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Abstract
Background Hypoxia Inducible Factor-1α (HIF-1α) ex-
pression in breast cancer is associated with a poor clinical
outcome. HIF-1α shows two expression patterns: the
canonical poor prognosis hypoxia-related perinecrotic pat-
tern and a diffuse expression pattern that seems to have less
downstream effects and is clearly associated with poor
survival. Factor-inhibiting hypoxia-inducible factor 1 (FIH-
1) inhibits HIF-1 activity by hydroxylating the C-terminal
trans-activation domain of the HIF-1α subunit, thus
preventing HIF-1 from recruiting co-activators CPB/p300,
which are important for inducing the transcription of target
genes. The aim of this study was to investigate the
expression patterns of FIH-1 in breast cancer and evaluate
the relationship between FIH-1 and HIF-1α expression in
breast cancer as a possible explanation for apparently less
downstream effects of diffuse HIF-1α expression.
Methods Tissue sections from 92 consecutive invasive
breast carcinomas were stained by immunohistochemistry
for FIH-1, HIF-1α, glucose transporter 1 (GLUT-1) and
carbonic anhydrase IX (CAIX).
Results 45 cases overexpressed HIF-1α, 5 of which in a
perinecrotic fashion while FIH-1 was positive in 73 of the 92
cases studied. Contrary to our expectations, three out of five
cases with perinecrotic HIF-1α expression were also positive
for FIH1. Cytoplasmic FIH-1 correlated with HIF-1α expres-

sion (P=0.03) and tumor grade (P=0.01). HIF-1α over-
expression predicted poorer prognosis as usual (P=0.02).
FIH expression had no additional prognostic value to HIF-1α.
Conclusions FIH1 is expressed in the majority of invasive
breast carcinomas and shows distinct subcellular localiza-
tion patterns. FIH-1 expression does not seem to explain the
proposed functional differences between diffuse and peri-
necrotic HIF-1α expression in breast cancer.
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1 Introduction

Due to the increased rate of cell multiplication and the
inadequate supply of oxygen due to lagging angiogenesis,
hypoxic conditions are frequently present in breast carci-
noma [1]. To survive in this environment, cancer cells
induce the transcription of a complex set of genes involved
in numerous cellular survival pathways. The most impor-
tant of these pathways include angiogenesis, glycolysis, pH
regulation and metastasis [2].

The principal molecule orchestrating the cellular response
to hypoxia is Hypoxia Inducible Factor-1 (HIF-1) [3, 4].
Structurally, HIF-1 is a heterodimer consisting of the highly
regulated HIF-1α and constitutively expressed HIF-1β
subunits. Once these two subunits dimerize, HIF-1 can bind
to hypoxia response elements (HREs) in the promoters of
target genes and induce their transcription [5]. However,
under normoxic conditions, the HIF-1α subunit is continu-
ously degraded, a process which starts with a set of enzymes
called prolyl hydroxylase domain enzymes (PHDs). PHDs
hydroxylate HIF-1α at proline residues P402 and P564 in
the oxygen dependent degradation domain (ODDD), conse-
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quently, this domain is recognized by the Von-Hippel Lindau
Protein and targeted for degradation by the proteosome [5].

In multiple cancers, HIF1α has been implicated in prognosis
[6, 7]. In breast cancer, HIF1 has been implicated in sporadic
[8] and hereditary carcinogenesis [9] and is associated with
metastases formation [10], angiogenesis [11], poor clinical
outcome [12, 13] and resistance to therapy [14, 15].

In cancers like breast [8, 11, 12, 16] and endometrium
[6, 17, 18], HIF-1α showed two expression patterns: a
hypoxia-related perinecrotic expression pattern and a diffuse
expression pattern. In invasive breast cancer, the perinecrotic
HIF-1α expression pattern is associated with expression of the
HIF-1α downstream genes Glut-1 and CA IX, while the
diffuse HIF-1α expression pattern lacks this association and
points to non-functional HIF-1α expression. Furthermore,
perinecrotic HIF-1α indicated a poor prognosis, while diffuse
HIF-1α expression is prognostically better [19].

Apparently, the effects of HIF-1α depend not only on the
expression level but also on the expression pattern. The
mechanisms of the seemingly non-functional diffuse HIF-1
expression have not fully been elucidated. Amplification of
the HIF-1α gene as observed in prostate cancer [20]
appeared to be absent in invasive breast cancer [21], as
were mutations in the ODDD [22]. In contrast, p300 and
p53 levels did seem to determine activation of HIF-1
downstream targets in invasive breast cancer [23].

