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Abstract

Purpose Basal cell carcinoma (BCC) is one of the most common skin cancers, and is typically driven by an aberrantly activated
Hedgehog (Hh) pathway. The Hh pathway is regulated by interactions between the Patched-1 (Ptchl) and Smoothened (Smo)
receptors. Smo is an activating receptor and is subject to inhibition by Ptchl. Following ligand binding to Ptchl, its inhibitory
action is relieved and pathway activation occurs. This receptor interaction is pivotal to restraining uncontrolled cellular growth.
Both receptors have been found to be frequently mutated in BCCs. Ptch2 is a Ptch1 paralog that exhibits overlapping functions in
both normal development and tissue homeostasis. As yet, its contribution to cancer growth is poorly defined. Here we set out to
assess how Ptch2 inhibits BCC growth.

Methods We used several in vitro readouts for transcriptional and chemotactic Hh signaling in BCC-derived ASZ001 cells, and a
novel xenograft model to assess in vivo BCC tumor growth. Gene editing by TALEN was used to untangle the different Ptch2-
dependent responses to its ligand sonic hedgehog (Shh).

Results We first defined the signaling competence of Ptch2 in Ptchl-deficient ASZ001 cells in vitro, and found that Ptch2 ligand
binding drives their migration rather than eliciting a transcriptional response. We found that subsequent targeting of Ptch2
abrogated the chemotaxic effect. Next, we tested the contribution of Ptch2 to in vivo tumor growth using a xenograft model
and found that reduced Ptch function results in increased tumor growth, but that selective pressure appatently acts against
complete Ptch2 ablation.

Conclusions We conclude that like Ptch1, Ptch2 exerts a tumor-suppressive function in BCC cells, and that after targeting of both
paralogs, ligand-independent activation of the Hh pathway contributes to tumor growth.
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The Hedgehog (Hh) pathway is not only crucial to many in-
ductive events in developing embryos and to the maintenance
of tissue integrity in adult organisms, but also to the initiation
and progression of tumors [1, 2]. Hh pathway regulation is
primarily mediated by the transmembrane proteins Patched-1
(Ptch1) and Smoothened (Smo) [3, 4]. Ptchl is the main re-
ceptor for the pathway-activating ligand sonic hedgehog (Shh)
[5]. In the absence of this ligand, Ptch1 actively represses Smo
to keep the pathway inactive [6]. In the presence of Shh the
inhibitory action of Ptchl is alleviated through its
relocalization, and Smo is free to signal to downstream path-
way components [7-9]. This intracellular signaling cascade
can induce a variety of responses such as transcription factor
activation and cytoskeleton remodeling to mediate chemotax-
is [10, 11]. In cancer, two different mechanisms responsible
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for aberrant pathway activation can be discerned [12]. The
first mechanism entails excessive production of Shh ligand
by tumor cells, which subsequently acts in an autocrine or
paracrine manner to provide tumor-promoting signals [13,
14]. The second mechanism entails genetic aberrations in Hh
pathway components that cause Hh pathway activation
[15—18]. These aberrations typically include inactivating mu-
tations in Ptchl, crippling its inhibitory action on Smo, or
activating mutations in Smo that render it insensitive to
Ptchl inhibition. Through these latter activating mutations
pathway activity is induced cell autonomously, rendering the
cells independent of Shh ligands produced by themselves or
their surroundings. Given these considerations, Ptchl is con-
sidered a bona fide tumor suppressor. One human cancer type
that relies on mutations in Hh pathway components is basal
cell carcinoma (BCC), the most prevalent skin cancer.
Oncogenic mutations in Ptch1 and Smo are since long known
to drive BCC, and mouse models have underscored the notion
that the development of this malignancy relies heavily on
these mutations [19, 20]. A recent study on the mutational
profiles of 126 BCCs has revealed PTCHI mutations in
73% of the cases [21].

The current dogma on Hh pathway regulation holds that
Ptchl is the principal receptor for Shh, and that other receptors
involved in Shh binding like Cdon, Boc and Gas1 function as
coreceptors [22, 23]. A paralog of Ptchl is Patched-2 (Ptch2)
[24-26], and this paralog is thought to complement some
Ptchl functions [27-29]. It has been found, however, that
Ptch2 does not act as an equally strong regulator of the path-
way. For instance, Prch2™’~ embryos have been found to be
viable and to develop normally, and that in a genetically
Ptch1-deficient system Ptch2 cannot fully compensate for loss
of the other homolog [29-31]. However, Ptch2 deficiency
does exacerbate the skin tumor phenotype in partially Ptchl
deficient mice by deregulating epidermal lineage differentia-
tion, and it has been found that the absence of both paralogs
affects skin maintenance [32, 33]. Subsequent detailed analy-
ses of Hh pathway target expression gradients in the epidermis
revealed that full Ptch deficiency results in a uniformly high
pathway activation [34]. Recent work in embryonic stem cells
has shown that Ptch2 is required for ligand perception in the
absence of Ptchl [27]. Intriguingly, in a Ptch1-deficient mouse
model of Hh pathway-driven BCC it was found that the tu-
mors preferentially arise from locations close to Shh sources
[19]. These latter observations imply that in the absence of
Ptchl at least some responsiveness to Shh remains and,
therefore, that Shh is a likely candidate to mediate Ptch2
activity.

