Skip to main content

Advertisement

Log in

Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Paclitaxel is an anticancer drug for the treatment of non-small cell lung cancer (NSCLC). However, drug-resistance remains a major problem. Honokiol is a natural component which has been found to exhibit anti-tumor activity. Paclitaxel and honokiol have been reported to be able to induce paraptosis. The aim of this study was to investigate whether honokiol can reverse paclitaxel resistance by inducing paraptosis in NSCLC cells.

Methods

NSCLC cell lines H1650 (paclitaxel-sensitive), H1299 and H1650/PTX (intrinsic and acquired paclitaxel-resistant, respectively) were used to assess the cytotoxic effects of paclitaxel and honokiol. Light and transmission electron microscopy were performed to detect cytoplasmic vacuolation. In vitro cell viability and clonogenic survival assays, as well as in vivo xenograft assays were conducted to test synergistic killing effects of paclitaxel and honokiol on NSCLC cells. Western blotting, flow cytometry and immunofluorescence were performed to evaluate paraptosis-regulating mechanisms.

Results

We found that combination treatment with paclitaxel and honokiol synergistically killed H1650, H1299 and H1650/PTX cells by inducing paraptosis, which is characterized by cytoplasmic vacuolation. Moreover, paclitaxel/honokiol treatment resulted in a significant growth delay in H1299 xenograft tumors that showed extensive cytoplasmic vacuolation. Mechanistically, proteasomal inhibition-mediated endoplasmic reticulum (ER) stress and unfolded protein responses leading to ER dilation, and the disruption of intracellular Ca2+ homeostasis and mitochondrial Ca2+ overload resulting in mitochondrial disfunction, were found to be involved in paclitaxel/honokiol-induced paraptosis. Cellular protein light chain 3 (LC3) may play an important role in paclitaxel/honokiol induced cytoplasmic vacuolation and NSCLC cell death.

Conclusions

Combination of honokiol and paclitaxel may represent a novel strategy for the treatment of paclitaxel-resistant NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015)

    Article  PubMed  Google Scholar 

  2. N. Hanna, D. Johnson, S. Temin, S. Baker Jr., J. Brahmer, P.M. Ellis, G. Giaccone, P.J. Hesketh, I. Jaiyesimi, N.B. Leighl, G.J. Riely, J.H. Schiller, B.J. Schneider, T.J. Smith, J. Tashbar, W.A. Biermann, G. Masters, Systemic therapy for stage IV non–small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 35, 3484–3515 (2017)

  3. M.A. Socinski, Update on taxanes in the first-line treatment of advanced non-small-cell lung cancer. Curr. Oncol. 2, e691–e703 (2014)

    Article  Google Scholar 

  4. L. Cortes-Dericks, D. Galetta, The therapeutic potential of mesenchymal stem cells in lung cancer: benefits, risks and challenges. Cell. Oncol. 42, 727–738 (2019)

    Article  Google Scholar 

  5. A. Quintanal-Villalonga, S. Molina-Pinelo, Epigenetics of lung cancer: a translation perspective. Cell. Oncol. 42, 739–756 (2019)

    Article  CAS  Google Scholar 

  6. J. Zhou, P. Giannakakou, Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anti-Cancer Agents 5, 65–71 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. J.J. Yeh, W.H. Hsu, J.J. Wang, S.T. Ho, A. Kao, Predicting chemotherapy response to paclitaxel-based therapy in advanced non-small-cell lung cancer with p-glycoprotein expression. Respiration 70, 32–35 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. G.M. Ajabnoor, T. Crook, H.M. Coley, Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell. Death Dis. 3, e260 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. X.F. Le, Bast, R.C. Jr., Src family kinases and paclitaxel sensitivity. Cancer Biol. Ther. 12, 260–269 (2011)

  10. X. Peng, F. Gong, Y. Chen, Y. Jiang, J. Liu, M. Yu, S. Zjang, M. Wang, G. Xiao, H. Liao, Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis. 5, e1367 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G. Xi, X. Hu, B. Wu, H. Jiang, C.Y. Young, Y. Pang, H. Yuan, Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett. 307, 141–148 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. A. Holleman, I. Chung, R.R. Olsen, B. Kwak, A. Mizokami, N. Saijo, A. Parissenti, Z. Duan, E.E. Voest, B.R. Zetter, miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene 30, 4386–4398 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Wang, H. Li, Y. Ren, S. Zou, W. Fang, X. Jiang, L. Jia, M. Li, X. Liu, X. Yuan, X. Yuan, G. Chen, J. Yang, C. Wu, Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis. 7, e20630 (2016)

