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Abstract
Purpose The tumor immune microenvironment (TME) plays a vital role in tumorigenesis, progression, and treatment. 
Macrophages, as an important component of the tumor microenvironment, play an essential role in antitumor immunity and 
TME remodeling. In this study, we aimed to explore the different functions of different origins macrophages in TME and 
their value as potential predictive markers of prognosis and treatment.
Methods We performed single-cell analysis using 21 lung adenocarcinoma (LUAD), 12 normal, and four peripheral blood 
samples from our data and public databases. A prognostic prediction model was then constructed using 502 TCGA patients 
and explored the potential factors affecting prognosis. The model was validated using data from 4 different GEO datasets 
with 544 patients after integration.
Results According to the source of macrophages, we classified macrophages into alveolar macrophages (AMs) and interstitial 
macrophages (IMs). AMs mainly infiltrated in normal lung tissue and expressed proliferative, antigen-presenting, scavenger 
receptors genes, while IMs occupied the majority in TME and expressed anti-inflammatory, lipid metabolism-related genes. 
Trajectory analysis revealed that AMs rely on self-renew, whereas IMs originated from monocytes in the blood. Cell-to-cell 
communication showed that AMs interacted mainly with T cells through the MHC I/II signaling pathway, while IMs mostly 
interacted with tumor-associated fibrocytes and tumor cells. We then constructed a risk model based on macrophage infiltration 
and showed an excellent predictive power. We further revealed the possible reasons for its potential prognosis prediction by 
differential genes, immune cell infiltration, and mutational differences.
Conclusion In conclusion, we investigated the composition, expression differences, and phenotypic changes of macrophages 
from different origins in lung adenocarcinoma. In addition, we developed a prognostic prediction model based on different 
macrophage subtype infiltration, which can be used as a valid prognostic biomarker. New insights were provided into the 
role of macrophages in the prognosis and potential treatment of LUAD patients.

Keywords Lung adenocarcinoma · Tumor associated macrophage · Single-cell RNA sequencing

1 Introduction

Lung cancer is the second most common cancer and the 
leading cause of cancer-related death worldwide [1], and 
the incidence of lung cancer has steadily increased over 
the past three decades [2]. Non-small cell lung cancer 
(NSCLC) accounts for nearly 85% of lung cancer, and lung 
adenocarcinoma (LUAD) is the most common histologic 
subtype of NSCLC, accounting for about 50%—70% of 
LUAD [3–5]. The tumor is a very heterogeneous tissue, 
and the tumor ecosystem consists of tumor cells, immune 
cells, stromal cells, and other cellular subtypes [6, 7]. The 
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cell subtypes interact with each other through complex 
cellular communication and metabolites to promote tumor 
progression as well as response to or escape from therapy [8, 
9]. With the application of new treatments such as targeted 
therapy and immunotherapy in lung cancer patients, the 
5-year survival rate of advanced lung cancer has increased 
from less than 5% to about 30% [10, 11]. However, the 
biomarkers that can predict immunotherapy effects and 
the benefit population are still a barrier to the application 
of immunotherapy. Thus, further understanding of the 
tumor microenvironment (TME) can help us to improve 
personalized treatment strategies.

Tumor-associated macrophages (TAM) are usually one 
of the most infiltrated immune cell subtypes in solid tumors 
[12–15] and play an essential role in the regulation of 
tumor inflammation and angiogenesis [16, 17]. Usually, the 
activation status of TAM in vivo is divided into 'classically 
activated' M1 and 'alternatively activated' M2 [18]. However, 
TAM exhibits considerable heterogeneity in  vivo, not 
only in different tumors but also in different patients or at 
different stages with the same tumor [19, 20]. Depending 
on the source, macrophages in the lung can be divided 
into alveolar macrophages (AMs), which are differentiated 
from embryonic erythromyeloid progenitor cells and fetal 
liver monocytes [21–23], and interstitial macrophages 
(IMs), which are derived from blood monocytes arising 
from hematopoietic stem cells in the bone marrow [24]. 
Mouse AMs develop from fetal monocytes after activation 
by the granulocyte–macrophage colony-stimulating 
factor (GM-CSF) and are highly expressed peroxisome 
proliferator-activated receptor gamma (PPARγ) [25, 26]. At 
the steady state, mouse AMs are maintained primarily by 
local self-renewal [27]. Interstitial macrophages are mainly 
derived from blood monocytes and are slowly renewed by 
circulating monocytes [28, 29].

Compared with traditional bulk RNA-sequencing, 
single-cell RNA-sequencing (scRNA-seq) can potentially 
probe tumor heterogeneity mechanisms and decode 
intercellular signaling networks, providing a new way 
for personalized therapy. In addition, it can identify the 
molecular characteristics of different infiltration immune 
cells in TME, providing new ideas for studying cancer 
immunity. Here, we compared the differences between AMs 
and IMs at the single-cell level in terms of gene expression, 
cellular communication, and differentiation. Subsequently, 
deconvolution to bulk RNA-seq data was performed for 
prognosis prediction of LUAD. This macrophage-based 
signature was further analyzed with mutation, metabolism, 
and immune cell infiltration to assess the association of 
macrophage signature with cancer immunity.