PTCH?2 mutations are relatively rare events. A large-scale
genetic analysis revealed that only 14 out of 126 BCC cases
carried mutations in both PTCHI and PTCH?2 and that only 4
cases exclusively carried PTCH2 mutations [21]. These ob-
servations suggest that in the absence of functional PTCHI,
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there is little selective pressure on PTCH2. Here, we asked
whether absence of repressive PTCHI1 action enhances the
role of PTCH2 in Shh ligand perception and subsequent path-
way activation, rendering cells highly sensitive to Shh ligand,
or whether the contribution of PTCH2 to tumor growth is
solely dependent on its tumor suppressor function via the sup-
pression of Smo activity. Another question to be answered is
whether there is selective pressure against ablation of both
PTCH paralogs, which might explain the low incidence of
PTCH?2 mutations observed in patient samples. We used
in vitro and in vivo systems, in conjunction with gene editing,
to untangle the different responses of BCC cells to Shh ligand
and show that deficiency for both PTCH paralogs accelerates
tumor growth.

2 Materials and methods
2.1 Cell culture

PANC-1 cells (ATCC, Manassas, VA) and mouse embry-
onic fibroblasts (Ptchl™’~ and Ptchl™* MEFs from Dr.
Scott, Stanford University [35]) were cultured in high-
glucose DMEM containing 8% fetal bovine serum
(FBS), L-glutamine, penicillin and streptomycin (all from
Lonza, Basel, Switzerland) according to routine cell cul-
ture procedures. ASZ001 cells [36, 37] were cultured in
154CF keratinocyte medium (Life Technologies) supple-
mented with 50 pM CaCl, penicillin and streptomycin,
and 2% chelex-treated FCS. Cells were screened for my-
coplasma monthly by PCR.

2.2 Quantitative RT-PCR

Cells were lysed in Trizol (Invitrogen) after which RNA was
isolated according to the manufacturer’s protocol. cDNA was
synthesized using Superscript III (Invitrogen) and random
primers (Invitrogen). Quantitative real-time RT-PCR (qRT-
PCR) was performed using SYBR green (Roche, Basel,
Switzerland) on a Lightcycler LC480 II (Roche). Relative
gene expression levels were calculated using the comparative
threshold cycle (Ct) method and values were normalized to the
reference gene Gapdh. The primer sequences used were:
Gapdh 5° CTCATGACCACAGTCCATGC and 3’
CACATTGGGGGTAGGAACAC; Glil 5 ATAGGGTC
TCGGGGTCTCA and 3° CGGCTGACTGTGTAAGCAGA
; Ptechl 5> GCTACGACTATGTCTCTCACATCAACT and 3’
GGCGACACTTTGATGAACCA; Ptchl (exon 2) 5’
CTGTGGCTGAGAGCGAAGTT and 3 AGCTCCTC
CACGTTGGTCT; Ptch2 5° GCGTACACCTCCCA
GATGTT and 3> GGAACCCCTGATTTGTAGCA.
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2.3 FACS analysis

Cells were harvested using a trypsin-EDTA solution (Lonza)
and washed in FACS buffer (PBS containing 1% FBS).
Hybridoma supernatants containing either anti-Shh antibody
SE1 [38] or anti-Myc antibody 9E10 (isotype) were diluted
1:5 in FACS buffer and incubated for 30 min at 4 °C. A
secondary APC labeled anti-mouse (BD, 550826) antibody
was used at a dilution of 1:500. After washing, the cells were
resuspended in FACS buffer containing 1 pg/ml propidium
iodide (PI) (Sigma) and subjected to flow cytometry using a
FACSCanto II machine (BD, Franklin Lakes, NJ, USA). The
data obtained were analyzed using FlowJo 7 software (Tree
Star, Ashland, OR, USA).

