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Abstract
Purpose Breast Cancer (BC) is the most diagnosed cancer in women; however, through significant research, relative survival 
rates have significantly improved. Despite progress, there remains a gap in our understanding of BC subtypes and personalized 
treatments. This manuscript characterized cellular heterogeneity in BC cell lines through scRNAseq to resolve variability 
in subtyping, disease modeling potential, and therapeutic targeting predictions.
Methods We generated a Breast Cancer Single-Cell Cell Line Atlas (BSCLA) to help inform future BC research. We 
sequenced over 36,195 cells composed of 13 cell lines spanning the spectrum of clinical BC subtypes and leveraged publicly 
available data comprising 39,214 cells from 26 primary tumors.
Results Unsupervised clustering identified 49 subpopulations within the cell line dataset. We resolve ambiguity in subtype 
annotation comparing expression of Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor 
Receptor 2 genes. Gene correlations with disease subtype highlighted S100A7 and MUCL1 overexpression in HER2 + cells 
as possible cell motility and localization drivers. We also present genes driving populational drifts to generate novel gene 
vectors characterizing each subpopulation. A global Cancer Stem Cell (CSC) scoring vector was used to identify stemness 
potential for subpopulations and model multi-potency. Finally, we overlay the BSCLA dataset with FDA-approved targets 
to identify to predict the efficacy of subpopulation-specific therapies.
Conclusion The BSCLA defines the heterogeneity within BC cell lines, enhancing our overall understanding of BC cellular 
diversity to guide future BC research, including model cell line selection, unintended sample source effects, stemness factors 
between cell lines, and cell type-specific treatment response.

Keywords Breast Cancer · scRNAseq · Cell Lines · Stemness Scoring · Disease Subtyping · Therapeutic Prediction

1  Background

Breast Cancer (BC) is a blanket term used to describe any 
neoplastic growth in the breast and its neighboring tissues, 
with 13% of women developing invasive breast cancer in 
the United States in their lifetime [1]. While we observe up 
to a 1% decrease in death rates for specific patient popula-
tions, estimates indicate over 43,000 deaths per year in the 
US attributed to breast cancer. However, through improved 
disease characterization and patient disease modeling, a 

precision medicine approach to treatment can reduce the 
burden of breast cancer recurrence and mortality in today’s 
healthcare system [2].

To better characterize the heterogeneity of breast cancer, 
disease classification is contingent on four factors: histo-
logical type, tumor grade, stage, and molecular expression 
levels of specific proteins [3]. Histological classification 
apportions BC to either carcinoma in situ (CIS) or invasive 
carcinomas, which are further stratified by cellular origin 
within functional sub-compartments of the tissue. For exam-
ple, the CIS classification is composed of both ductal car-
cinomas (DCIS) (Fig. 1a) and lobular carcinomas (LCIS), 
where ductal and lobular define the regions of disease origin 
within the breast. The lobules in a gland are responsible 
for milk production, which are then delivered to the skin 
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surface via the ducts (Fig. 1b). The Elston & Ellis grading 
system is a classification system for BC based on tumor cell 
differentiation and metastatic potential [4], where Grade 1 is 
the most differentiated and slow-growing. Increasing grades 
represent decreasing differentiation and higher proliferation. 
In conjunction with grading, there is a staging system with 
five standard classifications dependent on disease localiza-
tion [5]. Stage 0 (DCIS) represents in situ disease with an 
estimated 100% survival rate. Increased staging denotes 
larger tumor sizes, metastases to lymph nodes and adjacent 
organs, and decreased survival rate. Stage 4 BC has a 24.5% 
five-year survival rate [6]. Expression level classification 
of BC is a critical tool commonly utilized for selecting the 
most appropriate treatment strategies. Figure 1c illustrates 
expected marker expression across the distinct subtypes: Tri-
ple Negative (TNBC), HER2 + , Luminal B, and Luminal A. 
These molecular subtypes are generated by expression of 
the Estrogen Receptor (ER), Progesterone Receptor (PR), 
and Human Epidermal Growth Factor Receptor 2 (HER2). 
Each of the positively expressed receptors in the subtypes 
has been studied as targeting methods for therapies. TNBC 
has no positive surface expression of these canonical recep-
tors, thereby reducing potential targeting methods for thera-
pies. This, in conjunction with TNBC representing the most 
heterogeneous molecular subtype, primarily drives poorer 
patient outcomes. Based on the classification criteria com-
plexity, disease characterization varies between labs. This 
is primarily due to a lack of higher resolution data (reliance 
on immunohistochemistry) characterizing disease. Further-
more, the notations utilized by researchers and healthcare 

professionals are often inconsistent, leading to unintentional 
complexity in disease subtyping and classification.

The high prevalence of BC has fueled research into 
promoting healthier lifestyle choices, refining diagnostic 
measures, and expanding disease prevention and treatment 
options to improve patient outcomes. With over 500 ongo-
ing BC clinical trials, as of 2021, aimed at addressing the 
prevalence of disease, 183 of which are exploring targeted 
agents, there is a pressing need for systemic testing of these 
candidate therapies [7]. A significant driving force in bio-
medical research is the availability of technology to define 
patient disease populations. With growing next-generation 
sequencing (NGS) and single-cell sequencing assays, there 
has been a trend towards replacing blanket therapies with 
patient-specific therapeutics [8]. For this to be successful, 
there needs to be improved identification of cellular het-
erogeneity comprising patient tissue as well as in model 
systems used to investigate these disease subtypes. As our 
understanding of the complexity of cancer evolves, the reso-
lution of data needed to provide an accurate framework for 
therapeutic targets should approach single-cell resolution.

The need for higher resolution data is further highlighted 
by the confounding of cell line subtyping across publications 
[9]. Extensive bulk analysis has paved a strong foundation 
for inter-tumor heterogeneity identification and treatment. 
However, the granularity within a tumor is often left unad-
dressed. Due to unique levels of marker thresholds for pro-
teins or genes, binning model lines to subtypes vary across 
institutions and experiments. This is further confounded by 
discordant ER, PR, and HER2 + status between multiple 

Fig. 1  Background overview 
of breast cancer anatomy and 
disease subtyping. a Whole 
tissue breast anatomy defining 
key functional regions including 
mammary duct and lobes. b 
Breast cellular anatomy defining 
cell types and duct structure. c 
Subtype breakdown of breast 
cancer by common protein and 
cell surface marker expression. 
Each of these illustrations were 
generated on Biorender.com
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samples from a patient attributed to reasons including a 
change in cancer biology between sample sites and time-
points, sampling error, and accuracy and reproducibility of 
the receptor assays [10]. Cell lines like MDAMB453 are 
particularly confounded where discrepancies in protein and 
gene expression of HER2/ERBB2 yield both TNBC and 
HER2 + subtype annotations [11]. This level of heterogene-
ity is variable across cell lines. Therefore, deeper scRNAseq 
analysis across model lines can elucidate attributes such as 
heterogeneity, stemness, cell line markers, functional cluster 
prediction, and therapeutic prediction that may significantly 
impact the marriage between cell line selection and study 
outcomes.

The first cultured cancer cell lines in the 1950s repre-
sented a landmark in cancer biology. Since then, the reper-
toire of cancer lines has expanded to reach over a thousand 
lines for almost all known tumor types. Specifically, cancer 
research has relied on model cell lines as a pretest across 
various experimental processes such as gauging response to 
therapy [12]. The importance of these lines as experimental 
models cannot be overstated. As an illustrative example, the 
breast cancer cell line MCF-7 has functioned as established 
benchmarks across the field, with over 100,000 publications 
testing this individual line [13]. Thus, our current ability 
to study the process of transformation and experimentally 
interrogate therapeutic avenues cannot be understood with-
out these experimental models. Precise characterization of 
cell lines is critical to utilize their maximum potential. Dur-
ing the last decade, the growth of NGS has supported the 
characterization of cell lines at a molecular level [14].

Using bulk sequencing, gene expression profiling has 
been widely adopted and incorporated for tumor samples 
and model cell lines. In part due to the long-term adoption 
of these technologies, there is an abundance of available 
analysis pipelines and predictive tools for this data type. 
For example, Schafer et al. developed a pipeline to leverage 
microarray data for quick on-site prediction of recurrence 
through hormone receptor status [12]. This tool, and many 
others, provided clinicians and researchers with necessary 
validation and prediction pipelines based on the broadly 
available bulk RNAseq datasets. However, intratumoral 
heterogeneity is well recognized as the main problem that 
compromises the response to anticancer therapy. The growth 
of single-cell sequencing technologies allows us to study this 
phenomenon with unprecedented resolution. Remarkably, 
heterogeneity has also been previously identified in cultured 
cells and cells with different features such as morphology 
[15], ploidy [16], and gene expression [17]. Despite this, the 
characterization of cell lines using single-cell technologies 
is still in its infancy. While there has been rapid adoption of 
these technologies to characterize patient tumor biopsies, 
there remains a void in publicly available single-cell data to 
characterize widely used model cell lines [14].

To date, there has not been a comprehensive single-cell 
dataset across all breast cancer cell lines to elucidate this 
confounding heterogeneity and better parse which lines are 
most appropriate for specific disease subtypes and functional 
testing. Here we present the first BSCLA dataset and outline 
a pipeline for highly resolved characterization to determine 
intra-cell line heterogeneity and provide recommendations 
for cell line selection through factors including heterogeneity 
scoring, stemness features, and subcluster defining gene vec-
tors. The cell lines processed for scRNAseq are consolidated 
in Table 1 with comprehensive data metrics. We overlay this 
analysis with primary tumor epithelial and mesenchymal 
cells to highlight the value of model systems when chosen 
and incorporated in an informed manner.

2  Methods

2.1  Cell line culture, harvesting, and imaging 
protocol

Breast cancer cell lines were thawed from frozen aliquots 
and cultured in CytoOne T25 flasks (USA Scientific) with 
culture media composition dependent on ATCC guidelines. 
Typical media recipes included DMEM/DMEM/F-12 media 
(Thermo Fisher), 5% FBS (Sigma-Aldrich), 1% Pen-Strep 

Table 1  Sequencing quality control metrics for all the BC lines pro-
cessed

This table summarizes sequencing quality control metrics for each 
sample processed through scRNAseq. Cell count represents the total 
yield of bead barcodes prior to data filtering. Median genes per cell 
is a representation of data sequencing depth and cell activity. Valid 
barcodes are the percentage of barcodes successfully mapping to the 
human genome

Cell Line Cell Count Median 
Genes per 
Cell

Valid 
Barcodes 
(%)

SKBr3 518 3208 97.7
MDA-MB-361 1422 4704 97.1
BT-474 4210 4162 97.8
MDA-MB-453 4837 1705 96.8
MCF-7 – Sample 1 – Run 1 2340 3981 97.2
MCF-7 – Sample 1 – Run 2 2683 2707 98.0
MCF-7 – Sample 2 5217 3109 98.2
T47D 5539 3908 98.1
MDA-MB-468 1986 4762 97.4
SUM190 1445 3636 97.1
HCC1954 1579 1066 96.7
SUM149 1517 5305 97.2
BT-549 3425 5393 98.0
MDA-MB-436 4521 2827 96.8
MDA-MB-231 991 4077 97.2
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(Gibco), supplemented with 10  µg/ml Insulin (Sigma-
Aldrich), and 5 ng/ml Endothelial Growth Factor (Thermo 
Fisher) depending on the cell line. Cells were incubated 
at 37 °C in a humidified 5%  CO2 atmosphere. Upon 80% 
confluency, the sample was passaged following the recom-
mended sub-culturing protocol for adherent cells. All cell 
lines were cultured for a maximum of five passages from the 
original ATCC sample collection to limit divergence from 
the original reference strain.