2  Materials and methods

2.1  Single‑Cell RNA sequencing data and Bulk‑RNA 
sequencing data collection

scRNA-seq was performed on 14 treatment-naive patients 
who underwent surgery at Zhongshan Hospital Fudan 
University with a postoperative pathological diagnosis of 
lung adenocarcinoma. In addition, seven normal and two 
LUAD samples and five normal samples were obtained 
from ArraryExpress (accession numbers EMTAB- 6149 and 
E-MTAB-6653) and Human Cell Atlas Data Coordination 
Platform (accession number PRJEB31843), respectively. And 
four tumors, normal lung tissue, and peripheral blood samples 
were from the GSE127465 dataset [30]. TCGA data and patient 
phenotypes were downloaded from the TCGA-LUAD dataset. 
The GEO data were obtained from four datasets, GSE50081, 
GSE37745, GSE31210, and GSE30219, respectively.

2.2  The scRNA dataset integration and cell 
annotation

Tissue dissected into single cells, suspension, and 
sequencing were described in our previous article [31]. 
After quality control, normalization, and PCA dimension 
reduction of scRNA-seq data using the Seurat package, 
data from different datasets were de-batched and normal-
ized by the SCTransform package [32]. Cell clustering was 
based on PCA dimensionality reduction using the first 20 
PCs and a resolution value of 0.2. FindAllMarkers was 
used to identify the marker genes for each subpopulation 
and subsequently annotate the cells.

2.3  Flow cytometry

Fresh lung cancer and normal tissues from 6 patients were 
collected, rinsed with ice-cold saline to remove extraneous 
blood. GentleMACS dissociator and gentleMACS C tubes 
(Miltenyi Biotec, Bergisch Gladbach, Germany) were used 
to dissociate the tissues into single cell suspensions by pro-
tocol. After cell counting, the cells were resuspended with 
PBS to a cell concentration of 1 ×  107/mL. After blocking Fc 
receptors with Fc receptor blocker for 10 min, the superna-
tant was discarded and the cells were resuspended by 100μL 
PBS. Then cells and APC-Cy7-conjugated mouse anti-human 
LIVE/DEAD viability dye (5 μL/106 cells; BD Biosciences), 
FITC-conjugated mouse anti-human CD11b (5 μL/106 cells; 
Biolegend), PerCP-Cy5.5-conjugated mouse anti-human 
FABP4 (5 μL/106 cells; Abcam) and APC-conjugated rabbit 
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anti-human SPP1 (5 μL/106 cells; Abcam) were incubated 
on ice for 1 h. Next, after centrifugation, the supernatant was 
discarded and resuspend the cell by PBS, FACSAria III (BD 
Biosciences) was applied to quantitate cells. Results were ana-
lyzed by FlowJo software (TreeStar, Woodburn, OR, USA).

2.4  Immunofluorescence assay

The steps for immunofluorescence are the same as shown 
in our previous article [33]. The paraffin-embedded slides 
were incubated with mouse anti-human CD11b (ab212505, 
Abcam), rabbit anti-human SPP1 (ab214050, Abcam), or 
rabbit anti-human FABP4 (ab92501, Abcam) and then 
horseradish peroxidase-conjugated secondary antibody. 
After that, the slides were stained with DAPI.

2.5  Pseudotime trajectory analysis 
for macrophages

To investigate the relationship between trajectories and 
macrophage subpopulations, we used the Monocle3 R package 
to construct macrophage differentiation trajectories after 
specifying the corresponding cells as root nodes. Subsequently, 
graph_test was used to find the pseudotime trajectory difference 
genes, and the obtained genes were used to plot the heat map.

2.6  Cell‑to‑cell communication analysis

First, we constructed Cell Chat objects from the Seurat 
data and used the CellChatDB.human database to infer the 
ligand-receptor cellular communication network. netVis-
ual_circle function showed the strength of the communica-
tion network from different macrophages to other different 
cell types in the TME. netVisual_bubble function showed 
a bubble map of significant ligand-receptor interactions 
between macrophages and other cell types.

2.7  The CIBERSORTx analysis

First, we used our single-cell data and CIBERSORTx (https:// 
ciber sortx. stanf ord. edu) to construct signature genes for dif-
ferent cell types and subsequently calculated TCGA cell type 
abundance based on the matrix of signature genes [34].

2.8  Construction and validation of prognostic 
model

We used the glmnet package to perform LASSO Cox 
regression analysis to investigate the infiltration of 
macrophage subpopulations in relation to overall survival 

(OS) in TCGA-LUAD patients and to construct a risk model. 
Multifactorial Cox regression analysis was then used to 
determine the significance of the risk model versus clinical 
phenotype on prognosis. pROC package was used to predict 
the model's receiver operating characteristic (ROC) curve.

2.9  Statistical analysis

All statistical analyses were performed by R version 4.0.2. 
Continuous variables were assessed by an independent Stu-
dent's t-test. Non-normally distributed data were analyzed 
using the Wilcoxon rank sum test. Categorical variables 
were analyzed by chi-square test or Fisher's exact test. The 
relationship between gene expression levels was assessed 
based on Spearman's correlation coefficient. Two-sided 
p < 0.05 was the threshold of significance. The threshold for 
differential genes was defined as | logFC |> 1, adj. p < 0.05. 
*P < 0.05, **P < 0.01, ***P < 0.001.

2.10  Recognition of different TTK patterns 
by unsupervised clustering

NMF decomposition was used to identify potential mutation 
patterns in risk group patients using the method of Hong 
et al. using the TCGA-LUAD cohort somatic cell mutation 
data for analysis [35]. To further explore the etiology of 
patients in different risk subgroups, mutation patterns were 
compared with mutation features from the COSMIC data-
base, and each mutation pattern was annotated.

