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Abstract

Purpose The relevance of the subfamily A members of ATP-binding cassette (ABCA) transporters as biomarkers of risk
and response is emerging in different tumors, but their mechanisms of action have only been partially defined. In this work,
we investigated their role in Ewing sarcoma (EWS), a pediatric cancer with unmet clinical issues.

Methods The expression of ABC members was evaluated by RT-qPCR in patients with localized EWS. The correlation
with clinical outcome was established in different datasets using univariate and multivariate statistical methods. Functional
studies were conducted in cell lines from patient-derived xenografts (PDXs) using gain- or loss-of-function approaches. The
impact of intracellular cholesterol levels and cholesterol lowering drugs on malignant parameters was considered.

Results We found that ABCAG6, which is usually poorly expressed in EWS, when upregulated became a prognostic factor
of a favorable outcome in patients. Mechanistically, high expression of ABCA6 impaired cell migration and increased cell
chemosensitivity by diminishing the intracellular levels of cholesterol and by constitutive IGFIR/AKT/mTOR expression/
activation. Accordingly, while exposure of cells to exogenous cholesterol increased AKT/mTOR activation, the cholesterol
lowering drug simvastatin inhibited IGF1R/AKT/mTOR signaling and prevented Ser166 phosphorylation of MDM?2. This,
in turn, favored p53 activation and enhanced pro-apoptotic effects of doxorubicin.

Conclusions Our study reveals that ABCAG6 acts as tumor suppressor in EWS cells via cholesterol-mediated inhibition of
IGF1R/AKT/MDM2 signaling, which promotes the pro-apoptotic effects of doxorubicin and reduces cell migration. Our
findings also support a role of ABCA6 as biomarker of EWS progression and sustains its assessment for a more rational use
of statins as adjuvant drugs.
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1 Introduction

Mechanisms of chemoresistance in cancer are manifold and
only partially defined. They include, but are not limited to,
enhanced drug efflux-pump activity, changes in the intra-
cellular metabolic machinery, upregulation of DNA repair
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mechanisms, induction of growth signaling and impairment
of apoptosis [1]. Recent evidence indicates a more complex
role for several ATP-binding cassette (ABC) transporters in
tumor progression. Some ABC transporter members, particu-
larly ABCB1 (P-glycoprotein/MDR1), ABCC1 (Multidrug
Resistance-associated Protein 1/MRP1) and ABCG?2 (Breast
Cancer Resistance Protein/BCRP) act as cell membrane pumps
that are capable of extruding drugs from cancer cells, and their
contribution to multidrug resistance is widely recognized in
different tumors (for a review, see [2]). Other members have
been found to play roles in the regulation of cancer cell pro-
liferation, differentiation, migration and invasion, to mediate
intracellular peptide and lipid transport (for a review, see [3,
4]) and to be part of the signaling networks that orchestrate
the activation and polarization of macrophages and to affect
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the fate of myeloid progenitors [5, 6]. In this study, we focus
on studying the impact of unconventional ABC transporters
in Ewing sarcoma (EWS) and we use patient-derived xeno-
graft (PDX) models to identify mechanisms of action for the
ABCAG transporter that has emerged as a prognostic biomarker
in EWS patients.

The ABCA subfamily of transporters consists of 12 mem-
bers, whose best-defined physiological functions are related
to the maintenance of lipid homeostasis and the regulation of
cellular lipid transport and trafficking, including efflux from
cells of cholesterol and phospholipids (i.e., phosphatidylcho-
line, phosphatidylserine and sphingomyelin) (for a review,
see [7]). These lipids are reported to severely impact many
biological processes related to cancer by regulating plasma
membrane cell fluidity and functionality (for a review, see
[8, 9]), but information on this subfamily of transporters
in cancer is dispersed, controversial and mostly limited
to the ABCA1 member [8, 10]. In our current study, we
found that high tumor levels of ABCA6 were predictive of
a favorable prognosis in EWS patients. We chose to study
EWS, the second most frequent primary tumor of bone in
the pediatric population because (i) patients still face the
disadvantage of uniform, non-individualized chemotherapy,
which severely impacts their quality of life and/or prognosis
[11], (ii) patients who fail to respond to first-line treatments
or already had metastases at diagnosis still have a dismal
prognosis (overall survival rate <40%), largely because their
tumors are resistant to conventional chemotherapy [12, 13]
and (iii) data for ABCB1, ABCG2 and ABCCI1 are scarce
and controversial in EWS [14—17], supporting the need of
extended analysis and evaluation of novel candidates.

Our findings highlight the importance of ABCAG6 as a
biomarker of risk and response in EWS and provide a mech-
anistic explanation for its involvement in the regulation of
cancer aggressiveness. High expression of this transporter
impaired cell migration and increased cell chemosensitivity
to DNA-damaging agents by diminishing intracellular cho-
lesterol content, thereby decreasing the functional activity
of the IGFIR/AKT/mTOR/MDM2 axis. The cholesterol-
lowering drug simvastatin recapitulated similar effects and
exhibited synergistic anti-proliferative and pro-apoptotic
effects when combined with doxorubicin. This effect was
particularly relevant in the most aggressive cells character-
ized by a low expression of ABCAG6 and a high intracellular
level of cholesterol.