2.2  Single‑cell RNA sequencing and library prep

For single-cell RNA sequencing, cell lines were collected 
before passage 5 and suspended in 1X PBS (calcium and 
magnesium-free) containing 0.04% weight/volume BSA 
(400  µg/ml) at 1 ×  106 cells/mL. Cells were processed 
according to Chromium 3’ Gene Expression V3 Kit (10X 
Genomics) using manufacturer’s guidelines followed by 
sequencing on an S1 NovaSeq chip (Illumina Inc.). Quality 
check of cDNA was done with Qubit 3 (Fisher Scientific) 
and High-sensitivity 2100 Bioanalyzer (Agilent). The 10X 
Cell Ranger software v3.1.0 was used to process the BAM 
file from sequencing. This outputs a read counts matrix 
that we used for downstream analyses using Seurat, a cus-
tomizable R-Studio Package for scSEQ analysis [18]. At 
least ~ 20,000 2 × 150 bp reads per cell were generated for 
each of the 36,195 cells, with an average 97% mapping rate.

2.3  Post sequence data processing

10X Genomics Cell Ranger software v3.1.0 was used to 
process files from each sample. This generated a counts 
matrix file [19]. FASTQ files were generated from demul-
tiplexed raw base call (BCL) files through the Cellranger 
mkfastq pipeline. The Cellranger count pipeline was 
applied to FASTQs to perform alignment against GRCh38 
human reference build, filtering, barcode counting, and 
UMI counting. The feature-barcode matrices were ana-
lyzed through a series of open-source R platforms, includ-
ing Seurat (Satija Lab) and ClusterProfiler (He Lab) [20]. 
The counts matrix is a fundamental unit of scRNAseq 
where column barcodes correspond to cell identities and 
rows are filled by gene names. The matrix values represent 
detected gene expression with the representative individ-
ual cell barcode. The counts matrix is a fundamental unit 
of scRNAseq where column barcodes correspond to cell 
identities and rows are filled by gene names. The matrix 
values represent detected gene expression with the repre-
sentative individual cell barcode. Each cell line dataset is 
independently filtered for nFeature_RNA, nCount_RNA, 
and mitochondrial gene percentage. By filtering these val-
ues, we can computationally reduce the composition of 
dead cells, dying cells, and duplicates within our dataset. 

This multimodal expression has been previously described 
by Bacher et al. [21]. When selecting a minimum number 
of unique features(nFeatures), the range between samples 
is from 1,600 to 2,000. Similarly, when selecting for a 
maximum number of total features (nCount), the range is 
from 40,000 to 65,000. Lastly, for percent mitochondrial 
the range for maximum percentage of mitochondrial genes 
(percent.mito) varies from 16 to 25%. Each filtered cell 
line dataset is then merged to create global dataset that 
can be analyzed as one unit. The Seurat object is pro-
cessed similar to previous methods with normalization 
done using the LogNormalize method and a scale factor of 
10,000. The FindVariableFeatures() is set to select using 
VST and for a number of features at 2,000. Cell cycle 
scoring measures s phase and g2m phase gene using the 
CellCycleScoring() function. Scaling is done to regress 
for percent mitochondrial, nCount_RNA, s phase score, 
and the G2M phase score using the ScaleData() function. 
FindNeighbors() is run to calculate distance relationships 
with 20 dimensions included in the analysis, determined 
from an elbowplot. Clustering of the tissue dataset is set at 
a resolution of 0.8 and done with the FindClusters() func-
tion. This is followed by unsupervised clustering of the 
tissue dataset with 13 dimensions included in the analysis.

2.4  Published data import

Single-cell RNA sequencing data files were downloaded 
from The Broad Institute Single Cell portal. The down-
loaded dataset is pulled using Seurat's Read10X() function 
and then converted into a Seurat object using CreateSeura-
tObject(). The data is filtered for nFeature_RNA less than 
8,000, nCount_RNA greater than 1,000, and mitochon-
drial genes less than 8 percent. This integrated dataset is 
then processed with the steps done earlier to reduce batch 
effects including NormalizeData(), FindVariableFeatures(), 
CellCycleScoring(), and ScaleData(). The last preprocess-
ing stage is generating UMAP for the primary tumor cells 
using 13 dimensions. Using the canonical markers EPCAM, 
PDGFRB, MKI67, and CD68 identified and leveraged by 
Wu et al., epithelial and mesenchymal cells were selected 
to create a subset Seurat object. This subset is merged with 
the preprocessed cell line atlas dataset for all analysis con-
ducted. The merged atlas containing primary tumor epithe-
lial cells, primary tumor mesenchymal cells, and breast can-
cer cell line data is re-normalized within the Merge() Seurat 
function. This merged dataset is scaled to reduce technical 
variability between sample types. Harmony data integration 
was leveraged when comparing independent HER2 cell lines 
with HER2 expressing patient tumor data [22]. This integra-
tion used 16 dimensions identified from an elbow plot and a 
resolution of 0.2 for reclustering.
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2.5  Resolving subpopulation heterogeneity 
within cell lines

PCA is useful for fast and linear dimensionality reduction, 
however with increasingly complex data affiliated with scR-
NASeq, UMAP is another preferred network analysis tool 
that preserves global structure, distance correlations, and 
continuity of cell states. Cell clustering was performed with 
the FindClusters() Seurat function. UMAP dimensionality 
reduction was done with the RunUMAP() Seurat function. 
Using the filtered, normalized, and scaled dataset, cell line 
clustering provides increased resolution to gene expression 
and clonal population differences. We can further highlight 
potential functional clustering by investigating differential 
gene expression between clusters within this dataset. This 
analysis averages data points across an identified subpopu-
lation to extrapolate distance relationships. We explored all 
markers expressed in each cluster and sorted by the differ-
ence of pct.1 and pct.2, representing the percent of cells 
in a specific cluster expressing a gene and the percent of 
cells outside that cluster expressing that gene, respectively. 
We have identified that genes with difference values greater 
than 0.5 are responsible for providing the most direct rep-
resentation of individual cluster states and that these genes, 
in most cases, parallel the most significant differentially 
expressed gene (DEG) with regards to p-value and Avg-
logFC. Through sorting by this difference value, we derive 
gene expression sets increasingly specific to the subpopula-
tion of interest.

2.6  Characterizing individual cell lines and their 
gene signatures

Using the FindMarkers() function, we identify the dif-
ferentially expressed genes for individual subpopulations 
compared to the entire global dataset or the local individual 
sample set. This function utilizes a Wilcoxon Rank Sum Test 
to identify differential genes between two populations. The 
output of FindMarkers() is then filtered for strict avg_logFC 
(> 0.8) and difference (> 0.5) values. In parallel, the Find-
Markers() function is run across nodes identified from the 
BuildClusterTree() function for identifying observed popula-
tion divergence driving genes.

2.7  Fluorescent protein expression assay 
and analysis

The MDA-MB-453 cell line was cultured to passage 2. 
Cells were diluted to a concentration of 1e6/ml in PBS 
(Thermo Fisher) and incubated with Anti-ERBB2 Affibody 
Molecule with FITC conjugation (Abcam) at a 1/100 dilu-
tion. A 30-min incubation was followed by centrifuge at 
100 g for 6 min with the Centrifuge 5702 (Eppendorf). The 

supernatant was removed, and cells were diluted with the 
PBS buffer. The EVOS M7000 (Thermo Fisher) was used 
for microscopy imaging, cell counting, and fluorescence 
intensity measurements. The focus was automatically cali-
brated by the brightfield channel. The fluorescent images 
were analyzed using the EVOS analysis software system 
(Thermo Fisher).

The Beacon instrument (Berkley Lights) was leveraged 
for high throughput cellular organization and imaging. A 
microfluidic chip was used that allows isolated single-cell 
imaging and functional experimentation. After ERBB2 anti-
body incubation and wash, cells were immediately imported 
into the microfluidic chip containing 3500 isolated nan-
opens. Using OptoElectroPositioning (OEP), individual 
cells are manipulated and moved from the flow channel into 
the nanopens. Following import, the cells are cultured in 
their regular media (L-15 with 10% FBS). The entire chip is 
imaged in both brightfield and FITC imaging channels. The 
chip comprises 22 Fields of View (FOV), each of which is an 
image per channel. To analyze the data across the 3500 nan-
opens in the 22 FOVs in both imaging channels, the files are 
exported and processed through a custom-engineered MAT-
LAB image analysis script. In parallel, MDA-MD-453 cells 
are imaged using traditional microscopy on an EVOS m7000 
(Thermo Fisher) with the GFP channel, Images from the 
EVOS microscopy are investigated using Image Analyzer 
(Thermo Fisher). Within the MATLAB script, cell loca-
tions are identified using a Hough Transform circle detection 
algorithm. Detected cells are then filtered by cell brightness 
not passing the traditional threshold of live cells, masking 
due to chip background interference, and location filtering 
due to cell import and localization near the top of a nanopen. 
Locations of each detected cell are saved in a matrix, and 
brightness measurements are automatically pulled at those 
pixel locations for both imaging channels. FITC brightness 
is normalized by dividing expression recording by mean 
expression across all detected cells. To determine positive 
expression, cells were grouped using a k-means clustering 
algorithm based on the ERBB2 expression vector, using a 
k score of 2.

2.8  Sub‑clustering across the global BSCLA dataset

To organize each sample set, we generated a Seurat object 
representative of each cell line processed at a given time 
point. The Seurat object is named by cell line, sample 
source, and run number. For example, MCF-7s1r2 repre-
sents the MCF-7 cell line from sample source 1, which was 
run for a second time. For samples that we only processed 
once and without multiple time points or sources, we bypass 
these features on the nomenclature and are instead denoted 
by their cell line name.
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We first filter each Seurat object to account for variation 
in cell loading concentrations, cell viability, and process-
ing. As a natural byproduct of the current microfluidic sys-
tem used for single-cell isolation, there is a percentage of 
Gel beads in emulsion (GEM) that contain multiple cells or 
dying cells which, we can computationally remove from the 
analysis [23]. We filtered GEM barcodes with high percent 
mitochondrial genes (dead cells), high total RNA (multi-
plets), and low unique RNA (empty GEM). The thresholds 
of cutoff variate between samples, and therefore, rather than 
employing global absolute value filters, we identify extreme 
expression cutoffs by percent calculated for individual sam-
ples. For example, in each cell line, the threshold for high 
percentage mitochondrial gene expression is determined 
by bimodality of expression, fluctuating between 4.3–12.1 
percent mitochondrial genes in a cell line, depending on the 
sample.

To minimize technical variability in our dataset across 
samples, NormalizeData() was run across each cell line to 
reduce biasing by cell total transcription. This is followed 
by the ScaleData() function, which shifts mean expression 
for every gene across all cells to 0 and standardizes the vari-
ance of each gene to 1. This process is standard in scRNA-
seq pre-processing and is described extensively in literature. 
Once the Seurat objects have been independently filtered, 
we merge the objects for population analysis and compari-
son. These preprocessing steps are necessary to minimize 
outstanding cell populations not representative of healthy 
cells in culture. The cells are then processed for unsuper-
vised clustering, which groups cells based on distance rela-
tionships in the global dataset. These clustered populations 
yield subpopulations that can be investigated for functional 
predictions and define heterogeneity across and within the 
cell lines.

