival-
related lactate phenotype genes 
and was proven to be a response 
marker for immunotherapy. The 
training set was TCGA-LIHC 
(n = 418). The validation sets 
were ICGC (LIRI-JP) (n = 232) 
and GSE14250 (n = 221). 
The immunotherapy response 
confirmation set was GSE4475 
(n = 159)

TCGA-LIHC (n=418)

206 Lactate related genes

Lactate cluster (LC1 LC2)

Characterization of lactate cluster (LC1 LC2)

Definiation of lactate phenotype genes

ICGC (LJRI-JP)  (n=232)
Validation

GSE14520 (n=221) 

GSE4475 (n=159) 

Generation of lactate score

Investigation of the characteristic of lactate 
phenotype cluster (LPC1, LPC2, LPC3)

Confirmation of lactate score as a 
response marker for immunotherapy
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Fig. 2   Characterization of lactate-related genes. A. The distribution 
of lactate-related genes on chromatin. B. PCA revealed the distinc-
tion of lactate-related genes in normal and tumor samples. C. The 

somatic mutation frequencies of lactate-related genes. D. The burden 
of somatic copy number aberrations of lactate-related genes
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of gains, including ARNT, PKLR, PSMD12, NUP85 and 
VEGFA. Some genes exhibited a high burden of losses, 
including ENO1, PSMB2, PSMB1, BSG and ALOX12B. 
Altogether, these data showed that the lactate genes were 
distributed over most chromosomes and harbored somatic 
mutations and copy number aberrations. These genes were 
mostly involved in cancer progression and therefore could 
be used for HCC classification.

3.2 � Defining lactate‑related classes of HCC

A total of 368 tumor samples of patients with HCC from 
TCGA-LIHC were clustered based on their lactate gene 
expression profile. The groups were classified using the 
consensus clustering method. A comprehensive analysis of 
cophenetic correlation coefficients was conducted, and the 
optimal cluster number was chosen to be 2 (Fig. 3A). As 
shown in Fig. 3B, in the case of k = 2, the consensus matrix 
heatmap still maintains sharp and crisp boundaries, indicat-
ing robust and stable clustering of the samples. The results 
showed that HCC patients were well clustered into the 2 
lactate clusters LC1 and LC2. We next explored the prog-
nostic value of the two clusters. Patients in the LC2 group 
exhibited a longer median survival time (MST) (n = 263) 
than those in the LC1 group (n = 105) (P = 0.0088, Fig. 3C). 
Each class harbors its own lactate gene traits, with CXCL1, 
PFKFB3, CA9, etc., highly expressed in LC1 and GLUL, 
SLC16A1, GCKR, etc., overexpressed in LC2. The clinico-
pathologic parameter (vascular invasion, body mass index 
(BMI), tumor grade (P < 0.05), tumor stage (P < 0.05), sex 
(P < 0.05) and age) distributions between the 2 classes are 
also shown (Fig. 3D).

3.3 � Identifying lactate phenotype clusters of HCC

To better characterize the lactate-involved phenotype 
application in HCC, we performed differential analyses 
comparing the lactate clusters. According to the thresh-
old (the absolute log2 FC was > = 1 and the adjusted P 
was <0.05), 7036 genes were selected. These genes were 
named lactate phenotype genes. Consensus clustering of 
lactate phenotype genes was used to identify the follow-
ing three subclasses: LPC1, LPC2 and LPC3. The differ-
entially expressed lactate phenotype genes are visualized 
in Fig. 4A. The distributions of lactate cluster, vascular 
invasion, BMI, tumor grade, tumor stage and age are also 
displayed. To assess whether the newly identified lactate 
phenotype clusters had prognostic potential, we analyzed 
the survival of patients in each cluster. As predicted, 
patients belonging to LPC3 had a longer MST (n = 93) 
than those belonging to LPC2 (n = 156, P = 0.027) and 

LPC1 (n = 119, P = 0.027) (Fig. 4B). To our surprise, when 
analyzing the functional enrichment, immune-related 
processes were significantly enriched in biological pro-
cess (BP). These processes included leukocyte-mediated 
immunity, human immune response and B cell receptor 
signaling pathway (Supplementary Fig. 1). Furthermore, 
the study revealed a decrease in the infiltration of both 
macrophage M0 and regulatory T cell (Treg) in LPC3 
compared to LPC1 and LPC2, as depicted in Fig. 4C. 
These data indicated that lactate phenotype genes might 
be highly related to immune activity.