    Google Scholar 

  14. L.E. Fried, J. Arbiser, Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal. 11, 1139–1148 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Arora, S. Singh, G.A. Piazza, C.M. Contreras, J. Panyam, Singh, Honokiol, a novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 12, 1244–1252 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Pan, Y. Lee, Q. Zhang, D. Xiong, W.C. Tina, Y. Wang, M. Yon, Honokiol decreases lung cancer metastasis through inhibition of the STAT3 signaling pathway. Cancer Prev. Res. 10, 133–141 (2017)

    Article  CAS  Google Scholar 

  17. R.J. Leeman-Neill, Q. Cai, S.C. Joyce, S.M. Thomas, N.E. Bhola, D.B. Neill, J.L. Arbiser, J.R. Grandis, Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin. Cancer Res. 16, 2571–2579 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W. Tian, Y. Deng, L. Li, H. He, J. Sun, D. Xu, Honokiol synergizes chemotherapy drugs in multidrug resistant breast cancer cells via enhanced apoptosis and additional programmed necrotic death. Int. J. Oncol. 42, 721–732 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. X. Wang, J.J. Beitler, H. Wang, M.J. Lee, W. Huang, L. Koenig, S. Nannapaneni, A.R. Amin, M. Bonner, H.J. Shin, Z.G. Chen, J.L. Arbiser, D.M. Shin, Honokiol enhances paclitaxel efficacy in multi-drug resistant human cancer model through the induction of apoptosis. PLoS One 9, e86369 (2014)

  20. Y. Wang, X. Zhu, Z. Yang, X. Zhao, Honokiol induces caspase-independent paraptosis via reactive oxygen species production that is accompanied by apoptosis in leukemia cells. Biochem. Biophys. Res. Commun. 430, 876–882 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Wang, Z. Yang, X. Zhao, Honokol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells. Toxicol. Mech. Meth. 20, 34–41 (2010)

    Article  CAS  Google Scholar 

  22. T. Chen, X. Wang, L. Sun, L. Wang, D. Xiang, M. Mok, Taxol induces caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells. Cancer Lett. 270, 164–172 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Q. Sun, T. Chen, X. Wang, X. Wei, Taxol induces paraptosis independent of both protein synthesis and MAPK pathway. J. Cell. Physiol. 222, 421–432 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Wang, Y. Zhou, Z. Zheng, J. Li, Y. Yan, W. Wu, Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption. Cell Death Dis. 9, 1134 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. C.-H. Dai, Y. Shu, P. Chen, J.-N. Wu, L.-H. Zhu, R.-X. Yuan, W.-G. Long, Y.-M. Zhu, J. Li, YM155 sensitizes non-small cell lung cancers to EGFR-tyrosine kinase inhibitors through the mechanism of autophagy induction. BBA-Mol. Basis Dis. 1864, 3786–3798 (2018)

    Article  CAS  Google Scholar 

  26. P. Chen, H.-P. Huang, Y. Wang, J. Jin, W.-G. Long, K. Chen, X.H. Zhao, C.-G. Chen, J. Li, Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy- related cell death. J. Exp. Clin. Cancer Res. 38, 254 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. B.M. Ram, G. Ramakrishna, Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition. Biochim. Biophys. Acta 1843, 2497–2512 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. M.J. Yoon, E.H. Kin, J.H. Lin, T.K. Kwon, K.S. Choi, Superoxide anion and proteaomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Raolical Biol. Med. 48, 713–726 (2010)

    Article  CAS  Google Scholar 

  29. M. Hirabayashi, K. Inoue, K. Tanaka, K. Nakadate, Y. Ohsawa, Y. Kamei, A.H. Popiel, A. Sinohara, A. Iwamatsu, Y. Kimura, Y. Uchiyama, S. Hori, A. Kakizuka, VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 8, 977–984 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. R. Kar, P.K. Singha, M. Venkatachalan, P. Saikumar, A novel role for MAPI LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene 28, 2556–2568 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P.K. Singha, S. Pandeswara, M.A. Venkatachalam, P. Saikumar, Manumycin A inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death. Cell Death Dis. 4, e457 (2013)