2 Materials and methods
2.1 Patients selection

Patients with localized EWS who were enrolled in prospec-
tive neoadjuvant studies [18, 19] and treated at the Rizzoli
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Institute were included in this analysis. Based on biobank
availability and a tumor tissue quality control check, 103
primary tumors were studied (25 samples: training set and
78 samples: validation set). The clinicopathological features
of the patients are reported in Supplementary Table 1. Local
treatment, performed after induction chemotherapy, con-
sisted of radiation therapy, surgery or surgery followed by
radiation therapy. In patients locally treated by surgery, the
histological response to chemotherapy was evaluated accord-
ing to the method proposed by Picci et al. [20].

For the training set, the median follow-up was 72 months
(range 10-328 months). The cohort was composed of 9
patients (36%) who remained continuously free of disease
(NED) and 16 patients (64%) who relapsed (REL). For the
validation set, the median follow-up was 61.5 months (range
4-328 months), 44 patients (56.4%) remained continuously
free of disease, and 34 (43.6%) relapsed. Clinical and follow-
up data were updated to June 2020. Relapse-free survival
(RFS) was calculated from the date of initial diagnosis.
The clinical endpoint was the occurrence of adverse events
(defined as recurrence or metastases at any site for RFS or
cancer-related death for overall survival, OS).

Additionally, microarray data of 166 primary EWS
tumors downloaded from the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus
(GEO) were analyzed. More details are provided in the Sup-
plementary Methods.

2.2 Preclinical studies

Functional studies were conducted on 4 cell lines derived
from patient-derived xenografts (PDXs). PDX-derived cell
lines, named PDX-EW#2-C, PDX-EW#3-C, PDX-EW#4-
C and PDX-EW#5-C, were obtained from the respective
EWS PDXs after their first passage in mice [21]. All cell
lines were immediately amplified to construct liquid nitro-
gen stocks and were never passaged for more than 1 month
upon thawing. Cells were maintained in Iscove's modified
Dulbecco's medium (IMDM; Euroclone) supplemented with
10% heat-inactivated fetal bovine serum (FBS; Euroclone),
penicillin (20 U/ml) and streptomycin (100 pg/ml; Sigma)
in a 37 °C humidified environment at 5% CO,. All cell lines
were authenticated by short tandem repeat PCR analysis (17
STRs analyzed; last control July 2018; POWERPLEX ESX
17 Fast System, Promega) and found to be mycoplasma-free
using a MycoAlert mycoplasma detection kit (Lonza; control
every 3 months).

For forced expression or silencing of ABCAG6, 1x 10°
PDX-EW#2-C or PDX-EW#5-C cells/well, respectively,
were seeded in 6-well plates coated with fibronectin (3 pg/
cm?; Sigma). For forced expression, cells were trans-
fected 24 h after seeding with expression vector pPCMV6-
AC-GFP containing full-length hABCA6 (Origene), and
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non-transfected (NT) or empty vector transfected (EV) cells
were used as controls. For silencing, cells were transfected
with a lentiviral pLKO.1 expression vector containing short
hairpin RNAs (shRNAs) against human ABCA6 (shABCAG).
Five constructs were mixed to ensure adequate coverage of
the target gene (sequences 5’-3” of shRNA were as follows:
shABCA6-1 ATTCCTGCTGTTAATTTCTGC, shABCA6-2
TTTAACTTTAAGAAACGGAGC, shABCA6-3 AATAAA
GGAGAATAATGGCGC, shABCA6-4 TAGCAAAGTCTG
AAAGTAGGG, shABCA6-5 TTTACCAGAAACTATGAT
AGC; human TRC shRNA library TRC-Hs1.0 Human;
Dharmacon). Non-transfected (NT) cells or cells transfected
with a pLKO.1 expression vector containing ShRNA against
enhanced green fluorescent protein (sShGFP) were used as
controls. Transfections were performed using TransIT-X2
(Mirus) according to the manufacturer’s protocols. The
expression levels of ABCA6 were determined by western
blot analysis after 48 h of transfection.

Anchorage-independent growth was determined in 0.33%
agarose (Lonza) with a 0.5% agarose underlay. Cell motil-
ity and chemotaxis assays were performed using Transwell
chambers (Costar) and scratch wound-healing assays.
In vitro drug sensitivity was assessed using a 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay (TACS MTT Cell Proliferation Assays; Trevigen)
according to the manufacturer’s protocol or by Trypan blue
vital cell count (Sigma). Changes in mitochondrial mem-
brane potential were assessed by flow cytometry measuring
1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1;
Sigma) red and green fluorescence intensities. Intracellular
cholesterol was detected using filipin III staining. Intracel-
lular and supernatant cholesterol was quantified using a col-
orimetric Total Cholesterol Assay Kit (Cell Biolabs). Lipid
extracts were obtained from 1 x 10° cells using 200 pl of a
chloroform:isopropanol: NP-40 (7:11:0.1, v:v:v) mixture and
further processed according to the manufacturers’ protocol.

For western blot analysis, cells were lysed with phospho-
protein extraction buffer supplemented with protease-phos-
phatase cocktail inhibitor (Sigma). Proteins of interest were
detected by specific antibodies.

More details on the preclinical studies are provided in the
Supplementary Methods.