2.9  Entropy scoring pipeline for stem‑like 
population identification

This method of entropy scoring for stemness analysis is 
discussed earlier in Panebianco et al. [19]. The degree of 
“stemness” was estimated for all cells using the Shannon 
entropy transcriptional scoring method first proposed by Tes-
sendorf et a. 2017 [24]. In brief, it has been shown that cells 
with increased differentiation potency (i.e., stemness) exhibit 
higher signaling entropy as measured on gene expression 
patterns overlaid across protein–protein interaction (PPI) 
networks. Stem-like cells, in general, exhibit more diffuse 
expression of gene signaling pathways, whereby during the 
process of differentiation, cell-type-specific pathways remain 
active while non-specific pathways are progressively pruned 
away and deactivated. This general observation can be quan-
tified by calculating signal entropy of a Markov-chain cre-
ated by integrating cell-specific gene expression patterns 

with a fully connected PPI matrix, and in turn results in 
stem-like cells exhibiting high signaling entropy, while dif-
ferentiated cells exhibit low signaling entropy.

The calculation of entropy scores is, however, a com-
putationally intensive procedure involving several large 
matrix operations. To optimize this calculation and enable 
its use for larger datasets such as our breast cancer cell line 
atlas, it was necessary to re-implement the entropy scoring 
algorithm in Tensorflow 2.0, adding support for rapid batch 
processing and GPU acceleration. Entropy calculation for 
breast cancer cell lines was performed using our optimized 
implementation on a Google Cloud VM instance consisting 
of a 4-core Intel Xeon E5-2630 2.3GhZ CPU running on an 
NVIDIA V100 SMX2 GPU with 25 GB RAM.

Following score calculations, Spearman correlations were 
computed for all genes and individual cells, with Bonferroni 
correction for multiple statistical testing. Genes shown to 
have a significant positive correlation to entropy score can 
be interpreted as being overexpressed in high-entropy, stem-
like cells. Conversely, genes with a negative correlation to 
entropy are considered overexpressed in low-entropy (differ-
entiated) cell populations. Gene sets were then interrogated 
with orthogonal pseudo time calculation approaches to dis-
cern markers of stem-like states in breast cancer cell lines.

3  Results

3.1  scRNAseq reveals heterogeneous populations 
across BSCLA cell lines

13 unique breast cancer cell lines were processed for scR-
NAseq, with additional sample replicates for the MCF7 
line, Fig. 2a. Unsupervised graph-based clustering resolved 
49 unique clusters based on nearest neighbor approxima-
tions, with clusters and annotated subclusters outlined on 
the UMAP plot in Fig. 2b. We observe cell line of origin as 
the primary differentiator between clusters. Therefore, sub-
cluster nomenclature is annotated by cell line name, sample-
ID, run number, and cluster-ID. For example, in Fig. 2c, 
all UMAP clusters are shown by cell line names such as 
MCF-7s2 (MCF-7 cell line, sample ID 2). In Fig. 2b, this 
representative cell line is compartmentalized further into 5 
subclusters: MCF-7s2a, MCF-7s2b, MCF-7s2c, MCF-7s2d, 
and MCF-7s2e (Supplementary Table 1).

To analyze this merged global dataset of all cells across 
lines, a phylogenetic tree was generated using BuildCluster-
Tree to compare subclusters on a populational level (Fig. 2c). 
BuildClusterTree is a function provided by the Seurat scR-
NAseq analysis pipeline (see Section 2) that allows the pre-
diction of forced distance relationships between cell lines as 
well as subclusters [18]. Phylogenetic trees were generated 
by comparing distances between computed average cells to 
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define each end subcluster. Each split in the tree is defined 
by a combination of differentially expressed genes driving 
the differences in cell type. As the analysis progresses into 
higher resolution branch splits, individual subclusters and 
the historical gene differences to arrive at each end popu-
lation are identified. The vector of gene markers defining 

nodal splits are then compiled to represent each subcluster. 
When comparing these markers with literature, there is high 
concordance with mesenchymal and epithelial gene mark-
ers such as VIM and KRT19, respectively (Fig. 2d). After 
applying stringent filtering criteria, including an Avg-LogFC 
value > 0.8 and a difference value > 0.8, comprehensive gene 

a

e f g

c db

Fig. 2  Cluster analysis of global dataset for population gene vector 
identification. a UMAP plot annotating cell populations by the 13 
diverse cell lines of origin and replicates. b UMAP plot annotating 
cell populations by the 49 unsupervised cluster annotations. c Phylo-
genetic tree organizing subclusters across global population by bulk 
gene comparison and define distance relationships between groups. 
d Deriving differential genes driving nodal splits in the phylogenetic 
tree. Vimentin and Cytokeratin 19 are key genes in the first global 

nodal split differentiating epithelial cells from mesenchymal. e Table 
outlining top 10 marker genes for epithelial vs mesenchymal split, 
identified by Avg_log2FC value. f Heatmap expressing individual 
genes with significant expression in their subpopulation. g Heatmap 
highlighting the vector of genes differential to BT-549. Reproduced 
for each cell line. Positive and negative gene expression function to 
isolate cell lines of interest successfully
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vector sets are generated for each population. The difference 
value represents the disparity between the fraction of cells 
in the subclusters that express a gene and the fraction of 
cells outside of the population that express that gene. Avg-
LogFC represents log-fold differences in expression between 
populations. Through combining Avg-LogFC and difference 
filter parameters, the end gene vectors factor intensity and 
frequency. The high sample count in scRNAseq provides 
increased power in each gene comparison resulting in sig-
nificance below 0.05 for all genes of interest identified in the 
analyses below. Coordinated analysis across each subpopu-
lation generates gene vectors for each subpopulation. For 
example, Fig. 2e highlights top gene expression differences, 
sorted by Avg-LogFC, driving the first nodal split, represent-
ing epithelial and mesenchymal cells. While any of these 
gene markers, including VIM and KRT19, are known for the 
defining cell type, there is also an observed novel gene set 
for both populations. For example, MT1E is the most sig-
nificant differentially expressed gene with an absolute Avg-
LogFC greater than two between the mesenchymal and epi-
thelial populations. MT1E has been implicated in migration 
and invasion within cancer cell lines, and its concordance 
with mesenchymal cell populations is further supported by 
this cell type characterized with higher invasiveness [25]. 
Significant gene expression of FXYD3 is observed in the epi-
thelial population. FXYD3 has been linked to overexpression 
in many cancer types and correlated with fertility frequency, 
thereby linking the high concordance of this gene with breast 
and endometrial cancers [26].

This nodal analysis was then extended across the nodes 
defining each population split. This allows us to create gene 
vectors for each cell line and subclusters in our popula-
tion as outlined by the phylogenetic tree. Supplementary 
Table 2 is a comprehensive list of gene markers specific to 
each BSCLA line p_Value, Avg-LogFC value, and differ-
ence values for significance. Figure 2f is a heatmap of a key 
differentially expressed gene for each cell line, highlighting 
the specificity of gene expression vectors across the popu-
lation. While not every gene in the generated gene set is 
ubiquitously specific to a subpopulation, this signifies the 
complexity of the gene vectors to represent a cell population 
successfully. To highlight this, genes composing the vector 
set for BT-549 (highlighted within the annotated black box) 
were chosen, shown in Fig. 2g, due to the cell lines’ par-
ticular complexity and heterogeneity. The heatmap has rows 
representing genes from the BT-549 cell line vector set and 
the columns representing cells across the global population 
sorted by sample ID. Combining the positive and negative 
expression yields high specificity for the cell line compared 
to the global population. Positively expressed genes such 
as MFAP2 highlight gene expression of published protein 
markers for epithelial-mesenchymal transition (EMT). Sig-
nificant expression of genes like VCAN, coding for genes 

encoding for proteoglycan involved in adhesion and prolif-
eration, as novel genes descriptive for this particular cell line 
[27]. These gene markers can be leveraged in identifying 
model systems for patient disease when overlaying patient 
datasets with our established cell line set. These markers 
highlight significant characteristics of the BT-549 cell line. 
BT-549 is repeatedly identified as a cell line of interest in 
breast cancer modeling for replicating disease proliferation 
and rapid progression [28–32]. Therefore, BT-549 provides 
an appropriate model for identifying diverse cell popula-
tions, including stem and metastatic potential.

3.2  Evaluating stemness potential across BSCLA cell 
lines

One of the many use cases of BC cell lines, under normal 
or stimulated conditions, is the development and activity of 
stem/progenitor-like cells defined by specific gene regula-
tory networks important to cell line selection in oncogenesis 
and response to therapy [33, 34]. With our comprehensive 
BSCLA dataset, subpopulations were identified through 
CSC markers. Leveraging 40 established stemness markers 
across each cell line in the BSCLA, stem-like subpopulations 
were identified across the BSCLA cell line dataset. First, a 
comprehensive gene vector was generated using the known 
CSC markers (Supplementary Table 3) from published 
findings [35–37]. On the dot plot in Fig. 3a, subclusters 
were ranked by the sum total expression of the 40-marker 
vignette. Overall high concordance was observed in total 
CSC marker expression between intra-line subclusters, indi-
cating a cell line of origin as the primary stemness effector. 
For example, in the MCF-7s2 population, all clusters yielded 
an average CSC expression with 3–3.5. However, heteroge-
neity is observed between intra-line subclusters, identify-
ing these populations of interest for further investigation. 
For example, the “190c” cluster was observed to express a 
sum CSC value of 28.3, whereas the subclusters “190a” and 
“190b” have values of 10.8 and 20.3, respectively. This sup-
ports the theory of uncharacterized heterogeneity between 
intra-line subpopulations.

An entropy scoring approach was incorporated into gene 
expression profiles in estimating measures of differentiation. 
The Shannon Entropy measurement (see Section 2) quan-
tifies levels of gene-to-gene interactions. With single-cell 
entropy scoring inversely correlating to degrees of differenti-
ation, scores were extrapolated to identify stem-like popula-
tions and markers of interest. The final entropy scoring gra-
dient plots are illustrated by the box and whisker plots shown 
in Fig. 3b. The cell lines are ranked by total entropy, and 
the subclusters are subsequently sorted by entropy reading 
within the cell line and subclusters. To illustrate the potential 
heterogeneity of entropy scores, the scores were overlaid on 
published CSC markers. These genes are published markers 
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for CSC identification (CD44, CD24, ITGB1, and ERBB2). 
Expression was plotted versus entropy level while grouping 
with condensed disease subtypes (Luminal, HER2 + , and 
ERBB2), shown in Fig. 3c. The line plot for TNBC cell 
populations indicates a negative correlation between CSC 
markers and entropy score for all the markers plotted. Simi-
larly, an inverse correlation is observed for the same genes 
in luminal disease. This scoring algorithm was leveraged to 
identify significant gene correlations with entropy values. 
ACTN1 is identified as a marker with a significant positive 
Spearman correlation to entropy. Figure 3d highlights the 
expression of four high positive and four negative correla-
tion markers in a scatter plot with entropy. These trends can 
be applied to derive features most associated with stemness 

across our population and highlight cell lines with signifi-
cant variability in entropy between genes (i.e., BT-549 and 
SUM149). Through the current understanding of in vivo 
cancer cell differentiation, only one cluster within the popu-
lation needs to reflect stemness capacity in gene expression 
for CSC identification. By sorting cell subpopulations by the 
overall presentation of our comprehensive CSC gene vector 
list on the subclusters resolution, cell lines were ranked by 
potential stemness, indicating each cell line’s potential for 
differentiation.

