Skip to main content

Advertisement

Log in

TBX21 attenuates colorectal cancer progression via an ARHGAP29/RSK/GSK3β dependent manner

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have shown that TBX21 (T-Box Transcription Factor 21) plays a vital role in coordinating multiple aspects of the immune response especially type 1 immune response as well as tumor progression. However, the function of TBX21 in colorectal cancer (CRC) remains unclear.

Methods

IHC to investigate TBX21 expression in CRC tissues. Cell proliferation and apoptosis assays to validate TBX21 function in vitro and in vivo. RNA-seq assay to explore target genes of TBX21. Human phospho-kinase array assay to explore down-stream signaling of TBX21.

Results

We disclosed that the expression of TBX21 was marked decreased in CRC versus normal tissue, and negatively correlated with CRC TNM stages. Surprisingly, we found that the CRC and normal cell lines show no TBX21 expression levels. Ectopic expression of TBX21 inhibited cell proliferation and promoted cell apoptosis in vitro. Moreover, RNA-sequence data first time showed that ARHGAP29 acts as the target gene of TBX21 to mediate down-stream signaling activation. Human phospho-kinase array data first time displayed that ectopic expression of TBX21 reduced kinase RSK and GSK3β activation. In contrast, knocked down the expression of TBX21 or ARHGAP29 alternatively abolished TBX21 mediated cell proliferation suppression, cell apoptosis enhancement and RSK/GSK3β activation. In addition, xenograft model studies demonstrated that TBX21 inhibits colorectal tumor progression via ARHGAP29/ RSK/ GSK3β signaling in vivo.

Conclusions

In summary, the aforementioned findings suggest a model of TBX21 in suppressing CRC progression. This may provide a promising target for CRC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data are available for all study authors. The data sets used and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CRC:

Colorectal Cancer

TBX21:

T-Box Transcription Factor 21

ARHGAP29:

Rho GTPase activating protein 29

RSK:

Ribosomal S6 protein kinase

GSK3β:

Glycogen synthase kinase-3beta

CCK8:

Cell Counting Kit-8

References

  1. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022)

    Article  PubMed  Google Scholar 

  2. E. Dekker, P.J. Tanis, J.L.A. Vleugels, P.M. Kasi, M.B. Wallace, Colorectal cancer. Lancet 394, 1467–1480 (2019)

    Article  PubMed  Google Scholar 

  3. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer Stat. 2021 CA Cancer J. Clin. 71, 7–33 (2021)

    Google Scholar 

  4. K. Ganesh, J. Massagué, Targeting metastatic cancer. Nat. Med. 27, 34–44 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.L. Peng, The T-box transcription factor T-bet in immunity and autoimmunity. Cell. Mol. Immunol. 3, 87–95 (2006)

    CAS  PubMed  Google Scholar 

  6. E. Stolarczyk, G.M. Lord, J.K. Howard, The immune cell transcription factor T-bet: a novel metabolic regulator. Adipocyte 3, 58–62 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. V.E. Papaioannou, The T-box gene family: emerging roles in development, stem cells and cancer. Development 141, 3819–3833 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Huang, J. Bi, Expression regulation and function of T-Bet in NK cells. Front. Immunol. 12, 761920 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. X. Zhang, X. Wen, N. Feng, A. Chen, S. Yao, X. Ding, L. Zhang, Increased expression of T-Box transcription factor protein 21 (TBX21) in skin cutaneous melanoma predicts better prognosis: a study based on the Cancer Genome Atlas (TCGA) and genotype-tissue expression (GTEx) databases. Med. Sci. Monit. 26, e923087 (2020)