  32. M. Yoo, E.H. Kim, T.K. Kwon, S.A. Park, K.S. Choi, Simultaneous mitochondrial Ca2+ overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett. 324, 197–209 (2012)

    Article  CAS  Google Scholar 

  33. J. Xue, R. Li, X. Zhao, C. Ma, X. Lv, L. Li, P. Liu, Morusin induces paraptosis-like cell death through mitochondrial calcium overload and disfunction in epithelial ovarian cancer. Chem. Biol. Interact. 283, 59–74 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. T.E. Gunter, S.S. Sheu, Characteristic and possible functions of mitochondrial Ca2+ transport mechanisms. Biochim. Biophys. Acta 1787, 1291–1308 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.A. Matlib, Z. Zhou, S. Knight, S. Ahmed, K.M. Choi, J. Krause-Bauer, R. Phillips, R. Altschuld, Y. Katsube, N. Sperelakis, D.M. Bers, Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca uptake into mitochondria in vitro and in situ in single cardiac myocytes. J. Biol. Chem. 273, 10223–10231 (1998)

    Article  CAS  PubMed  Google Scholar 

  36. S. Horwitz, Taxol (paclitaxel): Mechanisms of action. Ann. Oncol. 5, S3–S6 (1994)

    Article  PubMed  Google Scholar 

  37. H. Hua, W. Chen, L. Shen, Q. Sheng, L. Teng, Honokiol augments the anti-cancer effect of oxaliplatin in colon cancer cells. Acta Biochem. Biophys. Sin. (Shanghai) 45, 773–779 (2013)

    Article  CAS  Google Scholar 

  38. M.Y. Bonner, I. Karlsson, M. Rodolfo, R.S. Arnold, E. Vergani, J.L. Arbiser, Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib- resistant melanoma in vivo. Oncotarget 7, 12857–12868 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  39. H. Zahredding, K.L. Borden, Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 4, 28 (2013)

    Google Scholar 

  40. S. Mansilla, L. Llovera, J. Portugal, Chemotherapeutic targeting of cell death pathways. Anticancer Agents Med. Chem. 12, 226–238 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. S. Sperandio, I. de Belle, D.E. Bredesen, An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. U.S.A. 97, 14376–14381 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. W.B. Wang, L.X. Feng, Q.X. Yue, W.Y. Wu, S.H. Guan, B.H. Jiang, M. Yang, X. Liu, D.A. Guo, Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hep90. J. Cell. Physiol. 227, 2196–2206 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. S. Sperandio, K. Poksay, I. Belle, M.J. Lafuente, B. Liu, J. Nasir, D.E. Bredesen, Paraptosis: mediation by MAP kinase and inhibition by AIP-1/Alix. Cell Death Differ. 11, 1066–1075 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. E.G. Mimnaugh, W. Xu, M. Vos, X. Yuan, L. Neckers, Endoplasmic reticulum vacuolization and valosin-containing protein relocolization result from simultaneous Hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol.Cancer Res. 4, 667–681 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Fu, J. Li, A.S. Lee, GRR78/Bip inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 67, 3734–3740 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. N. Al-Furoukh, A. Ianni, H. Nolte, S. Hölper, M. Krüger, S. Wanrooij, T. Braun, CIpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. Biochim. Biophys. Acta 1853, 2580–2591 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. J. Moscat, M.T. Diaz-Meco, p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001–1004 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Pankiv, T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Øvervatn, G. Bjørkøy, T. Johansen, p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. V.I. Korolchuk, A. Mansilla, F.M. Menzies, D.C. Rubinsztein, Autophagy, inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517–527 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. B. Zhivotovsky, S. Orrenius, Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50, 211–221 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. S. Orrenius, V. Gogvadze, B. Zhivotovsky, Calcium and mitochondria in the regulation of cell death. Biochem. Biophys. Res. Commun. 460, 72–81 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Medical Science of Jiangsu University for their technical assistance and instrument support.

Funding

This work was partially supported by the National Youth Science Foundation of China (Grant No. 81402485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experimental procedures were conducted in accordance with the Chinese legislation regarding experimental animals and were approved by the Institutional Animal Care and Use Committee of the Jiangsu University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.67 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XQ., Ren, J., Wang, Y. et al. Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cell Oncol. 44, 135–150 (2021). https://doi.org/10.1007/s13402-020-00557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00557-x

Keywords

Navigation