Both analyses yielded BT-549 as a cell line with strong 
CSC potential. This process causes the ranking order out-
lined in Supplementary Table 4 with BT-549 and MCF-7 
as high and low stemness populations, respectively. The 

Fig. 3  Investigating markers of Tumor Initiating Cells. a Dot plot 
visualizing expression of stemness-related genes identified through a 
literature review. b Box plot of cell lines and subpopulations sorted 
by mean entropy score. c Line plot comparing TIC marker expression 

by entropy score between major disease subtypes, where Luminal A 
and Luminal B samples were merged to a combined Luminal subset. 
d Scatter plots of key genes identified to have significant positive and 
negative correlation to entropy throughout the global dataset
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analysis was then reproduced through the entropy scoring 
algorithm to re-rank subclusters based on a complexity 
score. High concordance was observed in ranking between 
both our analysis methods, further verifying our stem-like 
subpopulations as lines of interest for further investigation.

3.3  Analysis of merged single cell atlas data 
from breast cancer tissue states

Wu et al. recently published scRNAseq, CITE-seq, and spa-
tial data for primary tumor tissues representing various BC 
disease subtypes [38]. The study sequenced over 100,000 
breast cells and provided the largest single-cell resolved atlas 
of BC tissue states. By integrating datasets between cancer 
biopsy cells and BSCLA cell lines, the value of selected 
cell lines for modeling patient tumors is demonstrated. After 
downloading the publicly available dataset from the Broad 
Institute Single Cell Portal, epithelial and mesenchymal cells 
were selected using cluster expression of canonical mark-
ers EPCAM and PDGFRB. These normal and cancerous 
cell types were the selection criteria for cell line develop-
ment and, therefore the subset selected for model system 
comparison. Immune cells were filtered out for their lim-
ited relevance in cell line data comparison. Figure 4 sum-
marizes the analysis conducted in the cell lines extended 
to the merged Seurat object containing cell line data with 
the primary tumor dataset. After the datasets were filtered 
for cancerous cell types, they were reclustered with a reso-
lution of 0.6 to identify 12 epithelial and 6 mesenchymal 
clusters. A breakdown of clusters in the merged dataset and 
respective source sample is visualized by the stacked bar 
plot in Supplementary Fig. 1a. Similar to the phylogenetic 
tree visualizing cluster distances in cell lines, Supplemen-
tary Fig. 1a indicates distance relationships of each of the 
original primary tissue sample identifiers compared to the 
cell line samples. Figure 4a is a UMAP plot visualizing the 
merged dataset annotated for cluster identities with the pre-
cise organization between epithelial and mesenchymal cell 
types. Figure 4b is a heatmap highlighting differential genes 
expressed in each cluster from the merged dataset generated 
from top hits identified from the FindAllMarkers() function. 
Gene markers for the mesenchymal subtypes indicate less 
heterogeneity than the epithelial clusters, characterized by 
shared expression of multiple genes across the cell clusters, 
including COL1A1, COL1A2, and TAGLN. Top gene hits 
for each primary tumor dataset cluster are leveraged to per-
form functional network predictions for each subpopulation, 
illustrated by the cnet plots in Supplementary Fig. 2. Net-
work analyses provide a population-based understanding of 
cell function. Clusters in epithelial cells and mesenchymal 
cells can parallel shared functionality within their ecosys-
tem; for example, Epithelial-7 and Mesenchymal-2 high-
light significant gene expression for pathways in negative 

regulation of cell proliferation. Similarly, Epithelial-5 and 
Mesenchymal-5 present and emphasize pathways involved in 
vesicle formation and regulation. Figure 4c is a phylogenetic 
tree that highlights distance relationships within clusters of 
the merged dataset. Clusters are organized by the sample of 
origin; however, we observe infiltration of cell line clusters 
in the tissue dataset clusters such as SKBr3a and T47De. 
These analysis techniques inform which model cell lines are 
relevant to specific cell functionality across BC subtypes.

To further investigate cell line versus patient tumor over-
lap and heterogeneity, HER2 expressing cell lines, BT-474 
and HCC1954, were merged with HER2 expression patient 
sample CID3921. The HER2 merged dataset was merged 
using Harmony, a pipeline to scSeq data merging that 
encourages mixed data representation in clusters from sam-
ples [22]. The reclustered population breakdown yielded 5 
unique populations, visualized by the bar plot in Supple-
mentary Fig. 3a. Clusters are primarily separated by sample 
origin ID despite data integration and normalization, with 
cluster HER2-0 sourced primarily from HCC1954 (99.4%), 
HER2-1/HER2-2 primarily from BT-474 (97.4% and 92.4%, 
respectively), and HER2-3/HER2-4 predominantly from 
CID3921 (96.3% and 100%, respectively). Supplementary 
Fig. 3b and c provides further resolution on sample source 
distribution against a UMAP plot paralleled with cluster 
identification. Cell lines BT-474 and HCC1954 generate 
two distinct partitions with patient data from CID3921 pre-
sent as its own partitions and contributing to the other two 
cell line functional partitions. Genes present throughout 
this HER2 subsetted population were parsed for signifi-
cant and consistent expression across the dataset, generat-
ing 124 significantly conserved genes across all 5 clusters. 
Some of the conserved genes, SERBP1, S100A10, ARF1, 
and PRDX1, are plotted by the RidgePlot in Supplementary 
Fig. 3d. Gene expression of S100A10 has been linked with 
metastasis and stemness, while ARF1 is indicated as a regu-
lator of cell proliferation [39, 40]. The expression of these 
proliferative gene signatures in HER2 + samples supports 
previous findings and the inherent invasive biology within 
HER2 disease. The FindAllMarkers() function run against 
sample identifiers and cluster identifiers yielded gene vectors 
specific to sample sources and clusters. Top hits from each 
vector, sorted by Avg_logFC are visualized by the heatmaps 
in Supplementary Fig. 3e and f. Differential genes expressed 
by the patient tumor data include GNB2L1, which serves as 
a prognostic marker, inducer of proliferation, and potential 
drug target in breast cancer [41]. Across the same analysis, 
we identify DEGs specific to the patient sample, including 
GPX1, GSTP1, and CALML5. Similarly, DGEA reveals gene 
signatures specific to each cell line not expressed by the 
other line or patient tumor data, including TFF3, MDK, and 
KRT19 isolated to BT474 and S100A9, LCN2, and HLA-B 
specific to HCC1954. While clusters are primarily sourced 
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Fig. 4  Merged Atlas Analysis from Publicly Available Tissue 
Dataset. a UMAP plot of merged datasets from cell lines and tis-
sue sequencing. Tissue dataset was reclustered and annotated using 
published markers. Visualization indicates localization of Epithelial 
and Mesenchymal populations across cell line and tissue samples. b 
Heatmap plot of merged dataset with top genes identifying each sub-

population, highlighting gene level heterogeneity across population. 
c Phylogenetic tree outlining cluster differentiation. Localization of 
cell lines and tissue samples is observed with some cell line clusters 
embedded in tissue cluster branches, specifically T47De and SKBr3a 
populations
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from an individual sample, representative cells from the 
patient data are present in partitions from both cell lines. 
437 of 603 cells from CID3921 are populating the cell line 
functional partitions, indicating functional resemblance to 
patient samples with representative cell lines.

3.4  Unsupervised cell type prediction 
through custom unsupervised cell annotation 
pipeline

Cells were further processed through an unbiased annota-
tion platform to understand the functionality of cell clus-
ters from the integrated dataset. The platform integrates 
single-cell annotations from over 28 million cells across 
tissue types and cell lines to predict cell type. The top hits 

generated across the dataset are illustrated with the UMAP 
plots in Fig. 5. Cell type-specific gene annotations for pop-
ulations of cells typical of breast tumor tissue, including 
malignant cells, basal cells, luminal cells, myofibroblasts, 
fibroblasts, smooth muscle cells, pericytes, and ductal 
cells, were provided. Some cells identify as submucosal 
cells, typically present in the airway. These cell pheno-
types resemble cells necessary near surface epithelium for 
mucin secretion and antimicrobial host defense within the 
breast ductal network [42, 43]. Cell type predictions with 
the highest observed significance included malignant cells, 
basal cells, myofibroblast, fibroblast, and smooth muscle 
cells. Both BC tissue and cell line data overlap in predicted 
cell type for various annotations, including malignant, 
submucosal, basal, luminal, and ductal cells.

Fig. 5  Unsupervised classification of merged dataset. UMAP plots of 
top identified cell types across the merged dataset. Basal and ductal 
cells are representative of the functional cells illustrated previously in 

Fig. 1, where expression of these functional cell types is observed in 
both primary tumor samples and cell lines
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3.5  High‑resolution subtype classification of cell 
clusters using gene expression data

Breast cancer disease subtypes are categorized by ER, PR, 
and HER2 expression levels. There is increasing indica-
tion that through higher resolution data and novel marker 
discovery, this current bulk method of subtyping can be 
improved upon [44]. Like disease subtyping, our model 
systems are characterized by the same expression mark-
ers in breast cancer and are also vulnerable to potentially 
outdated or inconsistent classifications. There is published 
variability in subtype identity across individual cell lines 
[45, 46]. This is due to variability in processing and analy-
sis, including lab level discrepancies in protocols for iden-
tification, including gene versus protein, expression versus 

overexpression, and culture conditions contributing to the 
population differences. With higher resolution, scRNAseq 
data, comparing gene expression differences across cell 
identities in an individual cell line and tissue dataset devel-
oped more informed subtyping. This serves as a precursor 
to further validation on the protein level. The threshold of 
expression as the quantitative split observed in bimodality 
of expression between detected expression and overexpres-
sion is identified at 0.25. Figure 6a, b, and c are a series of 
violin plots visualizing the expression of the ESR1, PGR, 
and ERBB2 genes, respectively. This analysis creates a 
higher resolution subtyping of cell lines and cancer tissue 
datasets by gene expression. Higher-resolution disease clas-
sification is concordant with published annotation for many 
cell lines. For cell lines MDA-MB-361, MDA-MB-453, 

Fig. 6  Higher resolution subtyping of breast cancer cell lines and 
HER2 characterization. a Violin plot outlining expression of hor-
mone receptor gene ESR1, with high expression observed in epithe-
lial primary tumor cell clusters. b Violin plots outlining expression 
of hormone receptor gene PGR. c Violin plot outlining expression of 

receptor genes ERBB2. d DotPlot outlining expression of genes iden-
tified as differentially expressed by HER2 + cell samples. e Network 
analysis of genes differentially expressed by global ERBB2 + cells. f 
Network analysis of genes differentially expressed by global ERBB2- 
cells