3.4 � Lactate score and performance validation

We next sought to build a score for clinical application. 
Univariate Cox regression was performed, and 1507 
marker genes related to survival were selected from lac-
tate phenotype genes. We used these marker genes to score 
patients based on PCA. The score was referred to as the 
lactate score. Patients with lactate scores higher than the 
median score were defined as the high-risk group. Con-
versely, patients with lactate scores lower than the median 
score were defined as the low-risk group. Subsequently, 
the prognostic value of the lactate score was evaluated. 
Indeed, in the TCGA-LIHC testing dataset, patients in the 
low-risk group (n = 184) showed better survival than those 
in the high-risk group (n = 184, P = 0.0018) (Fig. 5A). 
Similarly, a significant prognostic difference was also 
observed in the GSE14520 validation dataset, with a 
longer MST for the low-risk group (n = 111) than for the 
high-risk group (n = 110, P = 0.0044) (Fig. 5B). In addi-
tion, similar results were also shown in the ICGC LIRI-JP 
validation dataset, and there was better prognostic value 
in the low-risk group (n = 116) than in the high-risk group 
(n = 116, P = 0.0015) (Fig. 5C).

We further explored the associations of the lactate 
score with the lactate cluster, lactate phenotype cluster, 
tumor stage and neoplasm histologic grade. The Sankey 
diagram (Fig. 5D) was delineated using the GGALLU-
VIAL R package. The results showed that most of the 
LPC3 patients were in the low-risk group, consistent with 
the data that both groups harbored good prognostic value. 
Similarly, the lactate score of LPC3 was lower than that of 
LPC2 (P = 0.00014) and LPC1 (P = 1.1e-15). Furthermore, 
LPC2 displayed a lower lactate score than LPC1 (P = 4.8e-
10) (Fig. 5E), in accordance with its good survival perfor-
mance. Interestingly, LC2 also exhibited a lower lactate 
score than LC1 (P < 2.22e-16) (Fig. 5F), as with the prog-
nostic comparison between the two clusters. All these data 
showed that clusters with good prognostic performance 
maintained low lactate scores, which indicates that the 
lactate score has strong value for clinical applications.
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3.5 � Correlation of lactate score with tumor 
hallmark and immune signature

To assess the relationship of the lactate score with tumor 
hallmarks, Spearman rank correlation analysis was per-
formed. The hallmark was associated with lactate score if 
the P value was <0.05 and the absolute corR >0.1. Most 

of the hallmarks were related to the lactate score, as shown 
in Fig. 6A. Tumor-specific hallmarks such as hypoxia, the 
P53 pathway, MYC targets, PI3K-AKT-mTOR signaling 
and WNT-beta-CATENIN signaling were related to the 
lactate score. In addition, immune response hallmarks 
such as interferon alpha/gamma response, inflammatory 
response, IL6-JAK-STAT3 signaling and IL2-STAT5 

2 3 4 5 6

0.
10

0.
15

0.
20

0.
25

Delta area

R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r C
D

F 
cu

rv
e

A

basis
1
2

consensus
1
2

silhouette
1
0.39

0

0.2

0.4

0.6

0.8

1

Consensus matrix
B

C

+++++

+
++++++++++++++++++++++++++++++++++

+++
++++ ++++

++

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+ ++

p = 0.0088

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time (Days)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Strata +
+

lactate cluster=1 (LC1)
lactate cluster=2 (LC2)

105 26 11 2 0
263 77 25 4 0LC2

LC1

0 1000 2000 3000 4000
Time (Days)

St
ra

ta

Number at risk

D

CXCL1

PFKFB3

CA9

SLC16A3

PFKP

GLUL

SLC16A1

GCKR

PKLR

PIK3R1

ENO3

PFKFB1

ARG1

ALDOB

cluster_list
Age
Gender
Stage
Grade
BMI
Vascular Vascular

Macro
Micro
None

BMI
<=25
>25

Grade
G1
G2
G3
G4

Stage
Stage I
Stage II
Stage III
Stage IV

Gender
female
male

Age
<=65
>65

cluster_list
1
2

−4

−2

0

2

4

CXCL1

PFKFB3

CA9

SLC16A3

PFKP

GLUL

SLC16A1

GCKR

PKLR

PIK3R1

ENO3

PFKFB1

ARG1

ALDOB

cluster_list
Age
Gender
Stage
Grade
BMI
Vascular

Macro
Micro
None

<=25
>25

G1
G2
G3
G4

Stage I
Stage II
Stage III
Stage IV

female
male

<=65
>65

1
2

−4

−2

0

2

4

Fig. 3   Identification of lactate clusters using consensus clustering. A. 
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formed by the log-rank test. D. The distribution of representative dif-
ferentially expressed genes and clinicopathologic parameters (vascu-
lar invasion, body mass index (BMI), tumor grade, tumor stage, sex 
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signaling were associated with lactate score. These data 
indicated that the lactate score can be applied for the eval-
uation of both tumor status and immune response condi-
tion for the patient. To further explore the effect of the 
lactate score on the immune signature, we analyzed the 
immune signature difference between the high-risk and 
low-risk groups. The immune signature was deciphered 
with the ssGESA algorithm and visualized in Fig. 6B. 
In accordance with the immune hallmarks, some of the 
immune signatures were significantly different between 