3  Results

3.1  Single‑cell expression profiling of myeloid cells 
and macrophages in LUAD

In order to clarify the role of myeloid cells and macrophages 
in the development of LUAD, we performed single-cell RNA 
sequencing using tumor tissues from 13 treatment-naive 
early and 8 advanced LUAD patients, 12 normal tissues, 
and four peripheral blood data. The baseline information 
of these patients is available in Supplementary Table 1. 
After dimension and clustering, we extracted myeloid cells 
from different datasets according to their common markers, 
such as LYZ, CD68, and CD1C, for subsequent studies 
(Supplementary Fig. 1a & b). A total of 24062 myeloid 
cells were obtained, including 13,783 cells from tumor 
tissues, 10,065 cells from normal tissues, and 217 from 
peripheral blood respectively (Fig. 1a). After removing batch 
effects using the SCTransform package to combine data 
from different datasets, we obtained 10 clusters for further 
study (Supplementary Fig. 1c & 2a). In these 10 clusters, 
differentiation of monocytes from macrophages is based on 

https://cibersortx.stanford.edu
https://cibersortx.stanford.edu


1354 Z. Hu et al.

1 3

the presence of monocyte markers (FCN1, LYZ, VCAN) 
and the absence of macrophage markers (CD68, GPNMB, 
CTSB). Therefore, we defined clusters 4 and 9 as monocytes 
and clusters 0, 1, 5, 6, 7, and 8 as macrophages. Besides the 
characteristic macrophage markers MARCO and MRC1, 
cluster 0 and 6 expressed alveolar resident cell-associated 
markers (FABP4, PPARG) and cell cycle genes (MKI67, 
STMN1), which are consistent with the clearance of surface-
active proteins and self-renewal potential of alveolar-resident 
macrophages, and thus were defined as alveolar macrophages 
(AMs) and clusters 1, 5, 7, and 8 were defined as interstitial 
macrophages (IMs). In addition, we also found that cluster 

2 and 3 expressed monocyte makers as well as macrophage 
makers, so we defined them as intermediate stages in the 
evolution of monocytes to macrophages, mo-Mac (Fig. 1b, 
c & Supplementary Fig. 2b).

Quantitatively, peripheral blood was mainly composed of 
monocytes, whereas IMs and AMs infiltration in normal and 
tumor tissues were mainly present (Fig. 1d). Compared to 
normal tissue, IMs and mo-Mac infiltration were increased 
in tumors, while the number of AMs and monocytes was 
decreased. AMs were similarly reduced in advanced LUAD 
patients, whereas the other three subtypes of myeloid cells 
were altered, but not significantly (Fig. 1e).

Fig. 1  Annotation of myeloid 
cells and macrophages by 
scRNA-seq in tumor, normal 
tissue, and peripheral blood a) 
UMAP plot colored by cells 
of different origins b) UMAP 
plot of marker gene for four 
cell types (from left to right: 
monocyte, AM, IM) c) UMAP 
plot colored by different clusters 
d) Relative proportion of cell 
subsets for different tissue 
origins e) Relative contribu-
tion of each cell type in normal 
vs. tumor tissue and early vs. 
advanced LUAD f) Difference 
genes between AMs and IMs, 
with a threshold of |log2FC|> 2, 
|Difference|> 0.2, up represents 
genes highly expressed in IMs, 
and down indicates genes highly 
expressed in AMs g) GSVA 
analysis of differential genes 
between AMs and IMs, up 
represents enriched pathways 
in AMs, and down is enriched 
in IMs
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We next compared the differences in gene expression 
between AMs and IMs (Fig. 1f), and GSVA analysis showed 
that AMs were mainly associated with neurological pro-
cesses, whereas IMs were related to metabolic (Fig. 1g).

3.2  Phenotypic heterogeneity of myeloid cells 
and macrophages in LUAD

Based on the markers expressed in each cluster, we contin-
ued to classify monocytes into CD14 + monocytes (those 
expressing classical monocyte markers, like IL1RN and 
S100A8/9), and non-classical CD16 + monocytes (highly 
expressing Leukocyte Immunoglobulin Like Receptor 
(LILR) family). The mo-Mac cells can also be divided into 
IL1B + mo-Mac and HSPA6 + mo-Mac, characterized by the 
expression of IL1B, CXCL8, CXCL3, or heat-shock pro-
teins (HSPA6 and HSPA1A/B), respectively. IMs could be 
further delineated into SPP1 + , CCL18 + , IFITM3 + , and 
MT1G + macrophages based on the expression of different 
characteristic genes. SPP1 + macrophages mainly highly 
express SPP1, GPNMB, CSTB, and other oncogenes, and 
several studies have shown their relationship with tumor 
progression. CCL2, CCL18, and other chemokines charac-
terized CCL18 + macrophages. In contrast, IFITM3 + mac-
rophages mainly express IFN-induced antiviral genes, which 
may have an important role in anti-infection. In addition, 
MT1G + macrophages were identified by high amounts 
of metallothionein, suggesting an association with oxida-
tive stress and apoptosis. Finally, we defined cluster 0 as 
FABP4 + Alveolar-mac and cluster 6 as STMN1 + Alveolar-
mac (Fig. 2a & Supplementary Fig. 2c).