616 A. Dave et al.

1 3

and SUM190, the expression of ESR1, PGR, and ERBB2 
showcase heterogeneity in expression either between clusters 
or with a published characterization of these samples for 
their disease subtype. The MDA-MB-361 cell line is typi-
cally categorized as HER2 + or Luminal in previous studies 
[9]. However, no significant expression of the critical gene 
markers defining Luminal and HER2 + disease subtypes is 
expressed. Further single-cell analysis with linked protein 
analysis such as a CITE-seq can resolve these findings for 
this cell line. When comparing the expression of ERBB2 
between subpopulations in a cell line, multiple lines indi-
cate heterogeneity in expression between clusters. In MDA-
MB-453 and SUM190, there are subclusters for both cell 
lines with ERBB2 overexpression and clusters with aver-
age/low expression. There is one cluster in MDA-MB-453 
(cluster c) and SUM190 (cluster c) with an observed lack 
of expression of ERBB2, with 78% and 64% of the cells 
in those clusters expressing this gene below a significance 
threshold, respectively. The discrepancy in the expression 
between these populations can be the confounding source 
between the published classifications for these cell lines. 
Most clusters from the breast cancer biopsy cells align with 
a specific disease subtype pattern. Epithelial-6 and Epithe-
lial-9 are classified as luminal attributed to high hormone 
receptor gene expression but lack ERBB2 overexpression. 
The Epithelial-1, Epithelial-2, Epithelial-3, Epithelial-4, 
Epithelial-8, Epithelial-9, Epithelial-11, Epithelial-12 tissue 
clusters align with the HER2 + breast cancer subtype. 38.8% 
and 63.0% of cells across the entire merged dataset and the 
confirmed HER2 + clusters, respectively, express ERBB2 at a 
scaled value above 0.25. Clusters Epithelial-5, Epithelial-7, 
Epithelial-8, Epithelial-10, Mesenchymal-1, Mesenchy-
mal-2, Mesenchymal-3, Mesenchymal-4, Mesenchymal-5, 
and Mesenchymal-6 didn’t detect significant expression of 
the diagnostic genes and therefore are classified as TNBC. 
High concordance is observed between epithelial TNBC 
clusters and a CellNet basal prediction, further validating the 
role of trained unsupervised cellular annotations in scRNA 
datasets. Supplementary Table 5 annotates the percent of 
cells in each cluster expressing each diagnostic marker and 
respective average expression. Due to the resolution of scR-
NAseq, this assay develops a higher resolution characteriza-
tion of breast cancer cell lines within the current subtyping 
system (Table 2). It resolves the source of heterogeneity for 
some of the confounding cell lines on the gene level.

3.6  Evaluating single cell protein and gene 
expression of ERBB2 in MDA‑MB‑453

To further evaluate the association and heterogeneity of 
gene expression and protein expression within breast can-
cer cell lines, the MDA-MB-453 cell line was processed 
for high-throughput microfluidic microscopy. This is one of 

the cell lines that, in publications, and our higher resolution 
gene analysis, indicated heterogeneity in the expression of 
ERBB2 [11]. The expression of ERBB2 on MDA-MB-453 
cells was measured using both traditional fluorescent micros-
copy, and a microfluidic chip was used that allows isolated 
single-cell imaging and functional experimentation. Within 
the microfluidic system, a total of 1219 nanopens were popu-
lation with MDA-MB-453 cells. Of those pens, 1103 con-
tained an individual cell, and 116 contained multiple cells. 
The data from this imaging system is processed through a 
MATLAB script where 1147 cell locations are identified 
using a Hough Transform circle detection algorithm. The 72 
cells penned that were not found by the algorithm could be 
due to a multitude of image factors, including cell brightness 
not passing the traditional threshold of live cells, masking 
due to chip background interference, and location filtering 
due to cell import and localization near the top of a nan-
open. Image analysis of the MDA-MB-453 cell lines indi-
cates heterogeneous surface marker expression across the 
population. ERBB2 expression is quantified in 1147 detected 
cells. Through this analysis, 513 (44.7%) of 1147 cells had 
a significantly positive expression of ERBB2. The violin 
plot in Supplementary Fig. 4a quantitates the normalized 
FITC brightness measurement across all cells detected on 
the microfluidic chip imaging platform. In the microscopy 
imaging assay using, 87 (53%) of the 164 MDA-MB-453 
cells imaged indicated positive expression based on a scaled 
threshold of 0.5. Supplementary Fig. 4b is a violin plot of 
ERBB2 expression of 164 MDA-MB-453 cells imaged 
through traditional microscopy. We observe this variability 
of surface marker expression concordant with heterogene-
ity in single-cell gene expression of ERBB2. 2050 (88.0%) 
of 2330 MDA-MB-453 cells were identified as positive for 
ERBB2 gene expression from the scRNASeq data (Sup-
plementary Fig. 4c). Supplementary Fig. 4d is a series of 
sample microscopy images captured overlaying expression 
with brightfield cell images. Supplementary Fig. 4e is a 
series of images sampling 40 nanopens with cells detected 
as ERBB2 positive and ERBB2 negative on the microfluidic 
system. Normalized expression scores are listed below each 
cell detection.

3.7  HER2 + BC cell gene concordance provides insight 
toward disease progression

A high-powered gene analysis between subtypes is generated 
by leveraging the higher resolution subtyping of breast can-
cer model lines. HER2 + is a breast cancer subtype defined 
by overexpression of the HER2 protein or ERBB2 gene. By 
identifying cell lines and breast cancers, tissue cell clusters 
that classify as HER2 + through consistent and significant 
gene expression in their population (pct > 0.5 with expres-
sion > 0.5), assisted gene sets are developed for this relevant 
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disease subtype model system. To do so, the filtered Seu-
rat objects representative of BT474, HCC1954, SKBr3, 
SUM190, MDA-MB-453, Epithelial-1, Epithelial-2, Epithe-
lial-3, Epithelial-4, Epithelial-8, Epithelial-9, Epithelial-11, 
and Epithelial-12 are merged to generate a HER2 + popula-
tion-level object generated from our re-annotated grouping. 
A similar analysis is done to create a non-HER2 + Seurat 
object composed of cell datasets from the MCF-7 samples, 
T47D, MDA-MB-468, BT-549, SUM149, MDA-MB-36, 
MDA-MB-436, MDA-MB-231, and Epithelial-5, Epithe-
lial-6, Epithelial-7, Epithelial-8, Epithelial-9, Epithelial-10, 
Mesenchymal-1, Mesenchymal-2, Mesenchymal-3, Mes-
enchymal-4, Mesenchymal-5, and Mesenchymal-6. These 
populations’ datasets are normalized and scaled to optimize 
data analysis that otherwise can get distorted with larger 
sample sets with varying quality metrics. The HER2 + object 
and non-HER2 + objects were independently reclustered and 
annotated. The FindAllMarkers() function on Seurat V3.0 
(see Section 2) gives a comprehensive list of genes across 
the subclusters defining the HER2 + cell line population, and 
another gene set for the non-HER2 + cell line set is gener-
ated. Using inverse intercept filtering identifies genes sig-
nificantly and frequently expressed in the HER2 + popula-
tion (pct. > 0.4). This gene vector is then intersected with 
the vector of genes significantly expressed (pct. > 0.2) 
in the non-HER2 + population. The gene set defining the 
HER2 + population are anti-joined to the new intersected 
gene sets. Each gene set is filtered out to remove ribosomal 
and mitochondrial influence. This yields a vector of 323 
more highly expressed genes in HER2 + cell clusters than 
non-HER2 + clusters, with some markers lacking detection 
in the non-HER2 + cells. While lack of detection can also be 
due to the failure of the assay to capture representative RNA, 
it remains an indicator of a low-expressed molecule in the 
non-HER2 + cell lines and clusters. Figure 6d is a DotPlot 
highlighting the heterogeneity in frequency and intensity of 
expression for 13 genes in the gene vector delineating posi-
tive expression in HER2 + and reduced expression in non-
HER2. The genes highlighted by this analysis corroborate 
published markers for breast cancer, such as MUCL1 and 
CEACAM6. One finding with high concordance is coordi-
nated amplification of HER2-neighboring genes on the same 
amplicon, including GRB7, PGAP3, and MIEN1 [47].

A Gene Set Enrichment Analysis (GSEA) is run across 
the HER2 + BC cell lines using the ClusterProfiler R pack-
age. The input to this pipeline is a data frame of driving 
genes identified through the FindMarkers() function on 
Seurat V3.0 (see Section 2) comparing ERBB2 positive 
cells against ERBB2 negative cell identifiers. Figure 6e is 
a cnet network plot identifying gene pathways upregulated 
in the global ERBB2 positive dataset compared to ERBB2 
negative. A significant (GeneRatio > 0.5) activation of 
critical pathways contributing to HER2 + cancer disease 

progression, including regulation of cell motility, chemot-
axis, and neuron projection guidance, is observed in ERBB2 
positive cells. Figure 6f is a cnet network plot identifying 
gene pathways upregulated in the global ERBB2 negative 
dataset. This highlights a significant (GeneRatio > 0.5) acti-
vation of cytoplasmic vesicle lumen, cell activation involved 
in immune response, response to nitrogen compound, and 
regulation of catabolic processes. As indicated, there is 
an overwhelming pathway activation involving MUCL1, 
S100A8, S100AS7, S100A14, and MIEN1 in HER2 + cells. 
These findings support current developments in HER2 + pro-
gression where Y I Bao et al. identified that S100A8 induces 
downregulation of estrogen receptor (ESR1) and is thereby 
a mechanism for poor prognosis in HER2 + cancers [48]. Li 
et al. investigated MUCL1 as an influencing factor in cell 
migration and invasion within breast cancer cells. Their 
functional work showed that knockdown of the gene in the 
MCF-7 and MDA-MB-231 cell lines resulted in decreased 
migration and invasion, whereas overexpression had the 
opposite effect [49]. Similarly, Sneh et al. showed S100A7 
expression enhances EGF-induced actin remodeling and 
increases metastasis compared to control in MDA-MB-231 
[50]. These published functional experiments support the 
correlative findings of HER2-expressing cells. There is 
noted activation of novel pathway markers such as PSMB3, 
a component of the 20S proteasome complex responsible 
for protein homeostasis involved in all the top 5 activated 
pathways within the HER2 + population, including positive 
regulation of defense response.

3.8  Published marker expression patterns 
in merged atlas dataset

Wu et al. developed four gene vectors characterized through 
pairwise integration between PAM50 subtypes and a 2,000-
gene intrinsic list from TCGA. These gene vectors estab-
lished standardized molecular subtypes of primary breast 
cancer. Each gene vector is overlaid for expression across the 
merged dataset with Supplementary Fig. 5a, 5b, 5c, and 5d, 
indicating expression of specific genes in each gene vector 
for HER2, Luminal B, Luminal A, and TNBC, respectively. 
In Supplementary Fig. 5a, high concordance is observed 
with HER2 correlated genes with the expression of HER2 
classified populations, including BT-474 and HCC1954 cell 
lines. Heterogeneity in disease subtyping across cell lines 
is supported by variable expression of specific genes from 
the correlation network on cell lines such as MDA-MB-453 
and SUM190. For example, SUM190a is the cluster with the 
lowest expression of gene ERBB2 and consistently has lower 
expression of genes in the correlation network for HER2 
than SUM190b and SUM190c. This pattern is illustrated 
by genes ID3, MED24, GRB7, and PGAP3. Similarly, the 
gene vectors for Luminal A and Luminal B are supported 
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by positive expression of many markers in our cell line 
populations, including some MCF7 clusters with expres-
sion of STARD10, C6orf48, and TFF1 from Luminal B and 
HSPB1, KRT8, and PPDPF from Luminal A, visualized 
in Supplementary Fig. 5b and 5c. MCF72 clusters display 
positive expression of TNBC vector genes rather than the 
expected Luminal gene sets. These gene signatures paral-
lel the expression of tissue sample clusters Epithelial-10, 
Epithelial-11, and Epithelial-12. Supplementary Fig. 5d 
highlights gene expression of TNBC gene vectors with the 
highest concordance in cell line data with BT-549 clusters 
that express UCH1, CDKN2A, and CAV1.