the two groups. Notably, M0 macrophages, naïve CD4 T 
cells, follicular helper T cells, gamma delta T cells and 
regulatory T cells (Tregs) scored higher in the high-risk 
group than in the low-risk group. Resting mast cells, 
monocytes and resting NK cells were scored higher in the 
low-risk group than in the high-risk group. Altogether, 
these data showed that the immune signature between the 
two groups was different, indicating that the infiltration of 
immune cells was associated with the level of lactate in 
the microenvironment.

Fig. 4   Characterization of 
lactate phenotype genes. A. The 
distribution of the representative 
differential lactate phenotype 
genes and the clinicopathologic 
parameters (vascular invasion, 
body mass index (BMI), tumor 
grade, tumor stage, sex and 
age) between LC1 and LC2 
and between LPC1, LPC2 and 
LPC3. B. The survival of LPC1, 
LPC2 and LPC3 patients in 
the TCGA-LIHC training set. 
The statistical analyses were 
performed by the log-rank test. 
C. Boxplot of immune cell 
population abundance in LPC1, 
LPC2 and LPC3
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3.6 � Survival and sensitivity to immunotherapy 
were distinct between the high/low‑risk groups

Considering the profound differences in immune-related 
pathways between the high-risk and low-risk groups, we 
wondered if the immunotherapy response was different 
between the two groups. The expression panel of immune 
checkpoint genes showed that the low-risk group had sig-
nificantly lower expression levels. These genes included 
PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), 

LAG3, HAVCR2, CTLA4, CCR4, TIGIT, CD27 and IDO1 
(Fig. 7A). There were no public HCC immunotherapy 
cohorts with transcriptomic data available during this 
period. Other cohorts were used to explore whether the 
lactate score could serve as a response marker for immu-
notherapy. We analyzed immunotherapy datasets from 
cohorts of melanoma [17], urothelial cancer [18], gastric 
cancer [19] and the GEO dataset GSE4475 for valida-
tion. As depicted in Fig. 7C of the GSE4475 data, in 
the low-risk group, the percentage of complete response 

Fig. 5   Definition of lac-
tate score and performance 
validation. Survival differences 
between the lactate high-risk 
and low-risk groups are shown 
in the (A) TCGA-LIHC training 
set, (B) GSE14520 validation 
set and (C) ICGC (LIRI-JP) 
validation set. D. The distribu-
tion of high-risk and low-risk 
groups in lactate phenotype 
clusters, lactate clusters, tumor 
stage and neoplasm histologic 
grade shown in the Sankey 
diagram. E. The lactate score 
comparison of LPC1, LPC2 
and LPC3. F. Lactate score 
comparison of LC1 and LC2. 
(****P < 0.0001)
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(CR)/partial response (PR) patients was 90%, and the 
remaining 10% had progressive disease (PD)/stable dis-
ease (SD). Nevertheless, in the high-risk group, the per-
centage of CR/PR patients was 69%, and the remaining 
31% had PD/SD. This is consistent with the lower risk 
score in the CR/PR patients than in the PD/SD patients 
(P = 0.011) (Fig. 7D). In particular, the survival of the 
low-risk group was also better than that of the high-risk 
group in the GSE4475 dataset (Fig. 7B), as with other 
datasets previously mentioned. The data from the three 
solid cancer cohorts indicated that the percentages of 

CR/PR patients in the low-risk group were higher than 
those in the high-risk groups (Supplementary Fig. 2A, C, 
E). No significant differences were shown between the 
CR/PR and PD/SD groups in risk score, yet the median 
values of the risk score of the CR/PR groups were lower 
than those of the PD/SD groups (Supplementary Fig. 2B, 
D, F). This might be due to the patient numbers in the 
cohorts were not large enough or due to the total CR/PR 
ratio (melanoma cohort 6/10, urothelial cancer cohort 
7/22, gastric cancer cohort 12/45) in the cohorts is low. 
Although the difference is not significant, the median 

Fig. 6   Delineation of the cor-
relation of the lactate score 
with tumor hallmarks and the 
immune signature. A. Heatmap 
describing the relationship 
between the lactate score and 
tumor hallmarks. B. Immune 
signature differences between 
the high-risk and low-risk 
groups. (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001)

Correlation Heatmap
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values difference indicated the lactate score might be 
helpful in immunotherapy response prediction. Alto-
gether, these results revealed that patients with low lac-
tate scores were more likely to respond to immunother-
apy. Thus, the lactate score could be used as a candidate 
marker to evaluate immunotherapy response.