After that, we divided the common cytokines of mye-
loid cells and macrophages into pro-inflammatory, anti-
inflammatory gene sets, and antigen-presentation-related 
MHC-I/II genes and investigated their expression in differ-
ent clusters. We found that monocytes and IL1B + mo-Mac 
mainly expressed pro-inflammatory genes. HSPA6 + mo-
Mac, in addition to expressing pro-inflammatory genes, 
also expressed anti-inflammatory factors such as CCL13, 
FLOR2, and receptor-mediated phagocytosis genes such as 
MERTK, suggesting an intermediate state in the evolution 
of monocytes to macrophages. Among IMs, SPP1 + and 
CCL18 + macrophages mainly expressed anti-inflammatory 
factors, while IFITM3 + macrophages highly expressed anti-
inflammatory and pro-inflammatory factors such as CCL2 
and CCL3. MT1G + macrophages expressed low in both pro- 
and anti-inflammatory factors and only expressed a small 
number of receptor-mediated phagocytosis genes. On the 
other hand, Alveolar-resident macrophages predominantly 
express major histocompatibility complex (MHC) related 
genes, suggesting a key role in antigen presentation and 
intrinsic immunity (Fig. 2b). In terms of pathways, IMs 
were associated with anti-inflammatory and IL2-STAT5, 

IL6-JAK2-STAT3 pathways. AMs were related to inflam-
mation and interferon genes (Fig. 2c).

We observed a significant increase in SPP1 + , CCL18 + , 
IFITM3 + macrophages, and STMN1 + alveolar mac-
rophages in tumor tissues verse normal tissues. Vice versa, 
FABP4 + alveolar macrophages, and IL1B + mo-Mac were 
reduced in the tumor microenvironment. FABP4 + alveo-
lar macrophages infiltration reduced both in the early and 
advanced tumor comparison, albeit non-significantly. 
IFITM3 + macrophages and HSPA6 + mo-MAc infiltration 
were increased in advanced LUAD, suggesting a correspond-
ing relationship in tumor progression, while IL1B + mo-Mac 
infiltration was reduced (Fig. 3a, b & Supplementary Fig. 2d). 
Subsequently, we selected SPP1 + and FABP4 + macrophage, 
two of the more predominant macrophages, for validation in 
our patient samples. The results of flow cytometry revealed a 
significantly higher macrophage infiltration in the tumor com-
pared to normal tissue. In addition, SPP1 + macrophage infil-
tration was increased in tumor samples, whereas in normal 
tissues it was predominantly FABP4 + macrophages (Fig. 3c 
& Supplementary Fig. 2e). Similarly, the results of our immu-
nofluorescence assay also confirmed this conclusion (Fig. 3d).

3.3  The trajectory of macrophages differentiation 
in LUAD

Subsequently, we reconstructed the cellular lineages of dif-
ferentiation trajectories of macrophages using pseudotime 
analysis. After using blood monocytes as the starting point, 
we can see that monocytes in the blood were first transformed 
into monocytes in the lung and confluence branch into mo-
Mac, the latter continuing to transit into monocyte-derived 
macrophages (IMs). We can also see no obvious relationship 
between AMs and monocyte populations, suggesting their 
self-renewal function (Supplementary Fig. 3a). Therefore, 
we divided them into two categories: AMs and non-AMs 
(including monocytes, mo-Mac, and IMs). We performed re-
clustered and trajectory analysis in the above two categories. 
Similarly, we found that monocytes in the blood first differ-
entiate into mo-Macs, since they send branches to individ-
ual macrophages (Fig. 4a Supplementary Fig. 3b). Alveolar 
macrophages, on the other hand, rely mainly on self-renewal 
(Fig. 4b). Moreover, the density plot also revealed that mac-
rophages from tumor tissues were mainly enriched in the 
latter half of the linear, which confirmed our above finding of 
IMs enrichment in the tumor tissues (Supplementary Fig. 3c).

Modeling gene expression along the IMs lineage revealed 
five gene sets (Fig. 4c). Sets 1 mainly expresses monocyte-
associated genes, and inflammatory markers, suggesting 
the differentiation started from monocytes and the inflam-
matory state of monocytes. Set 2 and 3 were characterized 
by transcription factors, inflammatory markers, heat-shock 
proteins, and metallothionein in the lineage. It indicated 
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Fig. 2  Diversity within the myeloid cells and macrophages lineage 
and functionality according to tissue origins a) Complex heatmap of 
selected marker genes in each cell cluster. Up: Tissue preference of 
each cluster. Down: Relative expression of marker genes associated 

with each cell subset b) Heatmap showing myeloid cell and mac-
rophage phenotypes with corresponding functional genes c) Heatmap 
showing myeloid cell and macrophage phenotypes with correspond-
ing functional gene sets and pathways
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that monocytes and mo-Mac were in a pro-inflammatory 
and oxidative stress state, which may suggest their potential 
anti-cancer effects in TME. Notably, in set 3, we can see a 
high expression of SPP1, which induces differentiation of 
macrophages to tumor-associated macrophages, promotes 

angiogenesis and tumor metastasis, and is associated with 
a worse prognosis. Furthermore, we also observed set 5 
was expressed at the end of the trajectory and comprised 
genes involved in anti-inflammatory, lipid degradation or 
metabolism genes, and genes associated with macrophage 

Fig. 3  Infiltration of different macrophage subtypes a) Relative con-
tribution of each cell type in normal vs. tumor b) Relative contribu-
tion of each cell type in early vs. advanced LUAD c) Proportion of 
SPP1 + macrophage and FABP4 + macrophage in tumor and normal 

tissue macrophages d) Immunofluorescence shows the infiltration of 
SPP1 + macrophage and FABP4 + macrophage in tumor and normal 
tissues
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pro-oncology (LGMN, CSTB, GPNMB), suggesting that 
they may play a key role in promoting tumor progression. In 
addition, we compared the traditional classical or alternative 

activation pathway (M1/M2) of macrophages and pro-
inflammatory or anti-inflammatory functions with pseudo-
time. We found that classical pathway (M1-like) was highly 

Fig. 4  The trajectory of macrophage differentiation in LUAD a) 
Pseudotime trajectories for IMs based on monocle3 b) Pseudotime 
trajectories for AMs based on monocle3 c) Gene expression dynam-

ics along the IMs lineage d) Profiling of M1-like or M2-like signaling 
along the IMs lineage e) Gene expression dynamics along the AMs 
lineage



1359Dissecting the single‑cell transcriptome network of macrophage and identifies a signature…

1 3

expressed at the beginning and then decreased, while alter-
native activation pathway (M2-like) was gradually increased. 
Similar results were observed for pro-inflammatory and anti-
inflammatory functions (Fig. 4d & Supplementary Fig. 3d).