2.4 Immunofluorescence

ASZ001 cells were grown on glass coverslips, starved for 2 d,
and fixed using 4% formaldehyde. Following blocking and
permeabilization in 5% goat serum/phosphate-buffered saline
with 0.1% Triton X100 (PBS-T), a primary antibody directed
against acetylated o-tubulin (Sigma) was added at 1:2000 and
incubated for 1 h at room temperature or overnight at 4 °C.
Next, an Alexa 488 conjugated anti-mouse secondary anti-
body (Invitrogen) was added at 1:2000 and incubated for 1 h
at room temperature. Finally, the coverslips were mounted
using ProLong Gold (Invitrogen) and images were captured
using a Zeiss AxioVert microscope. For Smo ciliary localiza-
tion, cells were transfected with Myc-tagged Smo using PEI
48 h prior to starvation and ShhN stimulation (1:4 diluted
supernatant from 293 T cells).

2.5 GBS-GFP reporter construct and cell line
establishment

A concatemerized 8 x 3’GLI binding site sequence (GBS)
was isolated from the pd51 GBS-luciferase reporter construct
[39] by PCR and cloned into a lentiviral pRRL TOP-d2GFP
reporter vector [40] as reported before [41]. MEFs and
ASZ001 cells were transduced with the GBS-GFP reporter
construct, starved in 0.5% FCS containing medium and stim-
ulated for 4 d with ShhN conditioned supernatant from 293 T
cells or 200 nM Smo agonist (SAG, EMD Millipore, Billerica,
MA, USA). The resulting cells were sorted on a BD
FACSAria for GFP expression, after which GFP positive cells
were grown under 8% FCS (MEFs) or 2% FCS (ASZ001)
conditions, resulting in the expected loss of GFP activity.
For subsequent analyses, cells were seeded in 24-well plates
and treated as indicated in the figure panels. Following treat-
ment, cells were harvested and the percentages of GFP* cells
were determined by flow cytometry on a FACSCanto 11
machine.

2.6 Cell viability assays

Cells were seeded at 2000 cells/well in 0.5% or 2% FCS
and after 3 h treated with the indicated compounds (see also
[42]). After 4 d, MTT was added and dye reduction was
assessed after a 4 h incubation period. Background
(10 mM H,O0, treated cells) levels were subtracted and the
values obtained from the control treated cells were setto 1,
after which the experimental data were normalized to the
controls.

2.7 Transwell migration assays

Migration assays were performed as previously reported [10].
Briefly, cells were labeled with 10 uM CellTracker Green
(Invitrogen) according to the manufacturer’s protocol. After
labeling, the cells were detached using 5 mM EDTA, resus-
pended in serum free medium and transferred to FluoroBlok
Transwell inserts (BD Falcon) at a density of approximately
5x10* cells per insert. Chemoattractant was added to the
bottom compartments of the Transwell plates and GFP-
spectrum fluorescence in the bottom compartments was mea-
sured using a Synergy HT plate reader (BioTek, Winooski,
VT, USA) every 2 min during approximately 3 h.
Background fluorescence was measured in time from a well
containing only medium and these values were subtracted
from all other measurements. The ‘no attractant’” control was
used to measure baseline cell movements for every experi-
mental condition. These values were subtracted from those
obtained in the presence of chemoattractants in the bottom
compartments of the Transwell inserts. The resulting data
yielded specific migration values towards a given attractant.

2.8 Gene editing and transfections

The pCTIGTALEN expression vector was used as described
before [27]. A pair of TALEN constructs was modified so that
one construct co-expressed GFP and the other tdTomato,
allowing for selection for both 5" and 3’ targeting constructs
by FACS sorting. The constructs were designed using Golden
Gate cloning into pCTIG employing the following variable
domain architectures: 5 NN NN HD NG NG HD NN NI
NN HD NG NG NI HD NG NG HD; 3° NG HD NG NN
NN NING HD HD NG NN HD NI HD HD HD HD. See also
Supplementary Fig. S4a.

ASZ001 cells grown in 3 x 12-well plates were transfected
with paired TALEN constructs using PEL 3 days after trans-
fection GFP*/tdTomato™ cells cells were selected by flow
sorting, seeded in bulk and allowed to recover for 7 d in
T25 flasks. To obtain monoclonal cultures, cells were seed-
ed at single cell/well densities in 2 x 96-well plates. In 35 of
the 192 wells cells grew out. These cells were genotyped
through the sequencing of PCR products spanning the
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TALEN binding sites (see also Supplementary Fig. S5).
Screening was performed on genomic DNA by PCR using
primers flanking the TALEN binding sites: 5’
AAGGCACAGGGAAAGAGAGTT; 3° ACTTGCCT
AGCTTGCACAATG and subsequent digestion of the
PCR products with Accl. Genomic DNA from monoclonal
lines that exhibited loss of the restriction site were TOPO
cloned (Thermo Fisher) and Sanger sequenced.