In addition to the control provided with hydroxylation by
PHDs and subsequent proteosome degradation, transcrip-
tion induction of HIF-1α is controlled by hydroxylation of
a single conserved aspariginyl residue at the C-terminal
trans-activation domain (C-TAD). This hydroxylation is
conducted by factor inhibiting hypoxia-inducible factor
(FIH) and is of particular importance as C-TAD is the

binding site for CPB/p300, essential co-activators required
for transcription induction [24]. In this manner, FIH-1
provides an additional level of control to PHDs and
prevents HIF-1 activity at normoxia. More importantly,
FIH-1 is able to exercise the control of HIF-1 even under
severe hypoxic conditions, when PHD enzymes fail to do
so [25]. In renal cell cancer, nuclear FIH expression
independently predicted overall survival [26]. In breast
cancer, FIH-1 expression has been analysed in a limited
number of studies [14, 27]. Since FIH-1 is an important
regulator of HIF-1 activity, the purpose of this study was to
analyze the expression patterns of FIH-1 in invasive breast
cancer as a possible explanation for the non-functionality of
diffuse HIF-1α expression.

2 Materials and methods

The study group comprised of 92 consecutive invasive
breast carcinomas that were collected from the archive of
the Department of Pathology of the University Medical
Center Utrecht, The Netherlands. Age, tumor size, and ER,
PR and HER2 status were collected from the pathology
reports. Histological type was revised according to the
WHO. Mitotic counting was done as before [28] and
subsequent grading was performed according to Elston
[29]. Use of left over tissue for research is part of the
standard treatment contract with patients in our hospital
[30].

The majority of the tumors were classified as invasive
ductal carcinoma of no special type (65%; Table 1). Median
tumor size was 2 cm. Median age was 56. 39% of the
tumors were classified as grade 1, 32% as grade 2 and 28%
as grade 3. 87% of the tumors were ER positive while 60%
were PR positive. Only 3 cases were positive for HER2.

2.1 Immunohistochemistry

Immunohistochemistry (IHC) was performed on 4μm-thick
sections. After de-paraffination and rehydration, endoge-
nous peroxidase blockage ensued. For HIF-1α, antigen
retrieval was achieved by heating the sections in EDTA
buffer (pH 9.0) at boiling temperature for 20 min. After a
cooling down period of 30 min in the same buffer, protein
block was applied (Novolink Kit, Novocastra Laboratories,

Table 1 Histological types of invasive breast cancers in the study
group

Frequency Percentage

Invasive ductal carcinoma 60 65%

Invasive lobular carcinoma 14 15%

Tubular carcinoma 10 11%

Ductal-lobular carcinoma 4 4%

Metaplastic 2 2%

Invasive cribriform 2 2%

Antibody Manufacturer Antigen retrieval Incubation Dilution

FIH 1 Novus Biologicals 20′ Citrate pH 6.0 buffer 1 h at room temperature 1:100

HIF-1α Biosciences Pharmingen 20′ EDTA pH 9.0 buffer overnight at 4°C 1:50

CAIX ABCAM 20′ Citrate pH 6.0 buffer 1 h at room temperature 1:1000

GLUT-1 Dako 20′ Citrate pH 6.0 buffer 1 h at room temperature 1:200

Table 2 Details of the antibod-
ies applied
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Newcastle upon Tyne, UK) and sections were subsequently
incubated overnight with the primary antibody at 4°C
(Table 2). Thereafter, to detect HIF-1α, the Novolink Kit
(Novocastra) was applied according to the manufacturer’s
instructions. For FIH-1, antigen retrieval was achieved by
heating the sections in citrate buffer (pH 6.0) at boiling

temperature for 20 min. After a cooling down period of
30 min in the same buffer, the sections were incubated with
the primary antibody (Table 2). Incubation was applied for
1 h at room temperature, followed by the application of the
Powervision Kit (Immunologic, Duiven, The Netherlands)
for 30 min. All slides were developed with diaminobenzi-
dine for 10 min. Finally, the sections were counterstained in
hematoxylin and mounted. IHC for GLUT-1 and CA IX
was performed as described before [17].

For HIF-1α, the percentage of dark brown nuclei was
estimated as before [8, 12, 19]. For GLUT1 and CA IX, the
presence of membranous or cytoplasmic expression was noted
as well as the expression pattern (perinecrotic versus diffuse).