2.3 Statistical analysis

Associations between ABC transporter expression and
RFS or OS were estimated by Cox proportional hazards
regression analysis. RFS and OS were plotted using the
Kaplan—Meier method, while the log-rank test was used
to calculate univariate statistical significance of observed
differences. Survivors or patients who were lost at follow-
up were censored at the last contact date. All factors sig-
nificantly associated with RFS in univariate analysis were

entered into a Cox proportional hazards model multivariate
analysis. Values of 95% confidence intervals (Cls) of haz-
ard ratios (HRs) were provided [22]. All experiments were
performed at least in triplicate, and all values are reported as
the mean + SEM. Differences among means were analyzed
using unpaired two-sided Student’s t-test. Experimental data
including more than 2 groups were analyzed using one-way
or two-way ANOVA. Fisher’s exact test was used for asso-
ciation data. IC50 values were calculated from linear trans-
formation of dose—response curves using CalcuSyn software
(Biosoft). To define drug-drug interactions, the combina-
tion index (CI) was calculated with an isobologram equation
using CalcuSyn software to identify synergistic (CI<0.9),
additive (0.9 <CI<1.1), or antagonistic (CI> 1.1) effects
according to Chou et al. [23]. All p values were two-sided
and a p value < 0.05 was considered statistically significant.
Statistical analyses were performed using SPSS software,
version 22.0 and GraphPad Prism 6 (GraphPad Prism).

3 Results

3.1 High expression of ABCA6 in primary tumors
predicts favorable outcomes in EWS patients

To identify ABC transporters whose expression is associ-
ated with differential patient outcome in EWS, we performed
an explorative quantitative reverse transcription PCR (RT-
gPCR) analysis of 15 ABC transporters that were reported
to play a role in drug resistance/tumor aggressiveness (for
a review see [24]). The median value for each gene (Sup-
plementary Table 2) was used as the cutoff value to stratify
patients and define two categories of high or low expressors.

In the training set (25 samples from patients with primary
localized EWS), the log-rank univariate analysis (Mantel-
Cox test) indicated a statistically significant association for
the expression of ABCA6 and ABCA7 with different RFS
(Table 1 and Supplementary Fig. 1). However, this correla-
tion was confirmed only for ABCAG6 in the validation set (78
samples from patients with primary localized EWS): high
expression of ABCA6 was found to be associated with favora-
ble patient’s outcomes, using RFS and OS as a primary end-
point (Fig. 1a, Supplementary Table 3 and Supplementary
Table 4). In patients with high expression of ABCA6, adverse
events occurred in 10 out of 34 (29.4%), while in patients
with low expression of ABCA6 adverse events occurred in
24 out of 34 (70.6%) (p =0.003, Fisher’s exact test). Accord-
ingly, tumor-related death occurred in 30.4% (7 out of 23) of
patients with high expression of ABCAG6, but in 69.6% (16
out of 23) of patients with low expression of the transporter
(p=0.046, Fisher’s exact test). Multivariate analysis sup-
ported the statistical significance of the low expression level
of ABCAG as an independent risk factor for poor outcomes
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Table 1 Prognostic ir.npact Relapse-Free Survival® Overall Survival®
of ABC transporters in 25
patients with Ewing sarcoma. Gene n Events (% RFS) p-Univariate Events (% OS) p-Univariate
Associations with prognosis
were calculated by univariate ABCA2 0.067 0.103
analysis using the log-rank Low 13 10 (17.9%) 8 (34.6%)
(Mantel-Cox) test High 12 6 (50.0%) 4(66.7%)
ABCA6 0.026 0.085
Low 12 9 (20.8%) 7 (38.1%)
High 13 7 (46.2%) 5(61.5%)
ABCA7 0.035 0.023
Low 13 11 (8.8%) 9 (26.0%)
High 12 5(58.3%) 3 (75.0%)
ABCBI 0.530 0.215
Low 12 8(29.2%) 7 (37.5%)
High 13 8 (38.5%) 5(61.5%)
ABCBI0 0.951 0.563
Low 12 8 (28.1%) 5 (55.6%)
High 13 8 (38.5%) 7 (46.2%)
ABCC1 0.468 0.965
Low 12 9 (18.7%) 6 (46.3%)
High 13 7 (46.2%) 6 (53.8%)
ABCC2 0.967 0.859
Low 12 8 (28.1%) 6 (46.3%)
High 13 8 (38.5%) 6 (53.8%)
ABCC4 0.055 0.055
Low 12 10 (9.7%) 8 (28.1%)
High 13 6 (53.8%) 4 (69.2%)
ABCCS5 0.080 0.361
Low 12 10 (9.5%) 7 (37.5%)
High 13 6 (53.8%) 5(61.5%)
ABCCl11 0.172 0.535
Low 12 6 (46.9%) 5(55.6%)
High 13 10 (23.1%) 7 (46.2%)
ABCEI 0.142 0.446
Low 13 10 (17.6%) 7 (42.7%)
High 12 6 (50.0%) 5(58.3%)
ABCFI 0.065 0.348
Low 12 10 (9.5%) 7 (37.5%)
High 13 6 (53.8%) 5(61.5%)
ABCF2 0.329 0.837
Low 12 9 (19.0%) 6 (46.3%)
High 13 7 (46.2%) 6 (53.8%)
ABCF3 0.123 0.212
Low 12 9 (19.4%) 7 (38.1%)
High 13 7 (46.2%) 5(61.5%)
ABCG2 0.284 0.498
Low 12 8 (30.0%) 6 (47.6%)
High 13 8 (38.5%) 6 (53.8%)