Overxpression of Hedgehog pathway components was ac-
complished using wild-type Smo (SmoWT) and ciliary locali-
zation domain mutated Smo (SmoCLD) constructs in pCS107
obtained from Dr. Jeremy Reiter [7, 43] and a wild-type Ptchl
construct in pcDNA3. I obtained from Dr. Matthew Scott (see
also ref. [44]). mPtch1 A”°P? is a Ptchl form that lacks the
second extracellular loop required for ligand binding and only
exerts Smo-repressive functions [45].

2.9 Xenografting of ASZ001 cells

NOD.Cg-Prkdc*“112rg™"""/Sz] (NSG) mice were bred in-
house. The animals were grafted with 1 x 10° or 5 x 10°
ASZ001 cells in Matrigel [46]. All experiments were per-
formed according to procedures approved by the animal ex-
periment ethical committee (LEX237). Tumor growth was
monitored weekly and the experiments were ended when ul-
ceration was observed. Of note, ulceration was typically ob-
served before the tumors reached a humane endpoint volume
(1000 mm®). Finally, the tumors were harvested and processed
for paraffin embedding and subsequent histopathological ex-
amination, as well as for RNA extraction.

3 Results

3.1 Ptch1-deficient basal cell carcinoma cells perceive
hedgehog signalling

As a model for Ptchl-deficiency driven skin cancer, we used
the ASZ001 cell line. This cell line has been established from
an irradiation-induced tumor in a Ptchl*” mouse, and has
subsequently undergone Ptchl loss of heterozygosity ( [36]
and Fig. 1a). The current working model for Hedgehog (Hh)
pathway regulation dictates that loss of Ptch1 suffices for full
Hh pathway activation and that no additional ligand is re-
quired for this. Indeed, the Hh pathway was found to be acti-
vated in these cells as evident from abundant transcription of
the remaining exon on the targeted Ptchl allele, which itself'is
a target of the activated pathway (Fig. 1a). We also found that
the cells did not produce ligand that could cell autonomously
activate the pathway (Fig. 1b; SHH expressing pancreatic
cancer PANC-1 and Sh# transfected ASZ001 cell controls
are shown in Supplementary Fig. S1). One prerequisite
for Hh ligand responsiveness, i.e., the presence of a primary
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cilium, was confirmed in nearly all ASZ001 cells analyzed
(Fig. lc, right panel) [7]. The primary cilium is an antenna-
like protrusion from the cell membrane that is shaped by the
microtubule cytoskeleton. A dynamic localization of Hh
pathway components in and out of this organelle is required
for pathway regulation, and the primary cilium is required
for appropriate ligand perception. Thus, at least part of the
immediate signaling machinery for Shh is intact in these cells.
The ciliary localization of exogenously overexpressed Smo in
response to the addition of Shh was subsequently assessed by
microscopy. Despite a high baseline percentage of cells with
Smo localized in the cilium, as expected from a Ptch1-deficient
system and overexpression of Smo, we found that the addition
of ligand resulted in a moderate increase in this number (Fig.
1d). As a control, a form of Smo that cannot localize to the
cilium (SmoCLD), was used [7]. Taken together, our results
imply that in the absence of Ptchl, the Shh ligand is still per-
ceived by the cells.

3.2 ASZ001 cells respond to hedgehog by chemotaxis

Typically, relocalization of Smo to the primary cilium results
in activation of the downstream pathway leading to transcrip-
tional responses. However, when Gli transcription factor ac-
tivity was measured in these cells using a stably integrated
GLI-binding site GFP reporter construct, only minimal re-
sponses to exogenous pathway activators were observed, al-
though the baseline pathway activity was high (Fig. 2a,b). In
comparison, MEFs proficient for Ptchl showed robust re-
sponses to the pathway activators. These results were con-
firmed by qRT-PCR analysis of target genes, through which
minor responses were observed in ASZ001 cells compared to
MEFs (Fig. 2c,d, for baseline pathway activity see Fig. 1a).
Under high serum proliferation conditions, a strong reduction
in basal reporter activity in the ASZ001 cells was observed
(4% GFP™ cells, data not shown), indicating that the Hh path-
way in these cells is amenable to at least some degree of
regulation, most likely through cell cycle progression and
subsequent primary cilium loss. Switching these cells back
to low-serum conditions resulted in a regain of GFP reporter
expression to the levels shown in Fig. 2a,b. In order to test
whether the mitogenic Hh response can be driven by exoge-
nously added ligand in ASZ001 cells, we treated them with
ShhN or control (Ctrl/GFP) supernatants. By doing so, we
observed only marginal proliferative responses to Shh com-
pared to the control (Supplementary Fig. S2a). In addition,
we found that inhibitors of Hh pathway components and
related signaling molecules were relatively ineffective in
restraining ASZ001 cell proliferation, as evident from their
overall high IC50 values (Supplementary Fig. S2b,c) [42,
44, 47].