3.9  Functional analyses of BT‑549 and MDA‑MB‑436 
cell line subpopulations

Cell differentiation is identified by component molecules 
that define cellular functionality. Through scRNAseq, cellu-
lar compartmentalized expression profiles were derived that 
can be used to predict perturbations in pathways of potential 
interest for protein level comparisons. Through comparing 
these predictions with known cell types and states, cellular 
function predictions are made across majority and minor-
ity subpopulations. As discussed above, Seurat objects are 
independently normalized and scaled within individual cell 
line samples. Individual cell line analysis provides a deeper 
understanding of observed and novel heterogeneous popula-
tion responses. While each line was investigated for func-
tional heterogeneity, the BT-549 and MDA-MB-436 lines 
represent populations with high and low stemness potential, 
respectively, determined by sorting lines by sum expression 
of 40 CSC markers. The functional differences observed 
within these lines provide a necessary understanding of 
model systems and their implications as first-of-line inves-
tigative tools for therapies and toxicity. Both cell lines were 
independently reclustered to leverage the higher resolution 
dataset and account for local difference levels versus prior 
global resolution.

MDA-MB-436 is a TNBC cell line composed of mes-
enchymal type cells. When locally reclustered, the MDA-
MB-436 line has four subclusters shown in Supplementary 
Fig. 6a. Gene vectors defining each subpopulation, outlined 
in the heatmap Supplementary Fig. 6b, drive functional 
heterogeneity predictions. These genes were sorted by 
Avg-logFC from a comprehensive list generated for mark-
ers throughout the MDA-MB-436 cell line population. Our 
preliminary analysis with these gene sets provided interest-
ing gene expression patterns for many populations. Sub-
population 0 has a high expression of SAA1 and IL1A, both 
immune response signals generated in response to tissue/cell 
injury. Subpopulation 1 is defined by the unique expression 
of IFIT1, IFIT2, and IFIT3, which are all part of a tertiary 
complex generated to resist viral pathogenesis in host cells. 

Subpopulation 2 has significant expression of RAD23A and 
NDUFB7, which are both involved in the ubiquitination 
process and other genes responsible for nucleotide exci-
sion repair. Subpopulation 3 in MDA-MB-436 has a high 
expression of DDIT3 and TXNIP, which are both markers 
of a cellular stress response. ZFAS1, another feature of 
this subpopulation, is associated with cancer progression 
and metastasis. While most of these gene sets can predict 
cell states and functions, they still require further valida-
tion to verify these cell properties. Each subpopulation in 
the MDA-MB-436 sample expresses varying forms of a 
cell stress response. Supplementary Fig. 6c is a RidgePlot 
quantifying the expression of conserved markers with the 
cell line, filtering out ribosomal genes as they are typically 
ubiquitously expressed in healthy cells. These genes have 
varying supporting functions expected from a cancer cell 
population, including, for example, supporting cell prolif-
eration (NPM1) and telomere maintenance (NHP2). This 
gene-level heterogeneity inputs to a more extensive pathway 
analysis using the R package ClusterProfiler. After generat-
ing gene vectors defining divergence in intra-line subpopula-
tions, GSEA was run. This analysis identifies overlapping 
gene sets which provide functional modules based on top 
differentially expressed genes between populations. Supple-
mentary Fig. 6d is a cnet plot highlighting pathway nodules 
significantly upregulated in the MDA-MB-436d subpopula-
tion. This analysis indicates four pathway hits: intracellular 
organelle lumen transcription, cell surface receptor signal-
ing pathway, DNA-templated transcription, and nucleolus. 
While many of these pathways are already of interest in can-
cer development and progression, this enrichment is local-
ized to a cluster within the MDA-MB-436 line.

BT-549 is a TNBC epithelial cell line from a ductal carci-
noma. The cell line dataset was locally reclustered to yield six 
unique subpopulations within the line. BT-549a constitutes 
2527 cells from the 2748 (91.9%) total cells sequenced and 
passing QC filters of the cell IDs. This subpopulation would 
significantly dominate the bulk analysis of the cell line. This 
is supported by gene expression of critical genes in breast 
cancer pathology, such as AR, the androgen receptor gene. 
BT-549 is identified as a cell line with high expression of the 
AR gene: however, expression (> 0) is detected in 1,753 of 
2,748 (63.8%) cells [51]. Repeating the analysis performed 
for MDA-MB-436, Supplementary Fig. 6e, 6f, 6 g, and 6 h 
represent BT-549 to showcase a UMAP, heatmap of a subset 
of cells representing each subpopulation with gene vectors for 
each cluster, a RidgePlot for the conserved genes across the 
cell line and a cnet network plot generated from top differen-
tial genes from BT-549e. The heatmap provides unique func-
tional predictions for many of the subpopulations within our 
cell line: SRGN expression in subpopulation 1 indicates CSC 
properties, POLR2L and ROMO1 expression in subpopulation 
2 highlights a transcriptionally active cell state in proliferation, 
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ITGA10 expression in subpopulation 3 highlights a potentially 
metastatic subpopulation further supported by DYNC1H1 
expression, PPP1R15A expression in subpopulation 4 show-
cases a tumorigenic cell population recovering from stressful 
growth, and CA2 expression in subpopulation 5 indicates cell 
population with poor prognosis with high energy consumption 
characterized by CHCHD10 expression. The RidgePlot high-
lights conserved genes across these heterogeneous cell popula-
tions, filtering our ribosomal genes. These genes indicate can-
cerous populations by significant expression of SERBP1 and 
LDHB important for mRNA stability and alternative energy 
consumption, respectively. Supplementary Fig. 6 h is a cnet 
plot highlighting pathway nodules significantly upregulated 
in the BT-549e subpopulation. This analysis indicates three 
overwhelming pathways: blood vessel development, positive 
regulation of response to stimulus, and negative regulation of 
phosphate metabolic processes.

When running a global FindClusters() function from the 
Seurat analysis pipeline (see Section 2) across our entire 
BSCLA dataset, a higher resolution parameter (3.0) is lever-
aged to account for the increased cell population. However, a 
lower resolution parameter (0.2–1.2) is used when process-
ing individual cell line samples. By doing so, higher cluster 
counts for both cell lines are identified in local clustering 
compared to global. MDA-MB-436 and BT-549 generate 4 
and 6 local clusters, respectively, compared to the 2 and 3 
clusters from the global analysis. By selecting a low-resolu-
tion parameter (0.2) when sub-clustering locally, the analy-
sis drives the selection of true heterogeneous populations 
despite also outputting an increased cluster count. Each line 
is independently analyzed to identify functional heterogene-
ity within these cell lines. This is better formulated through 
a lower resolution clustering parameter yielding larger sub-
populations with more divergent gene sets. Through local 
cell line analyses, intra-line and inter-line variability is 
revealed. For example, cell lines like MDA-MB-436 that, 
despite representation from large subpopulations, the func-
tional heterogeneity between them is minimal. In contrast, 
lines like BT-549 have significant functionally heterogene-
ous cell populations, many of which seem to drive disease 
progression and are easily obscured by bulk analysis due 
to overwhelming percentages of a particular cluster. Data 
for each of the remaining cell lines are published for open 
analysis as a tool for researchers to select lines best modeling 
their investigative needs. To make cell line selection better 
informed for the field, cell lines are organized by scoring for 
heterogeneity and stemness.

3.10  Characterizing population variability 
between MCF‑7 lab cultures

The MCF-7 cell line is of particular interest as it is one of 
the most frequently investigated lines with the highest source 

of data generation for patient care than any other breast can-
cer line [52]. MCF-7 is a luminal cell line commonly used 
for estrogen receptor investigation. There is agreed upon but 
uncharacterized clonal variation that is believed to maintain 
presence throughout culturing due to intercellular signaling 
[53]. There are also published observations of stem cells 
capable of populating the various cell identities [54]. To 
resolve some of the outstanding questions, three total sam-
ples of MCF-7 cell culture from two different lab cultures 
were processed, where samples from one lab were isolated 
at multiple passages (P2 and P6). A merged Seurat object 
is generated from the pre-filtered sample sets, then normal-
ized and scaled to level sequencing depth and reduce techni-
cal variability. Cell cycle markers were regressed to reduce 
cell state heterogeneity confounding functional differences 
between populations. A UMAP plot is generated for the 
merged cell dataset (Supplementary Fig. 6i) and clustered 
at a medium resolution (0.6) to balance true populational 
differences and reduce noise effects. The clustered UMAP 
is shown in Supplementary Fig. 6j. Supplementary Fig. 6k is 
a phylogenetic tree comparing populational distances where 
the visualization highlights most clusters branch near their 
sample origin. Clusters branch with their culture of origin, 
except for cell subcluster MCF-7s1r1d – representing the 
MCF-7 cell line from sample source 1 from run 1 with 
cluster ID “d.” Additionally, in the UMAP Supplementary 
Fig. 6j on the top right, the small subclusters MCF-7s1r1d 
doesn’t plot near its sample source nor another lab culture. 
A gene set is generated for each subpopulation to understand 
functional differences between subclusters and the poten-
tial heterogeneity between samples. Based on differential 
expression of all markers, the genes were then sorted by 
difference value with the highest difference corresponding 
to genes with the most difference in the percentage of cells 
expressing it in a population compared to the remaining 
subpopulations. The top genes, sorted by Avg_logFC, are 
visualized in the heatmap Supplementary Fig. 6 l. These 
genes highlight inter-sample and intra-sample discordance. 
While many epithelial and mesenchymal cell markers are 
expressed by cells within the MCF-7 dataset, significant 
expression of mesenchymal markers VIM and CDH2 is lim-
ited to the MCF-7s2 sample and the MCF-7s1r1d subcluster 
as well as isolated expression of epithelial marker KRT19 
on samples MCF-7s1r1 and MCF-7s1r2. This data supports 
the hypothesis that sample 2 has transitioned from epithelial 
to mesenchymal, whereas only a small subpopulation from 
sample1-run1 has transitioned. This supports the hypothesis 
that discrepancy is observed due to lab variability in cul-
ture methods and conditions, and may be attributed to cell 
line contamination. On a bulk level, this inter-sample het-
erogeneity would still be observable; however, the rare cell 
population representing MCF-7s1r1d would have been con-
founded by the other subpopulations. This further highlights 
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the need for high-resolution data generation on commonly 
employed model systems. Functional differences between 
the identified populations can be resolved through evaluating 
canonical gene markers. For example, PSCA expression in 
MCF-7s1r2 is interesting as it is a stem cell antigen marker 
in prostate cancer. In the same sample, high gene expres-
sion of BCAS1, a gene marker that has not been observed 
in previous studies on MCF-7, is observed. Significant gene 
markers provide biological interpretations such as AREG in 
the MCF-7s1r1c subpopulation, a gene involved in estrogen 
action and ductal development. In cell line sample MCF-
7s2, there is a significant expression of GSTP1, which has 
been shown to be expressed in drug-resistant MCF-7 cells 
[55]. Through analyzing these blunt gene patterns, a pattern 
of functional heterogeneity between samples of the MCF-7 
cell lines is revealed.