An experienced pathologist (PJvD) performed the
scoring of FIH-1 in a blinded fashion with regards to other
biomarkers and clinicopathological data. The percentage of
the nuclei stained was estimated, and the intensity of
cytoplasmic staining was semiquantitatively scored as
negative (0), 1+, 2+ or 3+.

2.2 Statistics

For HIF-1α, cases with ≥1% of positive stained nuclei were
considered as showing overexpression as before [19]. The
threshold for FIH-1 cytoplasmic positivity was set at ≥2,
while the threshold for FIH-1 nuclear positivity was set at
≥10%. Therefore, tumors with a FIH-1 cytoplasmic staining
of an intensity ≥2 or with ≥10% of the nuclei stained
positive were regarded as positive in the statistical analysis.

Table 3 Correlation analysis between HIF-1α expression and GLUT-
1, ER, PR, HER2 and tumor type and grade (chi-square test). NB: Not
all stainings could be successfully performed for all cases

HIF-1α overexpression

Negative Positive P value

GLUT-1 Negative 37 31 0.1
Positive 8 16

ER Negative 2 10 0.03
Positive 42 37

PR Negative 15 22 0.3
Positive 28 25

HER2 Negative 44 43 1
Positive 1 2

CAIX Negative 27 11 <0.01
Positive 18 36

Grade 1 25 11 0.00
2 16 14

3 4 22

Type Ductal/metaplastic 26 36 0.05
Tubular/lobular/
cribriform

19 11

Fig. 1 Expression patterns of
FIH-1: a FIH-1 expression in
normal breast tissue; b nuclear
FIH-1 expression of breast
carcinoma cells; c cytoplasmic
FIH-1 expression of breast
carcinoma cells; d FIH-1
expression in both the nucleus
and cytoplasm of breast
carcinoma cells
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Correlations between HIF-1α, FIH-1 and other markers
were evaluated using the Chi-square test. A Mann–Whitney
Test was used to analyze differences in HIF-1α and FIH-1
expression with regards to age and tumor size. For
univariate recurrence free survival analysis, Kaplan Meier
curves were plotted and differences between the curves
were evaluated by the logrank test. Multivariate survival
analysis was done by Cox regression. All statistics were
done using SPSS version 15.0 (SPSS Inc, Chicago, USA).

3 Results

As expected, HIF-1α was more often expressed in ductal/
metaplastic cases (36/62) compared to tubular/lobular/
cribriform cancers (11/30)(P=0.05) and correlated with
tumor grade and a worse prognosis (Table 3).

FIH-1 was expressed in luminal cells of the normal
breast and showed both nuclear and cytoplasmic expression
(Fig. 1a). In cancer cases, FIH-1 was expressed in 79% (73/
92) of the cases and showed distinct subcellular expression
patterns (Table 4): in the nucleus 36/92 (39%; Fig. 1b), in
the cytoplasm 21/92 (23%; Fig. 1c) or both 16/92 (17%;
Fig. 1d). Cytoplasmic FIH-1 expression did not correlate to
any of the other biomarkers except that the group of
tubular/lobular/cribriform cancers showed less often high
expression (P=0.02).

Three cases expressing HIF-1α in a perinecrotic fashion
also expressed FIH-1 (Fig. 2), the remaining two were
negative. Exclusive nuclear FIH-1 expression showed an
inverse correlation with tumor grade (P=0.01). Further-
more, cytoplasmic expression of FIH-1 showed significant
correlations to HIF-1α (P=0.03), tumor grade (P=0.01) and
a trend for worse prognosis (P=0.1)(Fig. 3). In multivariate
survival analysis, cytoplasmic FIH expression had no
additional prognostic value to HIF-1α.

4 Discussion

HIF-1α plays a pivotal role in cellular adaptation to the
hypoxic environment and as such, is crucial for the
interaction between cells and the environment in which

they function. Unfortunately, cancerous cells have grown to
use the same HIF-1α mechanisms and by doing so, are able
to adapt and survive the hostile environment present in
tumor tissues. Not surprisingly, HIF-1α expression has been
shown to be higher in poorly differentiated lesions and is
associated with increased proliferation and metastasis [8,
13, 31]. In breast cancer however, HIF-1α characteristically
shows two different expression patterns: perinecrotic,
apparently related to the severe hypoxia causing the
necrosis, and a diffuse expression pattern where breast
cancer cells stain widely and extensively without obvious
correlation to local changes in oxygen tension. More
importantly, these two expression patterns of HIF-1α
showed differences in the activation of downstream target
genes and survival in a previous study [19]. Since the
activity of HIF-1α is highly regulated, it is plausible to