As shown previously in fibroblasts and neural develop-
mental models, Shh ligand is also able to induce chemotaxis,
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Fig. 1 Ptchl-deficient BCC cells perceive Shh ligand. a RNA was
isolated from the cells indicated on the X-axis after which qRT-PCR-
based expression analysis was performed relative to mGapdh using a
Ptchl exon upstream of the targeted exon (grey bars) and the targeted
exon 2 (dark blue bars). Bars indicate means = SEM (n = 4), n.d. indicates
not detected (no signal). b ASZ001 cell surface levels of Hedgehog li-
gands were determined by FACS using a 5E1 anti-Shh hybridoma anti-
body or an isotype control. ¢ ASZ001 cells were grown to confluence on
coverslips after which primary cilia were visualized by acetylated o-
tubulin staining. Nuclei were counter-stained with DAPIL. d ASZ001 cells

irrespective the presence of Hh pathway transcription factors.
This response appears to be relatively resilient to the pertur-
bation of pathway components [43]. To assess whether the
perception of Shh by ASZ001 cells may function to activate
this chemotactic response, we assessed the migratory capacity
of these cells. Pathway activators were used in a modified
Boyden chamber assay to quantitatively measure chemotaxis.
A robust migratory response was observed to both recombi-
nant ShhN (5§ nM) and SAG (200 nM; Fig. 2e). This response
could be blocked with cyclopamine (5 uM), confirming that
this form of chemotaxis requires Smo. The subsequent use of
a Smo agonist (SAG) further underscored the Smo dependen-
cy of this migratory response. After exogenous Ptchl overex-
pression, we observed an increased relative responsiveness of
the cells to ligand as evident from an increased net migratory
response to Shh (Fig. 2f). A form of Ptchl that is unable to
bind Shh (Ptch141°°P?) was found to be inhibitory to the Shh
stimulated migration [45]. This suggests that the migratory
response, although not strictly dependent on Ptchl, can be
modulated by the inhibitory activity of Ptch1. Together, these
data indicate that despite the absence of Ptchl, ASZ001 cells
have retained Shh chemotactic responsiveness. This notion
suggests that other receptors may mediate the chemotactic
response to Shh. A likely candidate to mediate this response
is its paralog Ptch2.
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were grown on coverslips, transfected with Myc-tagged forms of Smo,
starved and treated with ShhN (or control; GFP) supernatant diluted 1:4
from 293 T cells for 1 h. Next, the cells were fixed and stained for Myc
and acetylated o-tubulin, after which the percentage of transfected (Myc-
positive) cells with ciliary Smo was quantified. SmoCLD; ciliary locali-
zation domain mutated form of Smo [7, 43]. For assessment of the frac-
tion of ciliated cells, quantifications from both transfections were pooled
and depicted in the separate grey bar graph. Bars indicate means + SEM
(n>50 cells quantified from 2 separate experiments). **p = 0.0015 by
Mann-Whitney U test

3.3 Ptch2 mediates a chemotactic response
to hedgehog ligand

Due to the catalytic inhibitory activity of Ptch on Smo, a low
number of Ptch molecules suffices to suppress Hh pathway
activity [6] and, therefore, highly effective targeting is re-
quired to study the consequences of Ptch loss. We found that
lentiviral shRNA-mediated Ptch2 silencing using five differ-
ent sequences and puromycin selection did not result in effec-
tive targeting (Supplementary Fig. S3). Therefore, we turned
to transcription activator-like effector nucleases (TALENS) to
edit the Ptch2 locus in ASZ001 cells (strategy shown in
Supplementary Fig. S4). Following transfection, cells were
FACS-sorted in bulk to ensure the survival of cells expressing
both TALENSs (Supplementary Fig. S5a). After recovery, the
cells were seeded at single cell density in 2 x 96 well plates
after which 35 of the clones grew out (18%). These single cell
clones were analyzed for editing events and, by doing so, we
found that in 5 of the clones the digest pattern was indicative
of an editing event (Supplementary Fig. S5b; lines 1, 4, 14, 16,
17). These lines were TOPO cloned after which 20 clones per
line were Sanger sequenced to verify the efficiency of editing
(Supplementary Fig. S5c). Surprisingly, none of these lines
was completely devoid of wild type Ptch2 sequences. In
cell line 4, one third of the sequences were mutant, whereas
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Fig.2 ASZ001 cells mediate a chemotactic response to Shh. a GBS-GFP
transduced ASZ001 and Ptchl-proficient fibroblasts were starved and
treated with the indicated dilutions of ShhN supernatants produced by
293 T cells. For the highest concentration, GFP transfected 293 T super-
natant was included as a control (Ctrl/GFP 0.5). After 3 d, the GFP*
percentage was assessed by FACS (n=4 for the ASZ001 cells; n=2
for the MEFs). b As for panel a, using SAG. At the two highest tested
doses, SAG was toxic to the fibroblasts (n = 3 for the ASZ001 cells; n=4
for the MEFs). c-d Cells were treated as for panels a-b using 200 nM SAG
or 1:4 diluted ShhN supernatant. After treatment, RNA was isolated and
qRT-PCR was performed for mGlil and mPtchl (n=5). *p < 0.05;
*¥p < 0.01; ***p < 0.001; determined by t-test, (e) ASZ001 cells were
seeded in a modified Boyden chamber after which net migration to 5 nM
recombinant ShhN or 200 nM SAG was assessed in the absence or

