Skip to main content

Advertisement

Log in

Targeting nucleolin improves sensitivity to chemotherapy in acute lymphoblastic leukemia

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Most patients with acute lymphoblastic leukemia (ALL) are treated with chemotherapy as primary care. Although the treatment response is usually positive, resistance and relapse often occur via unknown mechanisms. The purpose of this study was to identify factors associated with chemotherapy resistance in ALL. Here, we present clinical and experimental evidence that overexpression of nucleolin (NCL), a multifunctional nucleolar protein, is linked to drug resistance in ALL.

Methods

NCL mRNA and protein levels were compared between cell lines and patient samples using qRT-PCR and immunoblotting. NCL mRNA levels were compared between patients of different disease stages from our clinic patients’ specimens and publicly available ALL patient datasets. Cells and patient-derived xenograft mouse experiments were performed to assess the effect of NCL inhibition on ALL chemotherapy effectiveness.

Results

Analysis of patient specimens, and publicly available RNA-sequencing datasets revealed a strong correlation between the abundance of NCL and disease relapse or poor survival in B-ALL. Altering NCL expression results in changes in drug sensitivity in ALL cell lines. High levels of NCL upregulated components of the ATP-binding cassette transporters via activation of the ERK pathway, resulting in a decrease in drug accumulation inside the cells. Targeting NCL with AS1411, an NCL-binding oligonucleotide aptamer, significantly increased the sensitivity of ALL cell lines and cells/patient-derived ALL xenograft mice to chemotherapeutic drugs and prolonged mouse survival.

Conclusion

Our results highlight NCL as a prognostic marker in B-ALL and a potential therapeutic target to combat chemotherapy resistance in ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and material have been provided in the manuscript and supplement materials.

References

  1. C.H. Pui, K.E. Nichols, J.J. Yang, Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat. Rev. Clin. Oncol 16(4), 227–240 (2019). https://doi.org/10.1038/s41571-018-0136-6

    Article  CAS  PubMed  Google Scholar 

  2. T. Girardi, C. Vicente, J. Cools, K. De Keersmaecker, The genetics and molecular biology of T-ALL. Blood 129(9), 1113–1123 (2017). https://doi.org/10.1182/blood-2016-10-706465

    Article  CAS  PubMed  Google Scholar 

  3. S. Ghorashian, A.M. Kramer, S. Onuoha, G. Wright, J. Bartram, R. Richardson et al., Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med 25(9), 1408–1414 (2019). https://doi.org/10.1038/s41591-019-0549-5

    Article  CAS  PubMed  Google Scholar 

  4. H. Kantarjian, A. Stein, N. Gokbuget, A.K. Fielding, A.C. Schuh, J.M. Ribera et al., Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl. J. Med 376(9), 836–847 (2017). https://doi.org/10.1056/NEJMoa1609783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N.N. Shah, T.J. Fry, Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol 16(6), 372–385 (2019). https://doi.org/10.1038/s41571-019-0184-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Belver, A. Ferrando, The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16(8), 494–507 (2016). https://doi.org/10.1038/nrc.2016.63

    Article  CAS  PubMed  Google Scholar 

  7. D. Steinbach, O. Legrand, ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia 21(6), 1172–1176 (2007). https://doi.org/10.1038/sj.leu.2404692

    Article  CAS  PubMed  Google Scholar 

  8. W.X. Bian, Y. Xie, X.N. Wang, G.H. Xu, B.S. Fu, S. Li et al., Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res 47(1), 56–68 (2019). https://doi.org/10.1093/nar/gky1177

    Article  CAS  PubMed  Google Scholar 

  9. K. Abdelmohsen, M. Gorospe, RNA-binding protein nucleolin in disease. RNA Biol 9(6), 799–808 (2012). https://doi.org/10.4161/rna.19718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T.M. Goldson, K.L. Turner, Y. Huang, G.E. Carlson, E.G. Caggiano, A.F. Oberhauser et al., Nucleolin mediates the binding of cancer cells to L-selectin under conditions of lymphodynamic shear stress. Am. J. Physiol. Cell. Physiol. 318(1), C83–C93 (2020). https://doi.org/10.1152/ajpcell.00035.2019