3.11  Prediction of potential therapeutic 
interventions leveraging targetable 
surfaceome

Many current therapeutics for breast cancer target cancer 
cells through cell surface expression of protein receptors: 
ER, PR, HER2. These therapeutics have yielded vary-
ing success in targeting luminal and HER2 + populations. 
However, breast cancer treatment for the most biologically 
proliferative subtype, TNBC, also has the least targeted 
treatment options available [56]. Unsurprisingly, there is 
a prominent academic and pharmaceutical effort to abate 
this gap in targeted treatment, highlighted by hundreds of 
investigational targeted therapies across disease subtypes. 
A compiled list of FDA-approved target molecules can be 
found in Supplementary Table 6. Individual cell clusters 
were analyzed to identify potential therapeutic. This assay 
allows more informed prediction of targeting and therapeutic 
response in cells for which the global expression of both 1) 
a target gene of interest and 2) genes involved in the inhibi-
tion pathway of this target exceeds a significant threshold. 
Figure 7 is a series of violin plots outlining the expression of 
common targets for disease and the pathways of inhibitions. 
The heatmaps were separated by subtype where Fig. 7a, b, 
and c represent Luminal, HER2 + , and TNBC, respectively. 
Most targets were present in a population of cells for their 
designated disease subtype. Expression of the target with 
a pathway of inhibition was compared to predict response 
to therapy. For example, Trop2 and Top1 are the target and 
pathway for Sacituzumab Govitecan-hziy, one of the only 
targeted therapeutics in TNBC.

Once gene expression has been incorporated to predict 
cellular response to known targets, extending this analysis 
for novel targets to breast cancer can provide new treat-
ment options. To do this, a comprehensive vector of genes 
known to produce targetable proteins is overlaid with the 

gene expression matrix from the merged atlas dataset. 
Through this method, gene expression of both small mol-
ecule targets in the cellular cytosol, and gene expression 
of proteins expressed on cellular surfaces are selected. The 
generated highlights were then parsed for relevance in BC 
disease treatment. This includes conducting an extensive 
literature review to contrast these findings with ongoing 
studies across cancer types. Unsurprisingly, high concord-
ance is observed of novel genes in BC across other cancer 
types. This can be due to fundamental similarities in can-
cer progression, such as VEGF dependency and immune 
evasion capacity. To highlight the potential efficacy of this 
pipeline in clinical care, our global datasets were selected 
for HER2 + and TNBC cell clusters. Using rownames() and 
selecting for significantly expressed genes (pct. > 0.25), two 
comprehensive gene vector sets expressed by HER2 + and 
TNBC subpopulations were generated. These vectors were 
then overlaid to identify genes unique to a disease. The con-
cluding vectors provide a method of resolving genes with 
more isolated expression to the cancer cell types of inter-
est. The filtered gene set is then intersected with the known 
surfaceome. The intersecting genes were also compared to 
a database of drug targets of FDA-approved therapeutics. 
The heatmaps in Fig. 7d and e are the potential drugga-
ble targets in HER2 + and TNBC cell populations, respec-
tively. Unique gene expression for each population subset 
is observed. In the HER2 + population, gene expression of 
markers currently under investigation as potential targeted 
therapies were identified: FGFR4 [57], ITGB1 [58], and 
ERBB2 [59]. The heatmap also highlights genes previously 
characterized within breast cancer, however not in the con-
text of a potential therapeutic target, for example, TUBB 
[60]. For TNBC, this analysis proves to be especially useful, 
as targeted therapeutics for this subtype are limited. There 
is also a significant expression of key markers that target 
specific cell subclusters or the generic TNBC population. 
Some features of interest were identified in literature, for 
example, gene PDE4B codes for cyclic nucleotides involved 
in signal transduction in the hydrolysis of cAMP [61]. The 
protein translated from this gene is a target of AN2728, a 
PDE inhibitor. COL1A1 is a published biomarker and poten-
tial therapeutic target of ER + cancers. However, it also has 
significant gene expression on the TNBC BT-549 cell line, 
which supports the idea of repurposing current treatment 
options for niched patient types.

The data were merged with respective disease subtypes 
of cell line clusters to highlight the efficacy of the BSCLA 
cell lines in predicting therapeutic efficacy in tumors. For 
example, high concordance is observed between cell lines 
and respectively subtyped BC primary tumor cells in the 
expression of markers such as ESR1 and ERBB2, but also 
observed for less characterized targets such as PARP1, 
CDK4, CDK6, and MTOR. Results from the tissue dataset 
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further validate the efficacy of using these model systems to 
define potential therapeutic avenues in patient disease when 
characterized with high-resolution assays. For gene markers 

in HER2 breast cancers, possible targeting of individual 
clusters with PLAT, ICAM1, and FGA is observed. Simi-
larly, for gene markers in TNBC, possible targeting through 

Fig. 7  Predicting therapeutic response and novel therapeutic tar-
get prediction from scRNASeq gene expression. a Violin plots out-
lining drug targets and pathways for Luminal disease. b Violin plot 
outlining drug targets and pathways for HER2 + disease. c Violin plot 

outlining drug targets and pathways for TNBC disease. d Heatmap 
for HER2 + specific markers expressed on surfaceome with FDA-
approved targeting. e Heatmap for TNBC specific markers expressed 
on surfaceome with FDA approved targeting
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genes expressed across multiple populations include FN1, 
PLAU, and PDGFRB. The heatmap also highlights genes 
specific to subclusters, including VWF, FLT1, and RAMP3 
in the Mesenchymal-5 cluster.

To investigate gene-level effects on the therapeutic inter-
ventions, two cell lines were treated for HDAC6 inhibition, 
identified from a genome wide RNAi screen. MDA-MB-453 
was predicted to respond to this intervention with higher 
sensitivity than MDA-MB-436 [62]. Supplementary Fig. 7 
highlights the variability in expression between MDA-
MB-453 and MDA-MB-436 cell lines pre and post HDAC6 
inhibition. This altered gene expression predicts efficient 
targeting and inhibition in the MDA-MB-453 population 
and the limited effect on MDA-MB-436. For example, in 
comparing network plots generated to compare treated and 
un-treated gene expression vectors for each cell line, the 
MDA-MB-453 analysis reveals pathways involved in mor-
phogenesis, development, and apoptotic process attributed to 
increased gene expression markers including G6PD, HSPB1, 
KRT8, and KRT19. The MDA-MB-436 comparison yields 
fewer fundamental gene changes such as genes involved in 
nuclear speck and response to light, both pathways altered 
during microscopy events. Findings support this interpreta-
tion, with Cardillo et al. concluding MDA-MB-453 to be 
sensitive to sacituzumab govitecan [63]. This analysis does 
not factor in delivery method and transportation to cells. 
Still, it is instead focused on demonstrating the use of the 
BSCLA for predicting response to therapeutic once directed 
at the cancer cells.

4  Discussion

By utilizing scRNAseq data for gene expression analyses 
in conjunction with high throughput single-cell functional 
predictions, we have developed a resource for distinct popu-
lation identification and validation. Through publicly avail-
able scRNAseq data analysis tools, we have demonstrated 
the prediction of functional clusters within complex cell 
lines. This highlights the need for further investigation of 
high levels of intrinsic heterogeneity that must be considered 
when interpreting results. This heterogeneity may confound 
conclusions of past and current studies using both model 
systems and primary BC tissue. Cell lines are used across 
disciplines and have unknown levels of subpopulation vari-
ability, which can alter the ability to draw definitive conclu-
sions from in vitro studies. In the case of therapeutic devel-
opment, in vitro, human cell lines have been critical systems 
for predicting both the efficacy and toxicity of drugs.

In this work, we have generated high-resolution data char-
acterizing model cell lines for the landscape of breast cancer 
disease. ScRNAseq data from 26 primary tumors is merged 
with the cell line dataset to inform this analysis further. The 

BSCLA has provided a framework for understanding the pre-
liminary model systems we use and their relevance toward 
disease subtypes. We demonstrate the potential benefit in 
identifying heterogeneity of response in experimentation and 
an avenue of data generation potentially valuable for novel 
target identification through this improved characterization. 
To date, this provides the most comprehensive single-cell 
gene-level annotation of BC cell lines and may also include 
data synergistic for additional pathologies as more cell lines 
are characterized across other cancers in the future.

One of our primary methods of organizing this data anal-
ysis was identifying populational divergence on a pseudo-
bulk level. The phylogenetic tree organized our clustered 
dataset by computing distance relationships. Genes driv-
ing divergence provide critical annotations of cell line 
populations. We identify published and novel gene mark-
ers highlighting epithelial and mesenchymal cell types as 
the primary nodes of differentiation. Next, we leveraged 
the high-resolution data across disease subtypes to generate 
gene vectors specific to each cell line and even subpopu-
lations within cell lines. These molecular features of cell 
line subpopulations were previously unidentifiable through 
conventional bulk-RNA sequencing. Cell line gene vectors 
contribute to a deeper understanding of cellular function and 
provide a framework for modeling patient disease through 
a cocktail of cell line populations. The gene vector defining 
each cell line can be overlaid with patient scRNAseq data 
to identify a combination of model lines creating cell popu-
lations representative of individual disease. For example, 
SKBr3 and T47D cell lines can better represent different 
epithelial clusters, whereas BT549 represents many of the 
mesenchymal groups better.

We also evaluated our dataset for cell populations similar 
to CSCs or potential for stemness. We identify cell lines 
with a subpopulation of interest with stemness potential by 
overlaying published CSC marker expression across sub-
populations. The sorted cell lines provide a whole popula-
tion ranking of cell lines based on their CSC potential. The 
findings from this analysis support our ranking system from 
published markers. In contrast to graph-based trajectory 
inference methods such as Monocle, Wishbone, or Diffu-
sion Pseudotime, several methods have been introduced lev-
eraging estimates of information entropy surrounding gene 
expression profiles as a proxy measure of differentiation. 
Approaches, such as SLICE, SCENT, and Markov Chain 
Entropy, utilize Shannon Entropy as a means to quantify 
the degree of gene–gene interactions and pathway prun-
ing occurring in each individual single-cell [64]. These 
recent studies have all demonstrated that single-cell gene 
expression entropy is thought to inversely correlate with the 
degree of differentiation (i.e., stemness) in both normal and 
cancer tissues [24]. It is believed that as cells differentiate, 
transcriptional regulatory programs prune away signaling 
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pathways unnecessary to a given cell's committed fate, 
which is reflected in measurements of information entropy 
between presumably interacting gene pairs. Scores are calcu-
lated for each cell independently for one another, eliminating 
the possibility of trajectory bias from inaccurate or incom-
plete clustering required for the majority of graph-based 
methods [65]. Following entropy calculations, its impact on 
gene expression is estimated by conducting multiple parallel 
spearman rank correlations, followed by correction for mul-
tiple testing. Cells can then be aligned in order of increasing 
or decreasing entropy, and spline-curves fit to gene expres-
sion to examine changing expression dynamics.

We observed a high correlation between published CSC 
markers and entropy scoring. By overlaying differential 
genes and sorting by entropy score, we generated gene vec-
tors for our population as potential pathways for CSC iden-
tification, including ITGA6, CD44, and ITGB1. Next, we 
identify markers from each cell line with concordance to 
entropy score to generate unique CSC genes within each cell 
line. Intriguingly, we notice discordant CSC gene expression 
versus entropy scores when comparing disease subtypes. 
Luminal cell lines have an inverted relationship between key 
genes and entropy score than TNBC cell lines, supporting 
the CSC model in disease recurrence. Canonical markers 
of cancer stemness share a positive Spearman correlation 
with entropy in TNBC cell lines. We believe this agreement 
highlights the increased prevalence of the CSC cell popula-
tion in TNBC, providing an improved opportunity for cancer 
cell survival and recurrence post-therapy.