in cell lines 1, 14, 16 and 17 two-thirds of sequences were
mutant. In addition, we found that the patterns of gene
editing in cell lines 1, 14, 16 and 17 were nearly identical,
suggesting that amongst the initial 35 cell lines available for
restriction digest analysis, only two parental clones showed
significant Ptch?2 editing, i.e., clone 4 (denoted Ptch2MEP )
and an additional parental clone which gave rise to clones 1,
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presence of 5 UM cyclopamine in both the upper and the bottom com-
partments of the Transwells. Shaded curves represent the SEM. The
curves were plotted using a hyperbola function. Measurements from at
least 3 replicates are shown. For details see Materials and methods sec-
tion. The data are plotted as average RFU in bar graphs. Statistical test
compares rShhN + cyclopamine versus rShhN. The difference in migra-
tion between no-attractant control and ShhN/SAG is statistically signifi-
cant (p < 0.001). f ASZ001 cells were transfected with indicated con-
structs, and after ~24 h the migration response to 5 nM recombinant ShhN
was assessed. Bars indicate means + SEM from approximately 70 mea-
surements from 2 separate experiments. Differences to the vector control
were tested for the mPtchl transfected condition, and for the mPtchl
condition against the mPtch 14" condition

14, 16 and 17 (denoted Ptch2"°™), of which we continued
with clone 1. The failure to establish cell lines with com-
plete Ptch2 gene editing from otherwise successfully
transfected cells implies that selective pressure exists
against full Ptch-deficiency. This notion is in agreement
with the lentiviral shRNA Ptch?2 silencing results (see
Supplementary Fig. S3).
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Cells targeted for Ptch2 were found to be transcriptionally
unresponsive to ShhN ligand as determined by qRT-PCR
(Fig. 3a). Surprisingly, we also found that Ptch2 gene editing
resulted in an increase in basal transcriptional pathway activity
in vitro when comparing wild-type Ptch2*’* parental cells with
wild-type Ptch2™* clone 35, arguing for the use of gene edited
but wild-type cells as controls. If Ptch2 mediates chemotaxis in
response to Hh ligand as was concluded from the data presented
in Fig. 2, its targeting should inhibit the chemotactic response.
Indeed, we observed a strong reduction in chemotaxis to ShhN
in the Ptch2"°Y and Ptch2MEP cells, as compared to the
Ptch2™* clone 35 cells (Fig. 3b-c). Baseline chemokinesis
(i.e., the movement of cells in the absence of attractant; these
values are typically subtracted from migration to Shh to yield
net chemotaxis as shown in Fig. 3b) did not differ between the
genotypes (Supplementary Fig. S6a). The residual chemotactic
responsiveness of Ptch2-edited ASZ001 cells was sensitive to
cyclopamine, showing that the regulation of Shh chemotaxis is
dependent on Smo (Supplementary Fig. S6b).

Also, receptors other than Ptchl and Ptch2 have been im-
plicated in the perception of Shh for chemotactic responses
[23, 48, 49]. In order to test whether putative Hh receptors in
addition to Ptch2 may mediate Shh chemotaxis in ASZ001
cells, we targeted the Cdon and Boc receptors by lentiviral
shRNA delivery and found that, despite a modest knockdown
efficiency, migration was hampered (Supplementary Fig.
S6c¢,d). This implies that in addition to Ptch2, other candidate
receptors for Shh may elicit chemotactic responses.
Nevertheless, given that Ptch2 is incapable of mediating a
robust transcriptional response to ShhN (Fig. 2a-d and 3a),
we conclude that the ligand-dependent contributions of
Ptch2 in Ptch1-deficient cells in vitro are confined to the che-
motactic response.