    Article  CAS  PubMed  Google Scholar 

  11. L.H. Mariero, M.K. Torp, C.M. Heiestad, A. Baysa, Y. Li, G. Valen et al., Inhibiting nucleolin reduces inflammation induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and reoxygenation. Br. J. Pharmacol 176(22), 4360–4372 (2019). https://doi.org/10.1111/bph.14830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. V. Brazda, L. Haronikova, J.C. Liao, M. Fojta, DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci 15(10), 17493–17517 (2014). https://doi.org/10.3390/ijms151017493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Hu, M. Lin, T. Liu, J. Li, B. Chen, Y. Chen, DIGE-based proteomic analysis identifies nucleophosmin/B23 and nucleolin C23 as over-expressed proteins in relapsed/refractory acute leukemia. Leuk. Res 35(8), 1087–1092 (2011). https://doi.org/10.1016/j.leukres.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  14. P.A. Brown, M. Wieduwilt, A. Logan, D.J. DeAngelo, E.S. Wang, A. Fathi et al., Guidelines insights: acute lymphoblastic leukemia, version 1.2019. J. Natl. Compr. Canc Netw 17(5), 414–423 (2019). https://doi.org/10.6004/jnccn.2019.0024

    Article  CAS  PubMed  Google Scholar 

  15. Chinese Society of Hematology CMA, Society of Hematological Malignancies Chinese, A. Anti-Cancer, A chinese expert panel consensus on diagnosis and treatment of adult acute lymphoblastic leukemia. Zhonghua Xue Ye Xue Za Zhi 33(9), 789–792 (2012). https://doi.org/10.3760/cma.j.issn.0253-2727.2012.09.028

    Article  Google Scholar 

  16. L. Wang, B. Chen, M. Lin, Y. Cao, Y. Chen, X. Chen et al., Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling. Immunobiology. 220(3), 331–340 (2015). https://doi.org/10.1016/j.imbio.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  17. G.P. Linette, M. Becker-Hapak, Z.L. Skidmore, M.L. Baroja, C. Xu, J. Hundal et al., Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proc. Natl. Acad. Sci. U S A 116(47), 23662–23670 (2019). https://doi.org/10.1073/pnas.1906026116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H.Q. Ju, G. Zhan, A. Huang, Y. Sun, S. Wen, J. Yang et al., ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia 31(10), 2143–2150 (2017). https://doi.org/10.1038/leu.2017.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Kourti, N. Vavatsi, N. Gombakis, V. Sidi, G. Tzimagiorgis, T. Papageorgiou et al., Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int. J. Hematol 86(2), 166–173 (2007). https://doi.org/10.1532/IJH97.E0624

    Article  CAS  PubMed  Google Scholar 

  20. D.R. Perez, L.A. Sklar, A. Chigaev, K. Matlawska-Wasowska, Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - a missed opportunity. Semin Cancer Biol 68, 199–208 (2021). https://doi.org/10.1016/j.semcancer.2020.02.004

    Article  CAS  PubMed  Google Scholar 

  21. T. Yang, F. Xu, Y. Sheng, W. Zhang, Y. Chen, A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer. Anal. Bioanal Chem 408(26), 7491–7503 (2016). https://doi.org/10.1007/s00216-016-9847-7

    Article  CAS  PubMed  Google Scholar 

  22. Y. Teng, A.C. Girvan, L.K. Casson, W.M. Pierce Jr., M. Qian, S.D. Thomas et al., AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res 67(21), 10491–10500 (2007). https://doi.org/10.1158/0008-5472.CAN-06-4206

    Article  CAS  PubMed  Google Scholar 

  23. N. Jain, H. Zhu, T. Khashab, Q. Ye, B. George, R. Mathur et al., Targeting nucleolin for better survival in diffuse large B-cell lymphoma. Leukemia 32(3), 663–674 (2018). https://doi.org/10.1038/leu.2017.215