Fig. 2 Perinecrotic nuclear FIH-1 expression in an invasive breast
cancer that also showed perinecrotic HIF-1α overexpression

Table 4 Subcellular localization patterns of FIH-1 in invasive breast
cancer

Subcellular localization Frequency/Percentage

Negative 19 (21%)

Exclusively nuclear 36 (39%)

Exclusively cytoplasmic 21 (23%)

Both nuclear and cytoplasmic 16 (17%)
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Fig. 3 Kaplan-Meier recurrence free survival curves for patients with
or without FIH-1 cytoplasmic expression (P=0.1)
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assume that the explanation for differences between the
HIF-1α expression patterns could lie in the regulation of its
activity. Since FIH-1 is an important factor regulating HIF-1
transcriptional activity, even after PHDs and in severe
hypoxia [25], we hypothesized that the loss of FIH-1
expression might provide an explanation for the putative
functional differences between perinecrotic and diffuse
patterns of HIF-1α expression in breast cancer.

In accordance with previous studies [8, 11, 12, 19], we
find that HIF-1α expression is associated with higher tumor
grade and poor prognosis. FIH-1 was expressed in the
majority of the invasive breast carcinomas analyzed in the
present study. Contrary to our expectations, FIH1 was
positive in three out of five cases with perinecrotic HIF-1α
expression and we occasionally observed FIH-1 expression
in perinecrotic cells overexpressing HIF-1α (Fig. 2).
Furthermore, we did not observe complete loss of FIH1 in
any of the cases analyzed, indicating that FIH-1 expression
is not the likely explanation for the differences between the
HIF-1α expression patterns mentioned.

Previous studies have reported expression of FIH1 in the
cytoplasm and nuclei of cancerous cells [26, 27, 32–34].
We observe the same, with a significant number of cases
showing predominantly nuclear or predominantly cytoplas-
mic expression. Since exclusive cytoplasmic presence of
FIH-1 correlated with HIF-1α expression, tumor grade and
tended to indicate worse prognosis (Fig. 3), we supposed
that FIH expression might have an additional prognostic
value to HIF-1α. However, multivariate analysis showed
this was not the case.

Associations between cytoplasmic FIH-1 expression and
tumor aggressiveness have been shown for breast [27] and
pancreatic endocrine tumors [34]. This contradicts to a
certain degree what we know so far about the biology of
FIH1, which points that FIH1 plays a tumor suppressor role
and that its loss is expected to be a carcinogenic event.
Since we did not observe a complete loss of FIH1 in any of
our study cases, it rather seems that the subcellular
localization of FIH-1 is of overriding importance.

While abundance of FIH-1 expression is regulated
through proteosome degradation [35, 36], it seems that
FIH-1 is rather constitutively expressed in various tissues,
as shown for normal breast tissue in the present study. FIH-
1 is functional in the cytoplasm where it hydroxylates HIF-
1α, prevents it from recruiting coactivators like CPB/p300
and hampers efficient transcription induction of HIF-1α
target genes. Though FIH-1 might be able to shuttle
between the cytoplasm and the nucleus due to its small
molecular weight, hypoxia has not been shown to influence
its sub-cellular localization [32]. An interesting study by
Zheng et al. showed that HIF-1α is not the only substrate of
FIH-1 and that FIH-1 hydroxylates the Notch intracellular
domain (ICD) as well [37]. The Notch pathway is involved

in many pivotal aspects of cellular fate like proliferation
differentiation and cell death [38–40]. FIH-1 not only
negatively regulates Notch ICD, but also influences the
intracellular localization of FIH-1 by recruiting FIH-1 into
the nucleus [37]. By sequestering FIH-1 away from HIF-1α
and potentiating the cellular hypoxic response, the Notch
ICD might influence the phenotype of cancerous cells.
Therefore, it is tempting to speculate that although there
might be an increase in the hypoxic response, in tumors
with exclusive nuclear localization of FIH-1, Notch
signaling is abrogated.

In conclusion, expression patterns of FIH-1 do not seem
to explain the proposed functional differences between
diffuse and perinecrotic HIF-1α expression in breast cancer.
However, FIH is expressed in the majority of invasive
breast carcinomas and shows distinct subcellular localiza-
tion patterns related with tumor grade and HIF-1α over-
expression. The mechanisms behind this need to be further
elucidated, especially with regards to the possible interac-
tion with the Notch signaling pathway.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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