Modeling gene expression along the alveolar mac-
rophages’ lineage revealed three gene sets (Fig. 4e). Set1 
mainly expressed cell proliferation-related genes (MKI67, 
TOP2A) and transcription factors (CDK1, PLK1), suggest-
ing its high proliferative activity. Sets 2 and 3 comprised 
genes involved in receptor-mediated phagocytosis, such 
as scavenger receptors MARCO and MSR1, complement 
activation (C1QA, C1QB, C1QC), antigen presentation 
(HLA-DRA, HLA-DRB1, HLA-DPA1, HLA-DPB1), as 
well as anti-inflammatory markers (PPARG, FABP4). This 
cluster cells were similar to the main expression phase of 
FABP4 + alveolar macrophages, indicating that this cluster 
has the function of antigen presentation, activation of innate 
immunity, and thus possible tumor killing.

3.4  Cell‑to‑cell communication to unravel 
the macrophage context in LUAD

Subsequently, we explored and predicted the interactions 
between IMs and AMs with other cells in the TME. First, 
we calculated the interactions between different types of 
macrophages and other cells, and assessed the interac-
tion strength (Supplementary Fig. 4a). In addition to their 
self-interaction, the interactions between all kinds of mac-
rophages with T cells were the most obvious and frequent. 
Meanwhile, the interaction between IMs with fibroblasts and 
tumor cells was also more significant than in other mac-
rophage types. For alveolar macrophages, their interactions 
with other cells are almost always involved in major histo-
compatibility complexes and antigen presentation (MHC-I 
and MHC-II signaling pathways), phagocytosis (MARCO, 
MRC1), and FN1 or CD44-rich extracellular matrix, such 
as FN1-CD44, COL-CD44 (Fig. 5a). IMs interactions were 
mainly about migratory and proliferative effects, especially 
with endothelial, epithelial, and cancer cells (CXCL8-
ACKR1). Interstitial macrophages also presented antigen 
to T cells but were not as strong as alveolar macrophages. 
Notably, the interaction of the SPP1 pathway between mono-
cyte-derived macrophages with the immune cell was also 
significantly enhanced (SPP1-CD44) (Fig. 5a). The interac-
tions between MRC1, secreted by AMs and PTPRC, espe-
cially expressed on the surface of T cells were enhanced. 
MRC1 plays a key role in myeloid plasticity and can improve 
adaptive immune responses. IMs, on the other hand, inter-
act more closely with stromal cells, especially based on the 
SDC4-COL family (Fig. 5b). Finally, we selected four path-
ways we were interested (SPP1, FN1, MHC-I, and MHC-II) 
to identify the role of each type of cell in them (Supplemen-
tary Fig. 4b). It can be seen that macrophages mainly acted 

as senders in the MHC pathway, and alveolar macrophages 
were of higher importance. In contrast, in the FN1 pathway, 
alveolar macrophages act primarily as regulators, regulat-
ing signals sent from fibroblasts to other cells. On the other 
hand, interstitial macrophages affected other cells mainly 
through the secretion of SPP1. Notably, the downstream 
influencers of the SPP1 pathway were mostly immune cells, 
with almost no effect on tumor cells and fibroblasts.

3.5  Macrophage infiltration contributed the LUAD 
prognosis and immunotherapy

Then, we mapped our resulting single-cell data to TCGA 
transcriptome data using the deconvolution approach to cal-
culate the percentage of different subtypes of macrophages. 
Similarly, the infiltration of alveolar macrophages and mo-
Mac was significantly higher in normal tissues, while mono-
cyte-derived macrophages and monocytes were less frequent 
(Supplementary Fig. 5a). As for subgroups, FABP4 + Alveo-
lar Mac and IL1B + mo-Mac were more infiltrated in normal 
tissues, while SPP1 + Macrophage, STMN1 + Alveolar Mac, 
and IFITM3 + Macrophage were increased in tumor tissues. 
In terms of macrophage infiltration between early stage and 
advanced LUAD, monocyte was slightly increased, and 
no significant difference between the rest (Supplementary 
Fig. 5b).