    Article  CAS  PubMed  Google Scholar 

  24. J.I. Fletcher, R.T. Williams, M.J. Henderson, M.D. Norris, M. Haber, ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat 26, 1–9 (2016). https://doi.org/10.1016/j.drup.2016.03.001

    Article  PubMed  Google Scholar 

  25. S.X. Lu, O. Abdel-Wahab, Genetic drivers of vulnerability and resistance in relapsed acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. U S A 113(40), 11071–11073 (2016). https://doi.org/10.1073/pnas.1613836113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Valentin, S. Grabow, M.S. Davids, The rise of apoptosis: targeting apoptosis in hematologic malignancies. Blood 132(12), 1248–1264 (2018). https://doi.org/10.1182/blood-2018-02-791350

    Article  CAS  PubMed  Google Scholar 

  27. M.S. Shafat, B. Gnaneswaran, K.M. Bowles, S.A. Rushworth, The bone marrow microenvironment - home of the leukemic blasts. Blood Rev 31(5), 277–286 (2017). https://doi.org/10.1016/j.blre.2017.03.004

    Article  PubMed  Google Scholar 

  28. S. Rahgozar, A. Moafi, M. Abedi, E.G.M. Entezar, J. Moshtaghian, K. Ghaedi et al., mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol. Ther 15(1), 35–41 (2014). https://doi.org/10.4161/cbt.26603

    Article  CAS  PubMed  Google Scholar 

  29. E. Fernandes, R. Freitas, D. Ferreira, J. Soares, R. Azevedo, C. Gaiteiro et al., Nucleolin-sle A glycoforms as E-Selectin ligands and potentially targetable biomarkers at the cell surface of gastric cancer cells. Cancers (Basel) 12(4), 861 (2020). https://doi.org/10.3390/cancers12040861

    Article  CAS  PubMed  Google Scholar 

  30. M.E. Gilles, F. Maione, M. Cossutta, G. Carpentier, L. Caruana, S. Di Maria et al., Nucleolin targeting impairs the progression of pancreatic cancer and promotes the normalization of tumor vasculature. Cancer Res 76(24), 7181–7193 (2016). https://doi.org/10.1158/0008-5472.CAN-16-0300

    Article  CAS  PubMed  Google Scholar 

  31. P. Modena, F.R. Buttarelli, R. Miceli, E. Piccinin, C. Baldi, M. Antonelli et al., Predictors of outcome in an AIEOP series of childhood ependymomas: a multifactorial analysis. Neuro Oncol 14(11), 1346–1356 (2012). https://doi.org/10.1093/neuonc/nos245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. V. Marcel, F. Catez, C.M. Berger, E. Perrial, A. Plesa, X. Thomas et al., Expression profiling of Ribosome Biogenesis factors reveals Nucleolin as a novel potential marker to Predict Outcome in AML Patients. PLoS One 12(1), e0170160 (2017). https://doi.org/10.1371/journal.pone.0170160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. N. Shen, F. Yan, J. Pang, L.C. Wu, A. Al-Kali, M.R. Litzow et al., A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis. Oncotarget 5(14), 5494–5509 (2014). https://doi.org/10.18632/oncotarget.2131

    Article  PubMed  PubMed Central  Google Scholar 

  34. S. Gattoni-Celli, C.L. Buckner, J. Lazarchick, R.K. Stuart, D.J. Fernandes, Overexpression of nucleolin in engrafted acute myelogenous leukemia cells. Am. J. Hematol 84(8), 535–538 (2009). https://doi.org/10.1002/ajh.21461

    Article  CAS  PubMed  Google Scholar 

  35. Z. Chen, T. Shi, L. Zhang, P. Zhu, M. Deng, C. Huang et al., Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett 370(1), 153–164 (2016). https://doi.org/10.1016/j.canlet.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  36. G. Maik-Rachline, R. Seger, The ERK cascade inhibitors: towards overcoming resistance. Drug Resist. Updat 25, 1–12 (2016). https://doi.org/10.1016/j.drup.2015.12.001