Results in bold are significant at p <0.05. *RFS, relapse-free survival (median follow-up: 21 months; range
4-328 months); "OS, overall survival (median follow-up: 72 months; range 10-328 months)
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Fig. 1 Prognostic value of ABCA6 in primary EWS patients. a,
Prognostic impact of ABCA6 expression according to Kaplan—-Meier
curves and log-rank test in 78 EWS cases analyzed by RT-qPCR.
Samples with high (H) and low (L) expression were defined accord-
ing to the median value. Relapse-free survival (RFS) and overall sur-
vival (OS) were evaluated. The time scale refers to months from diag-
nosis. The number of patients at risk in the H and L groups is listed
below each time interval. b, Kaplan—-Meier analysis of OS of EWS
patients (n=166), stratified in two groups according to their ABCA6
expression status in ‘high’ and ‘low’ (cut-off 22" expression percen-
tile). All EWS tumors were profiled on Affymetrix gene expression
arrays. Mantel-Haenszel test. ¢, Comparative gene expression analy-

(HR=2.812;95% CI=1.226-6.445; p=0.015) (Supplemen-
tary Table 5).

To validate the data obtained from our clinical samples
and to limit the impact of possible technical biases, gene
expression data obtained from publicly available microar-
ray records of 166 primary EWS tumors were analyzed.
The 22" percentile, which indicates a low expression of
the molecule, was chosen as the optimal cutoff by a spe-
cific algorithm, which tests all possible cutoffs between
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expression values for the given gene in the given dataset.
The analysis still confirmed the significant association
between high expression of ABCA6 and a better prognosis
(Fig. 1b), further supporting the idea that ABCA6 could
contribute to determine the outcome for EWS patients.
Additionally, publicly available data showed that ABCA6
was expressed at lower levels in EWS compared with
other pediatric tumors, particularly lymphoma/leukemia
(Fig. Ic), suggesting the lack of this transporter as a pecu-
liar feature of EWS.
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3.2 ABCAG levels influence EWS cell migration
and chemosensitivity by affecting intracellular
cholesterol content

Since the expression levels of ABCA6 in PDXs and in the
corresponding PDX-derived cell lines were found to be
more similar to those found in clinical samples than in con-
ventional cell lines with a long history in culture (Supple-
mentary Fig. 2), we decided to use the PDX-derived cell
lines to study in more detail the impact that this transporter
has on the regulation of tumor cell growth and migration.
Among the four PDX-derived cell lines, PDX-EW#2-C
cells barely expressed the transporter and PDX-EW#4-C
cells showed a low expression, while PDX-EW#3-C and
PDX-EW#5-C expressed ABCAG6 at high levels (Fig. 2a).
In keeping with clinical data, the two cell lines with a high
expression of ABCAG6 displayed decreased capabilities to
grow in anchorage-independent conditions and to migrate
(Fig. 2b and c). Due to the severe limitations on cell growth
and migration that characterize the PDX-EWS#3-C cells,
we decided to perform further studies on the PDX-EWS#5-
C cell line that still represents the high ABCA6 condition.
We found that PDX-EW#5-C cells (ABCA6M2") exhib-
ited a significantly enhanced sensitivity to DNA damag-
ing chemotherapeutics doxorubicin (p =0.003, Student’s
t-test), etoposide (p =0.004, Student’s t-test) and ifosfamide
(p=0.028, Student’s t-test) compared to PDX-EW#2-C cells
(ABCA6'") (Supplementary Table 6). The exposure of cells
to doxorubicin induced a dose-dependent increase in mito-
chondrial depolarization, which was significantly higher
in PDX-EW#5-C cells (ABCA6MeM) than in PDX-EW#2-C
cells (ABCA6"Y) (p <0.0001, two-way ANOVA; Fig. 2d),
leading to increased activation of caspase-3 and PARP
cleavage (Fig. 2e). Gain- or loss-of-function approaches
in PDX-EW#2-C cells (ABCA6'%) (Fig. 3, left panel) or
PDX-EW#5-C cells (ABCA6"#"), respectively (Fig. 3,
right panel), confirmed that the migration of EWS cells was
indeed impaired when the transporter was overexpressed
(Fig. 3b, left panel) and promoted when it was silenced
(Fig. 3b, right panel). Overexpression of ABCA6 also
enhanced cell chemosensitivity to doxorubicin (Fig. 3c, left
panel) by improving its pro-apoptotic effects (Fig. 3d, left
panel), while the abrogation of its expression led to opposite
results (Fig. 3¢ and d, right panel).