To identify prognostic features based on macrophage 
infiltration, we used the LASSO Cox regression model to 
calculate the relationship between the different subpopula-
tion macrophage infiltration and prognosis. Subsequently, 
a risk score was established: risk score = (3.02 × Monocyte 
expression) + (-2.06 × mo-Mac expression) + (1.73 × Mac-
rophage expression) + (-1.20 × Alveolar mac expression). 
The risk score was calculated for each patient using this for-
mula. Patients were divided into a high-risk group (n = 251) 
and a low-risk group (n = 251) based on the median cutoff 
(cutoff value = 1.957), and the distribution of risk scores and 
survival status for each patient were shown in Fig. 6a. Base-
line information of overall patients and high and low-risk 
subgroups was presented in supplementary Table 2. The heat 
map shows the specific level of infiltration of the four types 
of myeloid cells or macrophages (Supplementary Fig. 5c). 
Kaplan–Meier survival analysis showed that overall survival 
was significantly higher in low-risk patients than in high-risk 
patients (P = 0.0041) (Fig. 6b). We assessed the predictive 
accuracy of the prognostic features using time-dependent 
ROC curves for OS at 2, 3, and 5 years (Fig. 6c). The AUC 
values at these times were 0.719 (95% CI: 0.667—0.771), 
0.717 (95% CI: 0.668—0.767), and 0.675 (95% CI: 0.626—
0.724), respectively. Univariate and multivariate Cox regres-
sion analyses were performed to further explore whether the 
risk score was an independent factor in LUAD patients. The 
results of multivariate cox regression models confirmed that 
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risk score was a significant factor independent of age, sex, 
and clinical symptoms (HR: 6.764, 95% CI: 2.312 – 19.789, 
p < 0.001) (Supplementary Table 3).

To validate the accuracy of our risk score in predicting 
prognosis, we used four different GEO datasets (GSE50081, 
GSE37745, GSE31210, GSE30219) and selected LUAD 
patients after a de-batch merge. The percentage of different 
macrophages was calculated by deconvolution, and then the 
risk score was calculated for each patient using the above 
formula. Similarly, patients were divided into low-risk 
(n = 271) and high-risk groups (n = 273) based on median 
cutoff values (cutoff value = -0.968) (Fig. 6d). Baseline 
information was demonstrated in supplementary Table 4. 
Kaplan–Meier survival analysis showed that patients in 

the low-risk group had significantly better OS than those 
in the high-risk group (p = 0.0014) (Fig. 6e). In addition, 
the accuracy of the predictive assessment was confirmed by 
ROC curves using 2-, 3-, and 5-year OS. The AUC values 
for these times were 0.689 (95% CI: 0.634—0.743), 0.647 
(95% CI: 0.594—0.700) and 0.626 (95% CI: 0.577–0.675), 
respectively (Fig. 6f). Multivariate cox regression models 
also showed that risk score was a significant factor independ-
ent of age, gender, and tumor stage (HR: 1.816, 95% CI: 
1.324 – 2.492, p < 0.001) (Supplementary Table 5).

In addition, we observed the same significance of mac-
rophage infiltration in predicting immune response in eight 
public cancer cohorts receiving immunotherapy. These 
included clear cell renal cell carcinoma (ccRCC), non-small 

Fig. 5  Cell-to-cell communication between different subtypes of myeloid cells and macrophages with other cells a & b) Bubble plot of ligand-
receptor-mediated interactions between IMs, AMs, and other cell types a) AMs and IMs to other cell types b) other cell types to AMs and IMs
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cell lung cancer (NSCLC), melanoma, met-melanoma, and 
urothelial cancer (Fig. 7a).

3.6  Differences in gene expression and immune cell 
infiltration between high and low‑risk groups

Next, we performed differential gene analysis for the high- 
and low-risk groups and obtained a total of 138 up-regu-
lated and 219 down-regulated genes in the high-risk group 
(Fig. 7b). By enrichment analysis, we found those differ-
ential genes were mainly enriched in antigen presentation, 

immunomodulatory, and extracellular matrix-related path-
ways related to the biological function of macrophages (Sup-
plementary Fig. 6). GSVA analysis showed that the high-risk 
group was mainly enriched in metabolism-related pathways 
such as alditol metabolic process and disulfide oxidoreduc-
tase activity, while the low-risk group was mostly associated 
with antigen presentation, immune activation pathways, such 
as 'antigen processing and presentation of endogenous lipid 
antigen via MHC class IB', and 'activated T cell proliferation' 
(Fig. 7c). Interestingly, some of the pathways enriched in the 
low-risk group were associated with microglia. Microglia 

Fig. 6  Construction of 
prognostic signature based 
on macrophage infiltration in 
TCGA and GEO database a) 
The distribution of risk scores 
and survival status of the TCGA 
patients b) Kaplan–Meier 
curves of survival analysis in 
TCGA LUAD patients based on 
the risk score c) ROC analysis 
of the predictive model for 
predicting the risk of death at 
2, 3, and 5 years in the TCGA 
database d) The distribution of 
risk scores and survival status 
of the GEO patients e) Kaplan–
Meier curves of survival 
analysis in GEO LUAD patients 
based on the risk score f) ROC 
analysis of the predictive model 
for predicting the risk of death 
at 2, 3, and 5 years in the GEO 
database
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are a specialized type of macrophage located in the brain 
and spinal cord and, similar to alveolar macrophages, are 
embryonic tissue-resident macrophages, responsible for the 
immune defense of the central nervous system [36].

Since macrophages play the phagocytic, antigen presenta-
tion role in antitumor immunity, we explored the relationship 
between high and low-risk groups and immune cell infiltra-
tion in patients with LUAD. CIBERSORT analysis showed 
a high proportion of macrophage M0 and macrophage M2 
in the high-risk group, while a high infiltration of B cells 
memory, dendritic cells resting, mast cells resting, T cells 
CD4 memory activated, T cells CD4 memory resting, T cells 
CD8 in the low-risk group (Fig. 7d).