  10. W.S. Garrett, S. Punit, C.A. Gallini, M. Michaud, D. Zhang, K.S. Sigrist, G.M. Lord, J.N. Glickman, L.H. Glimcher, Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell. 16, 208–219 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Zhao, W. Shen, J. Yu, L. Wang, TBX21 predicts prognosis of patients and drives cancer stem cell maintenance via the TBX21-IL-4 pathway in lung adenocarcinoma. Stem Cell. Res. Ther. 9, 89 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Saras, P. Franzén, P. Aspenström, U. Hellman, L.J. Gonez, C.H. Heldin, A novel GTPase-activating protein for rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. J. Biol. Chem. 272, 24333–24338 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. K. Kolb, J. Hellinger, M. Kansy, F. Wegwitz, G. Bauerschmitz, G. Emons, C. Gründker, Influence of ARHGAP29 on the Invasion of Mesenchymal-Transformed breast Cancer cells. Cells 9, 2616 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Miyazaki, K. Ito, T. Fujita, Y. Matsuzaki, T. Asano, M. Hayakawa, T. Asano, Y. Kawakami, Progression of human renal cell Carcinoma via Inhibition of RhoA-ROCK Axis by PARG1. Transl Oncol. 10, 142–152 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  15. K. Xu, A. Sacharidou, S. Fu, D.C. Chong, B. Skaug, Z.J. Chen, G.E. Davis, O. Cleaver, Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev. Cell. 20, 526–539 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Post, W.J. Pannekoek, S.H. Ross, I. Verlaan, P.M. Brouwer, J.L. Bos, Rasip1 mediates Rap1 regulation of rho in endothelial barrier function through ArhGAP29. Proc. Natl. Acad. Sci. U S A 110, 11427–11432 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Qiao, J. Chen, Y.B. Lim, M.L. Finch-Edmondson, V.P. Seshachalam, L. Qin, T. Jiang, B.C. Low, H. Singh, C.T. Lim, M. Sudol, YAP regulates actin Dynamics through ARHGAP29 and promotes metastasis. Cell. Rep. 19, 1495–1502 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. L. Mariani, C. Beaudry, W.S. McDonough, D.B. Hoelzinger, T. Demuth, K.R. Ross, T. Berens, S.W. Coons, G. Watts, J.M. Trent, J.S. Wei, A. Giese, M.E. Berens, Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J. Neurooncol 53, 161–176 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. H. Zhao, T.A. Martin, E.L. Davies, F. Ruge, H. Yu, Y. Zhang, X.U. Teng, W.G. Jiang, The clinical implications of RSK1-3 in human breast Cancer. Anticancer Res. 36, 1267–1274 (2016)

    CAS  PubMed  Google Scholar 

  20. J. Xu, Q. Jia, Y. Zhang, Y. Yuan, T. Xu, K. Yu, J. Chai, K. Wang, L. Chen, T. Xiao, M. Li, Prominent roles of ribosomal S6 kinase 4 (RSK4) in cancer. Pathol. Res. Pract. 219, 153374 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. R. Cronin, G.N. Brooke, F. Prischi, The role of the p90 ribosomal S6 kinase family in prostate cancer progression and therapy resistance. Oncogene 40, 3775–3785 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S.E. Hardt, J. Sadoshima, Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ. Res. 90, 1055–1063 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. J. Lin, T. Song, C. Li, W. Mao, GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim. Biophys. Acta Mol. Cell. Res. 1867, 118659 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. W. Shen, W. Du, Y. Li, Y. Huang, X. Jiang, C. Yang, J. Tang, H. Liu, N. Luo, X. Zhang, Z. Zhang, TIFA promotes colorectal cancer cell proliferation in an RSK- and PRAS40-dependent manner. Cancer Sci. 113, 3018–3031 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. W. Shen, J. Xie, S. Zhao, R. Du, X. Luo, H. He, S. Jiang, N. Hao, C. Chen, C. Guo, Y. Liu, Y. Chen, P. Sun, S. Yang, N. Luo, R. Xiang, Y. Luo, ICAM3 mediates inflammatory signaling to promote cancer cell stemness. Cancer Lett. 422, 29–43 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. W. Shen, X. Zhang, R. Du, Y. Fan, D. Luo, Y. Bao, W. Yang, N. Luo, Y. Luo, S. Zhao, ICAM3 mediates tumor metastasis via a LFA-1-ICAM3-ERM dependent manner. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2566–2578 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. W. Shen, X. Zhang, J. Tang, Z. Zhang, R. Du, D. Luo, X. Liu, Y. Xia, Y. Li, S. Wang, S. Yan, W. Yang, R. Xiang, N. Luo, Y. Luo, J. Li, CCL16 maintains stem cell-like properties in breast cancer by activating CCR2/GSK3β/β-catenin/OCT4 axis. Theranostics 11, 2297–2317 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Li, C. Yang, Q. Aruna, X. Zhou, W. Jiang, C. Du, P. Liu, X. Lv, G. Wang, S. Fan, X. Zhao, A. Zhang, Jin, W. Shen, Functional evaluation of various ICAM3 transcript variants in diffuse large B-Cell lymphoma. Leuk Lymphoma, 1–10 (2022)