Members of the ABCA subfamily of transporters are
thought to play important roles in lipid transport and traf-
ficking, including the regulation of cholesterol efflux from
cells (for a review, see [3]). Thus, both cholesterol intra-
cellular levels and the amount released into the culture
medium were measured in PDX-derived EWS cells with
differential expression levels of ABCA6. We observed
reduced intracellular levels of cholesterol and higher
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cholesterol contents in the medium of the less aggres-
sive PDX-EWS#5-C cells (ABCA6"2") compared to
PDX-EWS#2-C cells (ABCA6"%) (Fig. 4a). Consistently,
decreased or enhanced cholesterol levels were measured
in ABCAG6-overexpressing or -silenced cells, respectively,
compared to non-transfected controls (NT, Fig. 4a). Stain-
ing of cells with filipin III, a fluorescent dye that specifi-
cally stains membrane-bound cholesterol [25], confirmed
the reduced intracellular levels of cholesterol in the less
aggressive PDX-EWS#5-C cells (ABCA6""; Supple-
mentary Fig. 3). In contrast, in the PDX-EWS#2-C cells
(ABCA6'%), cholesterol was well detectable at the cell
surface membrane and at the intracellular level (Supple-
mentary Fig. 3). Functional relationships between ABCA6
expression, intracellular levels of cholesterol and malig-
nant features of EWS cells were confirmed by exposing
cells to simvastatin, a well-known inhibitor of the rate-
limiting enzyme 3-hydroxy-3-methylglutaryl-CoA reduc-
tase (HMG-CoA reductase) in the cholesterol synthesis
pathway [26], or exogenous cholesterol. In cells character-
ized by low expression of ABCA6 and high intracellular
levels of cholesterol (PDX-EWS#2-C or PDX-EWS#5-C
cells silenced), treatment with simvastatin diminished the
cellular content of cholesterol, as expected, and weak-
ened the migration abilities of cells in a dose-dependent
manner (Fig. 4b and c). In contrast, the exposure of cells
characterized by high expression of ABCA6 and low
intracellular levels of cholesterol (PDX-EWS#5-C cells
or PDX-EWS#2-C cells forced for ABCAG6 expression) to
exogenous cholesterol increased the intracellular levels of
the lipid and induced a dose-dependent enhancement of
migrated cells (Fig. 4d and e). As further confirmation, the
inhibitory effect of simvastatin on ABCA6'¥ cell migra-
tion was completely reversed by exogenous cholesterol
(Supplementary Fig. 4).

Pretreatment with simvastatin also increased the sen-
sitivity to doxorubicin in the most aggressive ABCA6'Y
cells. Indeed, a clear synergistic effect between the two
drugs was observed in ABCA6!°Y cells, but not in the
less aggressive ABCA6"2" cells (Fig. 5a). Additionally,
while the silencing of ABCA6 expression in PDX-EW#5-
C (ABCAG6"2M) cells induced synergism (Fig. 5b right),
the forced expression of ABCA6 in PDX-EW#2-C
(ABCAG6'"Y) cells partly reversed the favoring effect of
simvastatin (Fig. 5c right). This implies that cholesterol
lowering drugs should be especially considered for the
treatment of the most aggressive cells characterized by
low expression of the transporter. Accordingly, the PDX-
EW#2-C (ABCA6'Y) cells were found to be more sensitive
to simvastatin than the PDX-EW#5-C (ABCA6"2") cells
(IC50 values =63.65 +£5.47 ug/ml vs 188.99 +16.82 ug/
ml, respectively; p=0.0021, Student’s t-test).
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3.3 ABCA6-mediated variations in intracellular
levels of cholesterol impair activation of IGF1R/
AKT/mTOR signaling while promoting
doxorubicin-induced apoptosis

To illustrate the mechanisms that connect the expression
of ABCAG6 and the levels of cholesterol to cell migration
and drug resistance, we treated the most aggressive PDX-
EWS#2-C cells (ABCA6'°%) with simvastatin, while the less
aggressive PDX-EWS#5-C (ABCAG6"M) cells were exposed
to exogenous cholesterol. Previous studies have shown that
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C cells (ABCAG'Y) (*¥*%¥p <0.0001, two-way ANOVA). Efficacy
of doxorubicin in each cell line compared to respective control was
tested by one-way ANOVA, reporting significant p values (range
from p <0.05 to p>0.0001). e, Protein expression of cleaved caspase
3 and PARP after cell exposure to DXR (24 h) by western blotting.
GAPDH was used as a loading control

cholesterol-lowering drugs could inhibit AKT signaling
in cancer cells by downregulating IGFIR expression [27,
28]. In our experimental model, we found that (i) transient
overexpression or silencing of ABCA6 modulated AKT
phosphorylation (Supplementary Fig. 5) and (ii) incuba-
tion of PDX-EWS#2-C cells with simvastatin (1-5 pg/ml)
decreased the constitutive level of AKT phosphorylation on
residue Ser473 (Fig. 6a). The effect lasted at least 72 h and
was associated with upstream lower expression and phos-
phorylation on residue Tyr1131 of IGFIR, a key partici-
pant in EWS development and progression [29] and reduced
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Fig.3 Forced expression or A
silencing of ABCAG affects cell PDX-EW#2-C PDX-EW#5-C
migration and chemosensitivity (ABCAG"™") (ABCAG"ia")