3.7  Genomic features and signaling pathways 
associated with the high and low‑risk groups

We analyzed the distribution of somatic mutations among 
the two groups using mutation data from the TCGA dataset. 
The frequency of mutations was significantly higher in the 
high-risk group compared to the low-risk group (Fig. 8a). 
Common mutations in lung cancer, such as TP53, TTN, 

and CSMD3 mutations, were predominant in the high-risk 
group. Since somatic mutations result from a combination 
of factors, different mutational processes lead to different 
mutation types or characteristics. Therefore, we identified 
three mutational features for both groups of patients, which 
were used to represent the mutational characteristics com-
prehensively (Fig. 8b). Mutations in the high-risk group 
were mainly associated with signatures 4, 6, and 13, and in 
the low-risk group with signatures 1, 4, and 13. Signature 1 
is the result of an endogenous mutational process initiated by 
spontaneous deamination of 5-methylcytosine. Signature 4 is 
associated with smoking and is likely due to tobacco muta-
gens. Signature 6 is associated with defective of DNA mis-
match repair and is found in unstable microsatellite tumors. 
And signature 13 has been attributed to the activity of the 
AID/APOBEC family of cytidine deaminases converting 
cytosine to uracil. Smoking-induced mutations dominated 
the high-risk group, while the AID/APOBEC family was 
the predominant pattern in the low-risk group (Fig. 8c). 
The above study suggests that although the somatic muta-
tion genes were similar in the high and low-risk groups, 
there were still differences in mutation rates and factors, 

Fig. 7  Genomic features and signaling pathways associated with 
the high and low-risk groups a) Macrophage infiltration contributed 
on immunotherapy b) Differential genes between the high-risk and 
low-risk groups with a threshold of |log2FC|> 1, adj. p.value < 0.05, 

up represents genes highly expressed in high-risk group, and down 
indicates genes highly expressed in low-risk group c) GSVA analy-
sis of differential genes between high and low-risk groups d) The 22 
immune cells' infiltration between high-risk and low-risk groups
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which was one of the potential factors that may contribute 
to survival differences.

4  Discussion

Using sc-RNA data from tumor tissue, normal tissue, and 
peripheral blood samples from LUAD patients, we per-
formed an in-depth analysis of macrophages in the LUAD 
TME depending on their origin. Notably, our study incorpo-
rated monocyte cells from peripheral blood of tumor patients 
and used it as a starting point for the pseudotime analysis 
of macrophage differentiation, which can more accurately 
determine the origin and differentiation trajectory of dif-
ferent types of macrophages. In contrast to the relatively 
stable phenotype of lymphocytes and stromal cells in dif-
ferent tissues and cancer types, the different characteristics 
of macrophages seem to depend on their tissue origin [30, 
37, 38]. Although the previous study showed that TAM in 
lung cancer exhibits a continuous spectrum phenotype [30], 
we found that alveolar and interstitial macrophages express 
different phenotypic and functional characteristics. In this 
study, we performed differential gene analysis, cell-to-cell 
communication, and pseudotime analysis between alveolar 
macrophages and interstitial macrophages. Markers of dif-
ferent subtypes of macrophages were then projected onto the 
bulk RNA-seq data of LUAD to construct a new prognostic 
predictive signature, which was identified as an independent 
risk factor for LUAD patients. Transcriptomic, metabolic, 
immune infiltration and mutational analyses were also per-
formed on the high and low-risk groups to assess potential 
reasons for survival differences between the two groups.

Firstly, we found that in normal tissues, alveolar mac-
rophages, especially FABP4 + AMs, were more predomi-
nant, whereas IMs were more infiltrated in tumors, such as 
SPP1 + , CCL18 + , IFITM3 + macrophages. AMs are mainly 
characterized by their anti-inflammatory, pro-phagocytic, 
and antigen presentation functions, suggesting their role in 
clearing dead alveolar epithelial cells and foreign pathogenic 
bacteria in normal lung tissue, and clearing tumor cells in 
tumors, which is consistent with the previously reported 
function of alveolar macrophages [39]. In inflammatory dis-
eases, AMs' function is thought to contribute to disease ame-
lioration and inflammation regression [40]. FABP4 + mac-
rophages play an important role in infection. Studies have 
shown that their infiltration increases in mild COVID-19 
patients [41]. In addition, it can recruit neutrophils and 
clear pathogenic bacteria. After knocking down FABP4, 
P. aeruginosa infection mice exhibited reduced bacterial 
clearance and increased mortality [42]. In tumors, Zhou Y 
et al. found increased infiltration of FABP4 + macrophages 
in metastatic lung osteosarcoma [43]; however, its role in 
lung cancer needs further study. Interstitial macrophages 

are predominantly characterized by the expression of anti-
inflammatory-related genes, and previous studies have 
shown that they are essential for maintaining lung homeo-
stasis [28, 44]. SPP1 + macrophages are considered tumor-
specific macrophages, which are highly expressed in a vari-
ety of tumor tissues and hardly expressed in normal tissues, 
exerting pro-angiogenic and pro-tumor metastatic func-
tions, and high infiltration levels are associated with worse 
prognosis [45–47]. In lung cancer, SPP1 + macrophages 
were found to mediate macrophage polarization, lung can-
cer immune evasion, and angiogenesis [48, 49], and may 
be a novel biomarker for immunotherapy [50]. Similarly, 
CCL18 + macrophages have been found to exhibit extremely 
high metabolic activity in the TME and are associated with a 
poorer prognosis [51, 52]. In contrast, effective neoadjuvant 
chemotherapy can downregulate this metabolic activation 
and offer the possibility of targeting metabolic pathways for 
treatment [53].