4 � Discussion

Recently, immune checkpoint blockade therapy has shown 
remarkable efficiency in many types of solid cancers and has 
revolutionized the field of cancer treatment [5]. Clinically, 
such therapy has also been used for first- and second-line 
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Fig. 7   Distinct survival and sensitivity to immunotherapy between 
the high-risk and low-risk groups. A. The immune checkpoint marker 
expression differences between the high-risk and low-risk groups. 
The statistical significance was determined by the Wilcoxon rank-sum 

test. B. The survival of high-risk and low-risk groups in the GSE4475 
set. C. The ratio of CR/PR and PD/SD patients in the high-risk and 
low-risk groups. D. Lactate score comparison between CR/PR and 
PD/SD patients. (*P < 0.05)
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HCC treatment. However, not all patients respond to such 
therapy. In terms of HCC, only a modest fraction of HCC 
patients can benefit from immunotherapy treatment, with a 
durable response rate of 10-20% [6–8]. Therefore, there is 
an urgent need to define new methods that accurately pre-
dict responses to immune checkpoint blockade therapy [20]. 
Currently, accumulating efforts have been put into predicting 
patients that would respond to such kinds of immunotherapy. 
In an immune-related analysis, 2 subclasses of HCCs were 
identified with adaptive and exhausted immune responses, 
some of which were susceptible to immune checkpoint 
blockade therapies [5]. Furthermore, the same group further 
delineated the immunogenomic classification of HCC based 
on their previous study to predict responses or resistance to 
immunotherapy [20]. From the metabolic perspective, Yang 
et al. identified an HCC subclass that exhibited high sensi-
tivity to immune checkpoint blockade therapy [9]. However, 
the response rate remains low. Here, we tried to offer a new 
method to predict true responders from the lactate perspective.

Lactate had long been recognized as a waste product of 
aerobic glycolysis until recently. It was reported that lac-
tate plays a vital role in affecting the response to checkpoint 
therapy in tumors [21]. Thus, it is possible to define HCC 
from the lactate perspective. In our study, lactate-related 
genes were selected and applied for the classification of 
HCC into the following lactate clusters: LC1 and LC2. 
Based on the differential analyses between LC1 and LC2, 
another 3 clusters were identified as follows: LPC1, LPC2 
and LPC3. The survival time of the patients in the 3 clusters 
were significantly different, with longer survival observed in 
LPC3 patients than in LPC1 and LPC2 patients. Moreover, 
immune-related processes were significantly enriched in the 
lactate phenotype clusters. In addition, immune cell infiltra-
tion (macrophage M0 and T regular cells) was also lower in 
LPC3 patients than in LPC1 and LPC2 patients, indicating 
that these clusters were related to immune activity. Thus, for 
the clinical use of the lactate phenotype, the lactate score 
was defined and delineated. The lactate score was shown to 
accurately predict responders to immune checkpoint block-
ade therapy.

Lactate has been reported to be involved in tumor pro-
gression. Increased aerobic glycolysis is a hallmark of can-
cer. Lactate was indicated to rewire the tumor microenviron-
ment and power tumor malignancy [2]. Moreover, glucose 
uptake was reported to be correlated with poor prognosis in 
cancer patients [22]. Among patients treated with anti-PD-1, 
high levels of lactate dehydrogenase (LDH), a key enzyme 
in pyruvate conversion into lactate, have also been linked 
to a poor prognosis and outcome [21, 23–25]. In addition, 
lactate concentration was confirmed to be positively related 
to the incidence of tumor metastasis and reduced survival 
time [26–28]. Altogether, these data showed that lactate is of 
pivotal value in evaluating the prognosis of cancer patients. 