  29. D. Luo, D. Liu, W. Shi, H. Jiang, W. Liu, X. Zhang, Y. Bao, W. Yang, X. Wang, C. Zhang, H. Wang, L. Yuan, Y. Chen, T. Qu, D. Ou, W. Shen, S. Yang, PPA1 promotes NSCLC progression via a JNK- and TP53-dependent manner. Oncogenesis 8, 53 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. W. Shen, X. Zhang, R. Du, W. Gao, J. Wang, Y. Bao, W. Yang, N. Luo, J. Li, Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner. Br. J. Cancer 123, 730–741 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. V. Lazarevic, L.H. Glimcher, G.M. Lord, T-bet: a bridge between innate and adaptive immunity. Nat. Rev. Immunol. 13, 777–789 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. K. Suttner, P. Rosenstiel, M. Depner, M. Schedel, L.A. Pinto, A. Ruether, J. Adamski, N. Klopp, T. Illig, C. Vogelberg, S. Schreiber, E. von Mutius, M. Kabesch, TBX21 gene variants increase childhood asthma risk in combination with HLX1 variants. J. Allergy Clin. Immunol. 123, 1062–1068 (2009) 1068.e1061-1068

    Article  CAS  PubMed  Google Scholar 

  33. K. Shimizu, H. Matsumoto, H. Hirata, K. Ueno, M. Samoto, J. Mori, N. Fujii, Y. Kawai, R. Inoue, Y. Yamamoto, S. Yano, T. Shimabukuro, M. Furutani-Seiki, H. Matsuyama, ARHGAP29 expression may be a novel prognostic factor of cell proliferation and invasion in prostate cancer. Oncol. Rep. 44, 2735–2745 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82173192 to Wenzhi Shen), Shandong Provincial Natural Science Foundation (No. ZR2021QH113 to Yongming Huang), National Natural Science Foundation of China (No. 82203287 to Renle Du), Student Innovation Training Program of Jining Medical University (No. cx2021091 to Wenzhi Shen).

Author information

Authors and Affiliations

Authors

Contributions

JXY and SWZ designed the experiments, DWF, YCL, WSY and LYF prepared the materials and performed the experiments, SXZ and YXW analyzed the data, YJ and HYM helped to collect the CRC tumor tissue samples, SWZ wrote the manuscript, HYM, ZXY and SWZ repaired and prepared the manuscripts.

Corresponding authors

Correspondence to Xiaoyuan Zhang, Yongming Huang or Wenzhi Shen.

Ethics declarations

Ethics approval and consent to participate

The CRC tissue study was performed in accordance with Jining Medical University Medical Ethics Committee Guidelines, and approved by Jining Medical University Medical Ethics Committee. The animal experiments were performed in accordance with Jining Medical University Animal Welfare Guidelines, and approved by Jining Medical University Animal Ethics Committee.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Du, W., Yang, C. et al. TBX21 attenuates colorectal cancer progression via an ARHGAP29/RSK/GSK3β dependent manner. Cell Oncol. 46, 1269–1283 (2023). https://doi.org/10.1007/s13402-023-00809-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00809-6

Keywords

Navigation