3.4 Ptch2 deficiency accelerates tumor growth

Having established that (1) in the absence of Ptch1 Hh ligand
is perceived by Ptch2 only to mediate chemotaxis and (2) that
additional targeting of Ptch2 impedes the ability of the cells to
perceive Hh ligand, we proceeded to test the consequences of
these signaling outputs for in vivo tumor growth. To this end,
ASZ001 cells were injected subcutaneously in immunodefi-
cient mice after which tumor growth was monitored. We
found that tumors grown from cells targeted for both Ptch
paralogs (i.e., Ptch2"°" and Ptch2"P ASZ001 cells) expand-
ed faster than those grown from fully Ptch2-proficient cells
(i.e., ASZ001 Ptch2™"* clone 35 cells). The former mice were
sacrificed sooner based on ulceration (Fig. 4a). Subsequent
immunohistochemical analysis for the proliferation marker
Ki67 confirmed a higher proliferative index in the Ptch?2
gene-edited tumors (Fig. 4b, quantification in Fig. 4c).
Assessment of tumor histology by a pathologist confirmed
a cutaneous source of the tumor cells, but also revealed a
squamous rather than basal histology for both genotypes, pos-
sibly owing to extensive in vitro culturing of the cells prior to
grafting. The Prch2"°" and Ptch2™"P derived tumors showed
more keratin depositions (eosin rich pink areas in Fig. 4d;
quantification in Fig. 4e). To determine whether the in vivo
accelerated proliferation of these Ptch2 gene-edited cells
could be explained by additional activation of the Hh pathway
over the already high level caused by the Ptch1-deficiency, the
expression of Hh pathway target genes was measured by qRT-
PCR. Indeed, these were found to be elevated in the Prch2-°W
and Ptch2™™® ASZ001 tumors (Fig. 4f) and are likely respon-
sible for the observed increase in tumor growth rates. We
hypothesize that the discrepancy in Hh pathway activation
in vitro and in vivo following Ptch2 targeting results from
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Fig.3 Ptch2 is required for Shh chemotaxis. a ASZ001 Prch2"”" parental
cells and TALEN genome edited ASZ001 cells were stimulated with
ShhN as depicted in Fig. 2¢-d. Target gene (mPtchl) transcript analysis
was performed. Genotypes and clones are indicated on the X-axis and by
the blue-shaded (ShhN) bars. Blue asterisks denote statistical compari-
sons of ShhN-treated cells and control treated cells of the same genotype.
Grey asterisks indicate significance compared to ASZ001 Ptch2™"*

parental cells. *p < 0.05; **p < 0.01;***p < 0.001; determined by t-test,
(b) Pich2*, Ptch2YEP and Pich2"°Y cells were seeded in a modified
Boyden chamber after which specific migration (net chemotaxis) to S nM
recombinant ShhN was assessed as in Fig. 2e. Measurements from 4
replicates in 2 experiments are shown. The indicated p-values were de-
termined by one-way ANOVA. ¢ Schematic representation of Fig. 3b.
Significances were determined using Mann-Whitney U test
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Fig. 4 Patched deficiency accelerates tumor growth. a 1 x 10° and 5 x
10° ASZ001 cells of the indicated genotypes were subcutaneously grafted
in immune deficient mice in PBS/Matrigel. Subsequent tumor growth
was monitored and tumors were harvested after signs of ulceration. In
each group 4 mice were grafted with 2 tumors, yielding sample sizes of 8.
b After harvesting, the tumors were processed for Ki67
immunohistochemistry. Scale bars: 200 um. ¢ Automated quantification

environmental signals and/or mechanical properties that are
only present in vivo, which feed into the signaling cascade
downstream of Smo. From the increased baseline pathway
activity and associated tumor growth following Ptch2
targeting in vivo, we conclude that Ptch2 exerts ligand-
independent pathway inhibitory functions that make it a tumor
suppressor, but one that is also required and essential for can-
cer cell viability.

4 Discussion

The current model of Hedgehog (Hh) pathway regulation
holds that Ptch1 acts as the main receptor for Shh, and that it
serves as the master switch for downstream pathway regula-
tion [3, 6]. Recent work has shown, however, that the concept
of Ptchl as key Shh receptor needs revision. In the absence of
Ptch1, Ptch2 has been found to be required for the perception
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of positive nuclei per optical field (n>7). The indicated p-values were
determined using Mann-Whitney U test. d Histology of tumors grown
from the indicated genotypes revealed by hematoxylin and eosin staining.
Scale bar: 1 mm. e Automated quantification of pink eosin-stained fields
shown in d. f After RNA extraction from the harvested tumors transcript
analyses for the indicated genes were performed (n = 16). Significances
were determined using Mann-Whitney U test (see Fig. 3)