to doxorubicin. a, Expression of

ABCAG6 in PDX-EW#2-C cells ©
. © <
after forced expression (left) < o (3}
or in PDX-EW#5-C cells after 8 ("_'5 3
silencing (right) determined by = > < E £ £
western blotting. A repre- Z w < b @
sentative experiment of three - emm» -— | — 183 kDa
is shown. GAPDH was used as ABCA6 -
a loading control. b, Migra- GAPDH
tory ability of PDX-EW#2-C W W e — 37 kDa
and PDX-EW#5-C transfected B
cells. Data are the mean+SEM
— .k koK
(n=3); *p<0.05, **p <0.01, PDX-EW#2-C PDX-EWH5-C
one-way ANOVA vs control Jow high
(ABCA6'°%) (ABCA6™9")
(non-transfected cells; NT). 180
¢, Sensitivity to doxorubicin @ 140 ® .
(DXR) of transfected cells, e 120 3 160
expressed as IC50 values, after 3 2 140 -
24 h of treatment. Data are the g’ 100 I g
mean + SEM (n=3); *p <0.01 £ g 120
one-way ANOVA vs control s 80 o "é 100
(non-transfected cells; NT). ® 60 =) & 30 | | |%|
d, Mitochondrial depolariza- NT EV hABCA6 NT ShGFP sShABCAG6
tion after cells exposure to
DXR (24 h) detected by flow C PDX-EW#5.C
. PDX-EW#2-C - -
cytometry. Sensitivity to DXR (ABCAG') (ABCAGMSh)
of control cells was compared —_ =
to that of ABCAG6 overexpress- E‘ 800 £ 60 **
ing (hABCA6) or ABCA6 2 600 2 50
silenced cells (shABCA®6). Data £ % 40
are the mean + SEM (n=3). § 400 Sk § 30
*#%p <0.001, two-way ANOVA s s 20{ =4 E
o 200 )
(=] o 10
o 2
S o . v : g o . . .
NT EV hABCAG6 NT shGFP shABCA6
D PDX-EW#2-C PDX-EW#5-C
(ABCA6'") (ABCAG"'9M)
sk
K] Kekek g
T 80 3 80 | dekk I
3 70 ek 4 70
£ 60 £ 60
3 50 8 50
= 40 c 40
3 30 3 30
5 20 ° 20
T 10 S 10
S % ﬁ f'] I_I—| S olm, [l .
e NT EV hABCA6 ES NT shGFP shABCA6
[ CTR [ DXR 250ng/mL [ CTR 3 DXR 50ng/mL

downstream phosphorylation of mTOR on residue Ser2448  and alters the interaction among lipid raft-associated pro-
and ribosomal protein S6 on residue Ser240/244 (Fig. 6a).  teins. We here confirmed that overexpression of ABCAG6 in
The simvastatin-induced IGF1IR/AKT/mTOR inhibition in =~ PDX-EWS#2-C cells or their exposure to simvastatin led to

PDX-EWS#2-C cells was reversed by exogenous choles-  decreased expression of caveolin-1, while ABCAG6 silenc-
terol (Fig. 6a). Accordingly, exposure of PDX-EWS#5-C  ing in PDX-EWS#5-C cells or their exposure to exogenous
(ABCAG6"e) cells to cholesterol stimulated phosphoryla-  cholesterol led to increased levels of caveolin-1 on the cell
tion of IGFIR and downstream mediators (Fig. 6b). Pre- surface (Supplementary Fig. 6). Although it is beyond the
vious studies [30-32] have shown that cholesterol modifi-  purpose of this study, a deeper evaluation of the choles-

cation disrupts lipid raft domains, including caveolae [33]  terol-caveolin-IGFIR signaling interactions, IGFIR being
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EWS medium
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Fig.4 Impact of intracellular levels of cholesterol on EWS cell
malignancy. a, Total cholesterol quantification by using a colori-
metric assay in PDX-EW#2-C cells (ABCA6"°") and PDX-EW#5-C
cells (ABCAG" "), both in the medium and at the intracellular level.
Data are the mean+ SEM (n=3); **p <0.01; ***p <0.001, Student’s
t-test. Intracellular cholesterol was also quantified in PDX-EW#2-
C cells after forced expression and in PDX-EW#5-C cells after
silencing of ABCAG6. Data are the mean+SEM (n=3); **p<0.01;
*#%p <(0.001, one-way ANOVA. PDX-EW#2-C cells (non-transfected
cells, b) and PDX-EW#5-C silenced cells (¢) were exposed to simvas-

aresident of lipid rafts and caveolae [30, 31], it is very likely
that cholesterol depletion followed by ABCAG6 high expres-
sion could inhibit IGF1R and AKT signaling. This implies
that the higher content of cholesterol, which characterizes
EWS cells with low expression of the ABCAG6 transporter,
favors the constitutive IGF1R/AKT/mTOR signaling activa-
tion that is known to be sustained by the autocrine produc-
tion of IGF1 [34, 35]. Accordingly, a comparison between
untreated PDX-EWS#2-C and PDX-EWS#5-C cells clearly
showed the highest constitutive signaling activation in the

Intracellular cholesterol levels

PDX-EW#2-C PDX-EW#5-C

PDX-EW#2-C (ABCA6'™") PDX-EW#5-C (ABCAG"9")

= 160 = 160
3 140 " 3 140 ek
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= 100 E = 100
g 80 g 80
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2 2 2 2
© o © 0
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= 160 Simvastatin 5 pg/mL
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= 100 *k 210
g 80 =*
g 60 S 20
2 40 =
2 20 8 -30
° o 2 a0
. * 8
" . O .
Simvastatin 5 pg/mL = 50 -
CHOLESTEROL LEVELS MIGRATION
hABCA6 hABCA6
= 160 %
3 140 "
£ >
2 =
T 80 K
£ 60 8
2 a0 3
£ 20 B
o5 5
+ = +