As a byproduct of subtyping BC disease through cell 
surface expression, there is an inevitable paradox in clas-
sifying disease. With improved techniques in characteriz-
ing cell populations, grouping cells by protein expression 
despite higher resolution metrics provides in some cases 
inconsistent annotation. Using the BSCLA, we can rean-
notate cell line disease subtypes and filter primary tumor 
cells by single-cell gene expression. When doing so, we 
validate the protein level cell line classifications for 9 of 
13 unique cell lines. We observe heterogenous ERBB2 
expression between clusters of cell lines within SUM190 
and MDA-MB-453. This variability in expression indicates 
the potential of cell lines to have variable disease subtypes. 
This finding reflects our evolving understanding of the plas-
ticity of breast cancer tumors, as summarized by Yeo and 
colleagues in identifying separate disease entities within 
individual patient tumors [66]. While we observe concord-
ance with many of the disease subtype annotations from lit-
erature, there are some interesting variabilities in subtyping 
binning. For example, data from patient sample CID4067 is 
annotated as ER + . However, this sample source publication 
has significantly high ERBB2 gene expression compared to 
the dataset, thereby evaluating it as HER2 + in this analysis. 
These variabilities can be attributed to publications using 

patient diagnostic information to bin subtypes rather than 
gene expression of the cells composing the data.

With the reclassified cell lines, we pooled cells by dis-
ease category to define gene divergences. Some cell line 
subpopulations such as SUM190 and MDA-MB-453 were 
classified into different Seurat objects depending on ERBB2 
expression. We observe unique gene expression representing 
these populations, particularly increased expression of genes 
sharing the ERBB2 amplicon. GRB7 has previously been 
associated with overamplification with ERBB2. These con-
sistent modules support androgen receptor (AR) signaling 
as a driving force for tumorigenesis, thereby also opportun-
ing therapeutic cocktails for HER2 + and AR targeting. We 
also observe marker differences controversial to published 
correlations such as TLK1, which was believed to be most 
amplified in Luminal B breast cancer [67]. When evaluating 
HER2 + populations by GSEA, a large percent of the popula-
tion is activating genes in the biological process pathway, 
which are typically reserved for genes whose bioproduct is 
unknown. Some genes identified by the network plot high-
light S100A gene set activation across the HER2 + dataset. 
For example, genes such as S100A8 have been associated 
with malignancy and activation in HER2 + [48].

Sample sources with confirmed overexpression of HER2 
were merged and reclustered for deeper analysis. The 3 sam-
ple sources, HCC1954, BT-474, and CID3921, generated 
5 functional subclusters. Conserved expression of markers 
such as S100A10 indicates metastatic potential, parallel-
ing known biology of disease aggressiveness within HER2 
expressing breast cancer [68]. DGEA between clusters 
yields unique inferences regarding the functionality of the 
larger partitions observed by the UMAP plots. For example, 
gene expression of LCN2 in HER2-0 indicates mesenchy-
mal phenotype, as described by Lu et al. [69]. Similarly, 
gene expression of collagen markers such as COL1A2 infer 
HER2-4 to have fibroblast invasion [70]. The presence of 
CID3921 source cells across functional clusters indicates the 
relevance of cell lines in modeling tumor tissue. It further 
highlights the need for deep model characterization as one 
HER2 + cell line would not reflect the heterogeneity of the 
patient sample as well as both did.

To further investigate and validate functional infer-
ences made from scRNASeq data, MDA-MD-453 cells 
were processed through fluorescent microscopy assays 
measuring the expression of ERBB2. Results of measured 
gene expression by scRNASeq, surface marker expression 
by high throughput microfluidic imaging, and traditional 
microscopy are concordant in illustrating the variability of 
expression. Through protein level characterization of the 
MDA-MB-453 cell line, we are able to validate predicted 
gene level heterogeneity inferences made. The heterogene-
ity observed here reflects previously published variability 
in the cell line’s subtype annotation [11]. We believe the 
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data presented here adds to the transcriptomic inferences 
made in the paper in two ways: 1) by validating gene-protein 
association and 2) by providing a framework for functional 
testing of cell samples that matches the throughput of cur-
rent scRNASeq. Overall, the heterogeneity in expression 
of ERBB2 found from single-cell RNA data translated to 
surface marker expression heterogeneity. These findings 
further confirm the variability within this cell line that we 
identified in our literature review. We did observe a dispro-
portionate number of cells positive for ERBB2 expression 
between gene and protein assays and believe this difference 
is reflected by a few factors. One potential factor is discord-
ant gene and protein expression due to translational path-
way interference between gene expression and cell surface 
marker development, previously indicated by Wegler et al. 
[71]. Another potential factor is cell culture states at the time 
of sample processing, where ERBB2 expressing cell repre-
sentation may fluctuate over culture timepoints, previously 
indicated by Sato et al. when running lineage tracking on 
HeLa cells [72]. Another factor potentially addressing this 
discrepancy is assay thresholding variability between gene 
and protein analysis. For example, within the microfluidic 
system, ERBB2-negative identified cells have an expres-
sion of ERBB2; however, the selection of expressing versus 
overexpressing cells for positive identification may affect 
our analysis. Overall, findings support known but unchar-
acterized heterogeneity within cancer cell lines. Previous 
work by TCGA (The Cancer Genome Atlas), CCLE (Cancer 
Cell Line Encyclopedia), and many independent researchers 
have established a deep foundational understanding of cell 
lines on the bulk-Seq and protein levels. With the advent 
of high-throughput and high-resolution assays, there is an 
unmet need to apply these assays to model systems such 
as cell lines. We believe the work presented here addresses 
some of these unmet needs and provides further support for 
continued deeper investigation into characterizing model 
systems in future works.

While most of the analysis focused on validating and 
resolving the current understanding of BC cell lines, we 
believe this high-resolution data generation can also be lev-
eraged for novel marker and therapeutic identification across 
the dataset. This is illustrated by the expression patterns of 
therapeutic targets and pathways of inhibition in current 
clinical treatment options. Epithelial-11 is an example of 
a subpopulation that may be targeted successfully due to 
HER2 expression predicted by ERBB2 expression. However, 
a treatment option that acts upon CDK6 activity could be 
less effective due to the low expression of the CDK6 gene. 
To identify potential novel treatment targets, we overlayed 
significantly expressed genes in TNBC and HER2 + popula-
tions, with genes known to translate into surface markers. 
When intersecting this dataset with FDA-approved targets, 
we generate over 100 potential targets in HER2 + and TNBC 

cell population for cell lines and primary tumor clusters. 
Within HER2 + gene markers of interest, we generate hits 
novel genes predicted to be expressed on the surfaceome 
of HER2 + clusters. These serve as a means of targeting 
specific populations that have evaded current therapy. For 
example, the PLAT gene is expressed primarily in three 
clusters of primary tumor samples, including Epithelial-3, 
Epithelial-6, and Epithelial-9. These clusters exhibit lower 
expression of ERBB2 compared to other epithelial clusters 
and cell line clusters and serve as candidate cell popula-
tions for alternative targeting. In the TNBC analysis, some 
of the genes are highly annotated markers for TNBC disease, 
including ITGB1 and CD44, where both genes have been 
identified as prognosis makers [73, 74]. Similarly, some 
other genes identified have shown early-stage benefit as a 
target for TNBC treatment, such as EGFR [75]. The analy-
sis also reveals novel signatures not as prevalent in current 
publicly available data. For example, we identify M6PR as a 
potential novel cell surface marker and targetable molecule. 
This analysis pipeline assumes that observed gene expres-
sion translates to targetable protein expression, which can be 
further refined and validated through future data generation 
on platforms such as CITE-seq.

While this scRNAseq analysis generated abundant data 
and insights about BC cell lines, it followed with some 
limitations. The work presented here analyzes differential 
gene expression within breast cancer cell lines to predict 
subpopulations. Inferences on subpopulation function lev-
erage unique genes to each population and published work 
on functional experimentation of specific genes. Another 
limitation is the observed heterogeneity between culture 
samples of MCF-7, most of the data is limited to a singular 
timepoint for a cell line cultured from a particular lab source. 
While this data adds a level of understanding about culture 
heterogeneity, it also further sheds light on the sensitivity 
of these characterizations to timepoints and culture condi-
tions. Similarly, generating high-resolution data at multiple 
time points of culture across cell lines can further support 
stemness investigations. Additionally, with scRNAseq data, 
we attempt to interpret heterogeneity and functional values 
of cell types. However, gene and protein expression have 
been shown to vary, and therefore the predictive statements 
would be supported with future validation experimentation 
[76]. Assays such as CITE-seq and single-cell copy number 
variation (CNV) can clarify phenotypic and genomic sources 
of heterogeneity, respectively.

5  Conclusion

As the standard of oncology treatment moves toward tar-
geted therapies, our understanding of model systems used as 
the first line of testing needs to be improved through higher 
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resolution characterization. Further scRNAseq investiga-
tions paired with phenotypic observations can provide the 
required level of deep insight into cell populations used for 
these types of critical studies. Here we have presented a 
comprehensive but preliminary investigation into the pres-
ence and roles of cellular diversity within cell lines and 
primary tumors. Previous work has provided high-resolu-
tion data on patient samples or bulk level characterization 
of model cell lines [38, 77]. This atlas is a comprehensive 
single-cell breast cancer cell line dataset, unique in its con-
tribution by providing a tool for cell line characterization 
and selection which we believe will improve efficiency and 
accuracy of legacy research. In addition to the cell line data, 
we overlay model data with a breast tumor atlas, providing 
further understanding towards cell line functionality and 
representation of tumor heterogeneity. Furthermore, we 
extend our analysis to understanding gene expression altera-
tions post novel therapeutic treatment, while also indicating 
capacity to predict efficacy. Lastly, we leverage novel and 
custom-engineered analysis pipelines serving as proof-of-
concepts for unsupervised cell annotation and cancer stem 
cell prediction.

We believe this dataset should encourage researchers 
to further develop higher resolution data points for patient 
cases and the model systems we use to understand them. 
Through higher resolution data generation, we resolved sub-
type heterogeneity, identified subclusters across our dataset 
with higher probability likelihood of stemness, elucidated 
sub passage and lab effects on transcriptome with MCF-
7, developed deep gene-level predictive values for current 
treatment options in breast cancer, overlayed gene expres-
sion of resistive cancer types with FDA approved targets 
on surfaceome to generate novel treatment targets. All the 
metrics we generate function as a predictive tool in the com-
plex landscape of breast cancer. As such, our results need 
validation on a protein and DNA level. With the advent and 
development of single-cell assays, we believe this paper 
provides support for further cumulative effort in character-
izing the heterogeneity in breast cancer. Through this deeper 
analysis, we show there are substantial and direct implica-
tions on how we view disease and clinical decision-making. 
Our BSCLA atlas of 75,409 cells from 13 distinct cell lines 
and 26 primary tumors defines and categorizes heterogene-
ous subpopulations across disease states. We envision the 
incorporation of this atlas across breast cancer investiga-
tions. Therefore, we provide foundational investigations into 
the dataset, including resolving subtyping through higher 
resolution data generation, predicting novel therapeutic 
targets, and generating deeper pathway analyses to define 
population divergence.
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