Secondly, the results of the pseudotime analysis showed 
that interstitial macrophages mainly originated from mono-
cytes in the blood, especially CD14 + monocytes, whereas 
alveolar macrophages were independent of monocytes and 
mainly self-renewed. During the evolution from monocytes 
to interstitial macrophages, we found a shift in gene expres-
sion from monocyte-associated genes, pro-inflammatory 
genes to heat shock proteins, metallothionein, and finally 
to anti-inflammatory genes and genes associated with pro-
carcinogenesis [54–56]. This trajectory reflects the continu-
ous process of macrophage transition from anti-cancer to 
pro-cancer, suggesting the heterogeneity of macrophages 
in TME. Macrophages as a double-edged sword. How to 
utilize their anti-cancer role more efficiently and inhibit 
their pro-cancer is the key to recent research. As for alveo-
lar macrophages, there is a shift from proliferation genes 
to phagocytosis, MHC genes, and complement compo-
nents activating functional genes. This suggests their role 
in antigen presentation and activation of adaptive immunity 
[57–59]. Maximal heterozygosity at HLA-I loci can improve 
the overall survival of immunotherapy compared with 
patients who were homozygous for at least one HLA locus 
[60]. This may be related to its strong antigen-presenting 
ability, which makes it more likely to benefit from immu-
notherapy. In cell-to-cell communication, alveolar mac-
rophages mainly interact with CD4 + T cells and CD8 + T 
cells through the MHC pathway, whereas interstitial mac-
rophages mainly interact with fibroblasts and tumor cells 
by SPP1. Cancer-associated fibroblasts (CAFs) and TAMs 
usually interact through the CSF1-CSF1R axis [61]. Zhang 
et al. showed that SPP1 + TAM is more likely to interact 
with CAFs through syndecan-2 expression on TAM, which 
binds to matrix metallopeptidase 2 (MMP2) on CAFs [47]. 
In subcutaneous or in situ mouse models of hepatocellu-
lar carcinoma (HCC), SPP1 + tumors responded better to 
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combined treatment with PD-L1 blockade and CSF1R inhi-
bition [62]. This may be related to the fact that a relatively 
high proportion of immunosuppressive TAM (expressing 
SPP1) was depleted by CSF1R inhibitors, leading to a higher 
degree of TME remodulation, favoring tumor suppression. 
In addition to fibroblasts, CSF1 can also be secreted by 
tumor cells, suggesting a potential pro-tumor effect [63]. 
Apart from CSF1-CSF1R signaling, CAFs can also recruit 
monocytes and macrophages into TME via CCL2-CCR2, 
the CXC chemokine family [64–66]. Knocking down the 
CCL2 gene in CAFs, thus blocking the CCL2-CCR2 axis, 
can inhibit tumor growth [67].

The predictive power of the prediction models based on 
the level of infiltration of different subtypes of monocytes/
macrophages was well validated in both TCGA and GEO 
databases. Its powerful predictive power prompted us to 
explore the underlying mechanisms. Differential genetic 
analysis, GO analysis, and GSVA analysis of the high and 
low groups showed that the low-risk group was mainly 
associated with immune and antigen presentation, while the 
high-risk group was associated with metabolism. Tumor pro-
gression is often accompanied by metabolic reprogramming 
in order to meet the increased bioenergetic and biosynthetic 
demands. And in TME, the metabolism of other cell types 
besides tumor cells can also regulate tumor progression [68]. 
Tumor cells produce large amounts of lactate through the 
Warburg effect and release it into the extracellular microen-
vironment. Lactate can act as a messenger between tumor 
cells and TAM, inducing vascular endothelial growth factor 
(VEGF) expression and M2-like polarization [69]. In addi-
tion, other tumor metabolites, such as glutamine, succinate, 
and adenosine, can also induce TAM differentiation to the 
M2 phenotype and promote tumor progression [70–72]. 
Gene mutations play a key role in causing abnormal and 
uncontrolled growth of tumor cells. These mutations are 
known as "drivers" in driving tumorigenesis, conferring cer-
tain selective advantages to mutant cells over neighboring 
cells [73]. Different factors often cause gene mutations, and 
it is important to identify the various factors for us to take 
different interventions. Mutational signatures in the high-risk 
group were mainly identified to be associated with smok-
ing. This may be related to the ability of smoking to recruit 
blood monocytes to differentiate into macrophages, produc-
ing a higher number of immature macrophages, promoting 

pro-inflammatory effects, and reducing phagocytosis and 
efferocytosis ability [74, 75]. The mutational signature of the 
low-risk group is associated with the AID/APOBEC family, 
a group of cytidine deaminases that deaminate cytidine to 
uridine and can therefore insert mutations in DNA and RNA. 
In the immune system, AIDs and APOBEC3 play a role in 
antigen-driven antibody diversification and innate defense 
systems against retroviruses, respectively. Also, given their 
ability to mutate DNA, they may have a potential role in 
cancer development [76].

The present study has several limitations. First, our study 
is only based on the single cell and public database and does 
not include any in vitro or in vivo experiments, which are 
needed to further explore the potential molecular mecha-
nisms of macrophages in predicting prognosis and tumor 
progression. In addition, the predictive power of the model 
needs to be further validated in large-scale prospective clini-
cal studies.

5  Conclusion

In conclusion, we investigated the composition, expression 
differences, and phenotypic changes of macrophages from 
different origins in lung adenocarcinoma. The functional 
transformation was also explored through pseudotime tra-
jectories and cell-to-cell interactions. In addition, we devel-
oped a prognostic prediction model based on different mac-
rophage subtype infiltration, which can be used as a valid 
prognostic biomarker. New insights were provided into the 
role of macrophages in the prognosis and potential treatment 
of LUAD patients.
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