Cholesterol 3 ng/mL Cholesterol 3 pg/mL

tatin (72 h). Graphs represent the effects on intracellular cholesterol
levels (mean+ SEM; n=3) and cell migratory ability (mean+ SEM;
n=3). ¥*p<0.05; **p<0.01 versus untreated cells (control, one-way
ANOVA or Student’s t test). PDX-EW#5-C (non-transfected cells, d)
and PDX-EW#2-C after forced expression (e) are exposed to exog-
enous cholesterol (72 h). Graphs represent the effects on intracellu-
lar cholesterol levels (mean+ SEM; n=at least 3) and cell migratory
ability (mean+SEM; n=3). *p<0.05; **p<0.01; ***p<0.001;
*#%%p <0.0001 versus untreated cells (control, one-way ANOVA or
Student’s t test)

cell line with a lower expression of ABCA®6, a higher content
of cholesterol and a more aggressive phenotype (Fig. 6a and
b). In PDX-EW#2-C cells, simvastatin, besides hampering
AKT signaling also reduced Ser 166 phosphorylation of
MDM2 (Fig. 6¢), leading to increased p53 activation [36].
The effects on MDM2/p53 were further increased when
simvastatin-pretreated cells were exposed to doxorubicin
(Fig. 6¢). The pro-apoptotic influence of p53 on the statin-
induced sensitizing effect was confirmed by caspase 3 and
PARP cleavage (Fig. 6d). Exposure to exogenous cholesterol
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Fig.5 Combined effects of simvastatin and doxorubicin on EWS cell
growth. Cells were exposed to different doses of simvastatin (SIM)
for 72 h before being exposed to doxorubicin (DXR) alone or in com-
bination for an additional 24 h in: a, PDX-EW#2-C (ABCA6"") and

antagonized these effects on proapoptotic signaling induced
by the combination of doxorubicin with simvastatin (Fig. 6¢,
d). The ability of simvastatin to sensitize cells to doxoru-
bicin-induced apoptosis mirrored the inhibitory drug effects
on cell growth (Fig. 6d), further supporting the therapeutic
utility of lowering cholesterol levels in the most aggressive
EWS cells.

4 Discussion

In this study, we provide evidence that localized EWS patients
who underwent conventional multidrug chemotherapy have a
more favorable course of disease when tumoral expression of
the ABCAG transporter is high. These clinical data obtained in
three independent cohorts of EWS patients are in conformity

@ Springer

Doxorubicin (ng/mL)

PDX-EW#5-C (ABCAG6""); b, PDX-EW#5-C after ABCAG6 silenc-
ing; ¢, PDX-EW#2-C after forced expression of ABCA6. Cell growth
was evaluated by vital cell count. CI: combination index (synergism:
CI<0.90; additive 0.9 <CI<1.1; antagonism: CI>1.1)

with a recent report on pancreatic ductal adenocarcinoma [37]
and a previous observation in neuroblastoma [38], but in sharp
contrast with the general idea that overexpression of ABC
transporters is associated with more pronounced malignancy
and drug resistance due to their capabilities to export drugs or
toxins (through their canonical function of detoxification) [39].
Here, we show that expression of ABCA6 impairs the intracel-
lular levels of cholesterol, which is an important component of
cellular membranes reported to regulate membrane fluidity and
functionality [40]. Cancer cells accumulate cholesterol, par-
ticularly in the cytosolic face of the plasma membrane, where
cholesterol offers structural support and strongly affects the sta-
bility and function of growth factor receptors, integrins and cell
surface glycoproteins. Consequently, the intracellular cholesterol
content is involved in the control over major biological processes
such as endocytosis, intracellular signaling pathway activation,
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Fig.6 Cholesterol mediates activation of IGFIR/AKT signaling
and doxorubicin-induced apoptosis. a, IGF1R pathway inhibition
in PDX-EW#2-C (ABCAG6'¥) cells treated with increasing doses of
simvastatin (SIM) and after the rescue effect of exogenous cholesterol
(CHOL) exposure. A representative western blot of three is shown.
GAPDH was used as a loading control. b, IGFIR pathway induc-
tion in PDX-EW#5-C (ABCAG"") cells after exogenous cholesterol
exposure. A representative western blot of three is shown. GAPDH
was used as a loading control. ¢, AKT/MDM2/p53 proapoptotic path-
way activation in PDX-EW#2-C cells after doxorubicin (DXR, 3 h)

cell adhesion and motility (for a review, see [41]). Depletion of
cholesterol in cancer cells has been reported to reduce tumor cell
migration [42] and to increase sensitivity to chemotherapeutic
agents [43]. Here, we report that when the ABCAG6 transporter
is highly expressed, either constitutively or after being forced,
cells exhibit low intracellular levels of cholesterol and a reduced
capability to migrate, and they are more sensitive to doxorubicin
and other DNA-damaging agents, such as etoposide and ifos-
famide. In contrast, EWS cells that constitutively express low
levels of ABCAG or that have been silenced for the expression
of this transporter have higher levels of intracellular cholesterol
and display a more malignant phenotype. Furthermore, higher
levels of cholesterol were detected in the culture medium of less
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exposure alone or in combination with SIM or SIM plus CHOL. A
representative western blot of three is shown. GAPDH was used as
a loading control. d, Growth inhibition and apoptosis induction rep-
resented by caspase 3 and PARP cleavage, after doxorubicin (DXR,
24 h) exposure alone or in combination with SIM or SIM plus CHOL.
Data in the graph are the mean +SEM (n=3); *p<0.05; **p<0.01;
**%p <0.001, ****p<0.0001. One-way ANOVA versus control
(nontreated cells). A representative western blot of three is shown.
GAPDH was used as a loading control