    Article  PubMed  Google Scholar 

  37. K.L. Inder, C. Lau, D. Loo, N. Chaudhary, A. Goodall, S. Martin et al., Nucleophosmin and nucleolin regulate K-Ras plasma membrane interactions and MAPK signal transduction. J. Biol. Chem 284(41), 28410–28419 (2009). https://doi.org/10.1074/jbc.M109.001537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Tomiyasu, M. Watanabe, K. Sugita, Y. Goto-Koshino, Y. Fujino, K. Ohno et al., Regulations of ABCB1 and ABCG2 expression through MAPK pathways in acute lymphoblastic leukemia cell lines. Anticancer Res 33(12), 5317–5323 (2013)

    CAS  PubMed  Google Scholar 

  39. K. Farin, S. Schokoroy, R. Haklai, I. Cohen-Or, G. Elad-Sfadia, M.E. Reyes-Reyes et al., Oncogenic synergism between ErbB1, nucleolin, and mutant ras. Cancer Res 71(6), 2140–2151 (2011). https://doi.org/10.1158/0008-5472.CAN-10-2887

    Article  CAS  PubMed  Google Scholar 

  40. Z.X. Liao, E.Y. Chuang, C.C. Lin, Y.C. Ho, K.J. Lin, P.Y. Cheng et al., An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J. Control Release 208, 42–51 (2015). https://doi.org/10.1016/j.jconrel.2015.01.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Profs. Ren-Jiang Lin (City of Hope, California), and Hsin-An Hou (Taiwan University Hospital) provided scientific discussion and reviewed the typescript. RPG acknowledges support from the National Institute of Health Research (NIHR) Biomedical Research Centers funding scheme.

Funding

This work was supported by National Natural Science Foundation of China (81870135, 81470326, U2005204,82000142), Natural Science Foundation of Fujian Province(2020J05049), Joint Funds for the innovation of science and Technology, Fujian province(2021Y9086).

Author information

Authors and Affiliations

Authors

Contributions

JDH. and YXC conceived and designed the experiment; YXC, LYW., JJW., and YDH Did the in vitro experiments and data analysis. ZJW performed animal experiments and data analysis. LYW and PFJ constructed the adriamycin-resistant cells. MHL and YXC collected samples and quantified NCL expression. YXC and analyzed the clinical data. JZL analyzed the data from Target and GEO databases. XYZ, YZY, JZ, and TY provided and analyzed clinical samples and data. YXC, ZJW, and RPG prepared the typescript.

Corresponding authors

Correspondence to Ting Yang or Jianda Hu.

Ethics declarations

Ethics approval and consent to participate

All the experiments were approved by the review board of the Ethics Committee and the Institutional Review Board of Fujian Medical University Union Hospital (2014058). All animal experiments were approved by the Ethics Committee of Institutional Animal Care and Use. BALB/C nude mice and NCG mice experiments were carried out following the guidelines of the animal facility at Fujian Medical University. NSI mice experiments were carried out following the guidelines of the animal facility in the Laboratory Animal Center of the Guangzhou Institutes of Biomedicine and Health (GIBH). All patients gave written informed consent to use their clinical specimens for medical research.

Consent for publication

Written informed consent for publication was obtained from the patients. All authors have agreed to publish this manuscript.

Competing interests

RPG is a consultant to BeiGene Ltd., Fusion Pharma LLC, LaJolla NanoMedical Inc., Mingsight Parmaceuticals Inc., and CStone Pharmaceuticals; advisor to Antegene Biotech LLC, Medical Director, FFF Enterprises Inc.; partner, AZAC Inc.; Board of Directors, Russian Foundation for Cancer Research Support; and Scientific Advisory Board: StemRad Ltd.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jianda Hu is the first corresponding author and Ting Yang is the second corresponding author.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.14 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, Z., Wang, L. et al. Targeting nucleolin improves sensitivity to chemotherapy in acute lymphoblastic leukemia. Cell Oncol. 46, 1709–1724 (2023). https://doi.org/10.1007/s13402-023-00837-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00837-2

Keywords

Navigation