of ligand in developmental models [27]. Also, Ptchl and
Ptch2 have been shown to exhibit overlapping functions in
Hh pathway-dependent skin development and maintenance
[32, 34]. The exact contribution of Ptch2 to an established
cancer type such as basal cell carcinoma (BCC) has, however,
remained unclear, despite clinical data that suggest a tumor
suppressor function [50]. Whether such a putative tumor sup-
pressor function of Ptch2 may be uncoupled from its ligand
binding function is currently unknown and is possibility com-
plicated by the fact that these functions are connected [45].
Here, we have untangled these functions by first delineating
the signaling capabilities of Ptch2 in BCC cells in vitro and
subsequently testing the consequences of Ptch2 perturbation
for in vivo BCC tumor growth. Using migration assays we
found that in the parental Prchl™”~ ASZ001 cells the only
response to Hh ligand was chemotactic. After Ptch2 targeting
by TALEN we found that this chemotactic response was se-
verely hampered. Therefore, we conclude that the increased
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tumor growth observed following targeting of Ptch2 is likely
unrelated to ligand perception and that the tumor suppressive
action of Ptch2 very likely depends on its baseline inhibitory
activity towards Smo, which for an as yet unknown reason
only becomes apparent in vivo.

As mentioned above, Pfch2 mutations are uncommon in
BCC [21]. This is at apparent odds with its similarities and
overlapping signaling roles with Ptchl. However, as we find
that Ptch2 has a very limited ligand-perceiving role in BCC,
we assume that its main function as a tumor suppressor is
overshadowed by the loss of Ptchl, which is a stronger inhib-
itor of the Hh pathway [31, 33]. This notion is also supported
by the high incidence of mutations in for instance 7P53. TP53
is a much stronger tumor suppressor than Ptch2, and it is more
easily perturbed given that only one allele requires a mutation
to yield an oncogenic event. Mutations in 7P53 are, therefore,
more advantageous and more regularly achieved than PTCH2
LOH which, in turn, could explain the low mutation rate of
PTCH?. Another explanation for the paucity of PTCH2 mu-
tations in human BCC follows directly from our observation
that full Ptch2 gene ablation could not be achieved, despite
selection. It thus appears that a low level of Ptch2 activity is
required for cancer cell viability, at least in vitro. Modest per-
turbations of Ptch2 are apparently tolerated, resulting in suffi-
cient Hh pathway upregulation in vivo to boost tumor growth,
as evident from the enhanced tumor growth found for the
Ptch2MEP cells. How these two counteracting activities are
balanced remains to be determined, but it is possible that they
are driven by distinct signaling functions of Ptch2 (Smo an-
tagonist, chemotaxis receptor, dependence receptor), or by a
cancer-specific context. In addition, it is possible that rare
tumors that are currently not recognized to be Hh-driven
may rely on mutations in Ptch?2 if that serves as the dominant
Hh receptor in the tissue of origin. For instance, the testis-
specific expression of Desert Hedgehog (Dhh) and Ptch2
and their role in glioblastoma-endothelium crosstalk hints to
this possibility [24, 51, 52]. We found that some chemotactic
responsiveness was retained by the Ptch-edited ASZ001 cells.
We hypothesize that this responsiveness may result from can-
didate coreceptors for Shh other than Ptch2, such as Cdon,
Boc or Gasl, or possibly Smo itself [53]. Indeed, we found
that the Cdon and Boc receptors may also contribute to che-
motactic Shh signaling. Given the fact that the only experi-
mental variable in the xenografting experiments was the level
of Ptch2 we are, however, reluctant to draw firm conclusions
on its signaling contributions in vivo.

One caveat of our study is that it is yet unclear to what
extent our findings in murine cells can be translated to the
human situation. The ASZ001 cell line represents a powerful
exerimental tool given that these cells are unambiguously Hh-
dependent, which is important for our experiments, and that
many murine-specific genetic tools to study Hh signaling are
available. Nevertheless, validation in a human-derived model

is warranted. In addition, it remains to be established whether
the identified tumor suppressive action of Ptch2 is also rele-
vant for non- or pre-malignant cultured keratinocytes.
Previously, we have shown that ciliary relocalization of
Smo in response to Shh is not required for Shh chemotaxis,
and suggested that chemotactic and transcriptional responses
to Shh may represent separate phenomena resulting from dis-
tinct intracellular mechanisms [43]. Our current data indicate
that these responses are indeed not mutually exclusive, and
that Smo localization to the cilium occuring in the absence of
robust downstream transcriptional signaling (i.e., in Prchl™”
“ Ptch2™* cells) may initiate a chemotactic response. In fact,
the convergence of both pathways at several points within the
signaling cascade (Smo, the primary cilium) seems to suggest
that they are both part of a relatively conserved pathway. This
holds promise for the application of currently available drugs
against BCC such as erivedge/vismodegib [54]. Given the fact
that vismodegib acts to inhibit Smo, rather than downstream
signaling components or transcription factors, it may be effec-
tive against both the chemotactic and the transcriptional ligand
responses, as well as against baseline pathway activity. This
drug may, therefore, turn out to be effective against BCC
irrespective the mutational status of other Hh ligand receptors.
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