Thus, in the current study, 206 lactate genes were selected 
and delineated. Among them, there were genes with a high 
mutation frequency, including PIK3CA (5%) and EP300 
(4%). Mutations in PIK3CA are among the most frequent 
in a number of cancer types [29–31]. PI3K signaling block-
ade leads to the inhibition of glycolysis in tumors, including 
inhibition of the production of the downstream product of 
lactate [32]. EP300 encodes the histone acetyltransferase 
p300, which is a tumor suppressor [33]. Mutation of EP300 
mediates Wnt/β-catenin–independent tumor growth [34]. 
Additionally, EP300 is a coactivator of hypoxia-induced 
Factor 1 alpha (HIF1A), which stimulates hypoxia-induced 
genes such as VEGF [35]. Intriguingly, immune-related pro-
cesses were significantly enriched in the BP category among 
the 3 LPC clusters. Specifically, macrophage M0 and Treg 
infiltration were shown to be lower in LPC3 than in LPC1 
and LPC2. This is consistent with the results in the immune 
signature delineation of the lactate score, and cell infiltra-
tion was lower in the low-risk lactate score group than in 
the high-risk group. Tumor-associated macrophages (TAMs) 
preferentially accumulated in hypoxic tumors [36], where 
lactate is always abundant [2]. Moreover, Tregs are also 
adapted to the lactate-rich microenvironment [37]. Thus, 
our data were in line with that of previous studies.

For better application of the lactate phenotype, we defined 
the lactate score. It is easily used and partially effective in 
predicting responses to immune checkpoint blockade ther-
apy. The low-risk group showed better survival than the 
high-risk group in both the testing dataset (TCGA-LIHC) 
and the validation datasets (GSE14520 and ICGC LIRI-JP). 
This is in accordance with the finding that a high level of 
lactate is correlated with poor survival [38]. Immune sig-
nature analysis showed that the high-risk group had high 
levels of M0 macrophages, naïve CD4 T cells, follicular 
helper T cells, gamma delta T cells and regulatory T cells 
(Tregs). The low-risk group had high levels of resting mast 
cells, monocytes and resting NK cells. It has been reported 
that high infiltration of M0 macrophages [39], naïve CD4 
T cells [40], gamma delta T cells [41, 42] and regulatory T 
cells (Tregs) [40] is correlated with poor prognosis in can-
cer patients. Conversely, high levels of mast cells [43] and 
NK cells [44] were reported to be associated with favorable 
survival. These previous data were consistent with the good 
prognosis of patients in the low-risk group. Furthermore, 
Tregs suppress antitumor immunity, hampering effective 
antitumor immune responses [45]. NK cells serve as tumor 
immunosurveillance cells and can regulate T cell infiltration 
into the tumor [44]. Low levels of Tregs and high levels of 
NK cells in the low-risk group indicated a favorable micro-
environment for immunotherapy. All 10 immune check-
point genes analyzed here were lower in the low-risk group. 
According to the GSE4475 immunotherapy data analyzed, 
the low-risk group showed a higher level of CR/PR and a 
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lower level of PD/SD than the high-risk group. The lactate 
score of the PD/SD patients was significantly higher than 
that of the CR/PR patients. Yet, this is not the case in all 
kinds of tumors. In this respect, the low-risk group displayed 
partially better response to immunotherapy. Therefore, a low 
lactate score could be used as an indicator for response to 
immunotherapy.

In summary, lactate-related genes were applied for HCC 
classification (LC1 and LC2) in the current study. Differ-
ential genes from LC1 and LC2 helped define the follow-
ing lactate phenotype clusters: LPC1, LPC2 and LPC3. All 
the classified clusters were analyzed, and they had differ-
ent survival rates (LC1 vs. LC2, LPC1 vs. LPC2 vs. LPC3) 
and immune signatures (LC1 vs. LC2, LPC1 vs. LPC2 vs. 
LPC3). Then, the lactate score was annotated and confirmed 
to be partially effective in predicting responses to immune 
checkpoint blockade therapy. Further studies validating 
lactate score application are needed in a larger cohort of 
patients treated with immune checkpoint blockade therapy.

5 � Limitations of the study

In this study we developed the lactate score serves as a valu-
able predictor for the prognosis of HCC patients, meanwhile 
the lactate score was evaluated as a candidate predictor for 
immunotherapeutic response. Notably, there is a limitation 
in the immunotherapeutic response prediction. Cohorts from 
melanoma, urothelial cancer, gastric cancer and the diffuse 
large B cell lymphoma and Burkitt lymphoma (GSE4475) 
cohorts were used for evaluating the immunotherapy 
response. While the differences from the first three cohorts 
were not significant and only GSE4475 dataset showed sig-
nificant differences in the immunotherapy prediction data. 
This indicates the lactate score can be partially helpful in 
predicting the responders to immunotherapy. More immu-
notherapy cohorts especially HCC immunotherapy cohorts 
are needed for evaluating the predictive power for immuno-
therapeutic response of lactate score.
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