aggressive cells (ABCA6"#") indicating increased efflux of cho-
lesterol. Exposure to statins, which suppress intracellular cho-
lesterol synthesis through the inhibition of HMG-CoA reduc-
tase [26], or to exogenous cholesterol modulate cell behavior
accordingly. In the exploration of the underlying mechanisms,
we found that cells characterized by high expression of the trans-
porter and lower levels of cholesterol showed decreased consti-
tutive activation of IGF1R/AKT signaling compared to ABCA6
low expressors that present a higher lipid content. Accordingly,
the cholesterol lowering drug simvastatin was found to inhibit
IGF1IR/AKT/mTOR activation, whereas exogenous cholesterol
stimulated upregulation and activation of IGF1R and phospho-
rylation of AKT/mTOR. This finding is in line with previous
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studies showing that the activation of IGFIR depends critically
on the levels of cholesterol [30-32], which may alter interac-
tions between lipid rafts, including caveolae, and associated
tyrosine kinase receptors (for a review see [44]). In particular,
it was found that IGF1R phosphorylation is inhibited by cho-
lesterol depletion, while it is restored by the replacement with
exogenous cholesterol [32]. Other studies reported an oncogenic
and pro-metastatic role of caveolin-1 in EWS [45—47] and how
IGF1R signaling is enhanced after caveolin-mediated receptor
internalization [48, 49]. Our data, reporting the role of ABCA6
in diminishing intracellular cholesterol, decreasing caveolin-1
expression and inhibiting IGF1R signaling, are consistent with
this evidence and support the hypothesis that the ability to form
ordered domains is sufficient to support activation of IGFIR

signaling and tumor growth. In addition, we provide evidence
that through inhibition of IGF1R/AKT signaling, statins also
prevent Ser166 phosphorylation of MDM2, leading to an
increased p53 response and enhanced pro-apoptotic effects of
doxorubicin. Of note, highly malignant EWS cells that express
low levels of ABCA6 and have higher levels of intracellular
cholesterol are more sensitive to statins. Additionally, pretreat-
ment with simvastatin synergistically increased cell sensitivity to
doxorubicin. This finding supports the possible use of statins as
adjuvant agents in therapy against EWS. Statins are commonly
administered to treat atherosclerotic cardiovascular disease, but
they also exert pro-apoptotic, anti-angiogenic and immunomod-
ulatory effects in various tumor cell types (for a review, see [50,
51]) and decrease the development of multidrug resistance

Fig. 7 Simplified representation 4
of the relationships between A
ABCAG, cholesterol (CHOL),
and IGF1R signaling in EWS
cells in the high malignancy
condition (ABCA6'™") or

the lower aggressive status
(ABCA6" ") The proposed
mechanism is summarized as
follows: a, when cells express
low ABCAG, cellular levels of
cholesterol are increased with
consequent enrichment in cave-
olae and IGFIR signaling. Co-
localization of IGFIR and cave-
olin-1 together with enhanced
caveolin-dependent IGF1R
signaling are well-demonstrated
[31, 48, 49]. The sustained
activation of IGFIR/AKT trig-
gers both mTOR/S6 signaling,
which leads to increased protein
synthesis and cell survival, \.
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INDUCED BY
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and MDM2. MDM2 phospho-

rylated at Ser166 favors p53
degradation, which results in B
an attenuated p53-mediated
apoptotic response to DNA-
damaging agents. b, when cells
express high levels of ABCA6,
cholesterol efflux is increased,
thereby diminishing the total
content of cholesterol in the
cells and reducing IGFIR/AKT
signaling. This prevents the
phosphorylation of MDM2 at
Ser166, leading to an increased
p53 response, while down-
stream inhibition of mTOR/S6
decreases cell survival. (The
images were “Created with
BioRender.com)
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in vitro (for a review, see [52]). At the clinical level, however, the
results related to the use of statins or other cholesterol-lowering
drugs are controversial, with some studies suggesting prolonged
survival and others reporting no benefit (for a review, see [53]).
In this study, we highlight how the expression of ABCA6 may
affect the sensitivity to statins, thereby supporting the idea that
evaluation of the expression level of these transporters is neces-
sary to identify patients who may benefit from the anticancer
effects of statins.

5 Conclusion

Our data indicate that most aggressive EWS are charac-
terized by a lower expression of ABCA®6, a condition that
facilitates the progression of EWS by keeping cellular
cholesterol at high levels. This results in an enrichment
of caveolae, sustained activation of IGFIR/AKT sign-
aling, increased function of MDM?2 and attenuated p53
responses to DNA-damaging agents. In contrast, high
ABCAG6 expression was found to be associated with a
better patient’s prognosis and, at the cellular level, with
improved chemotherapy-induced apoptosis likely due to
decreased levels of cholesterol and reduction of pro-sur-
vival signaling (Fig. 7). This finding indicates a selective
vulnerability of EWS cells and sustains ABCAG6 evaluation
for a rationale use of statins as adjuvant drugs. Overall, our
study highlights the importance of ABCAG6 in cancer and
provides a mechanistic explanation for its involvement in
the regulation of cancer aggressiveness.
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