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Abstract
Effluents containing dyes, discharged by various industries, have become a significant contributor to water pollution. This 
study explores the use of green-synthesized palladium nanoparticle (PdNP) catalysts, which offer enhanced catalytic per-
formance compared to traditional methods. The research focuses on the synthesis of palladium nanoparticles using Salma-
lia Malabarica (SM) gum via a microwave-assisted process and investigates their catalytic and antibacterial properties. 
SEM analysis confirms the even distribution of PdNPs on the surface of SM gum. Furthermore, TEM analysis reveals a 
PdNPs size distribution of 10 ± 2 nm. XPS study was used to identify the chemical state of Pd in the synthesized nanopar-
ticles. The results demonstrate that PdNPs are highly effective catalysts for the degradation of dyes such as Methylene 
Orange (MO), Rhodamine-B (Rh-B), and 4-Nitrophenol (4-NP), even after being reused five times. The catalytic activity 
of PdNPs was remarkable, achieved 99% dye degradation in four minutes. The degradation data of PdNPs on 4 -NP, MO 
and Rh-B dyes are followed by pseudo-first-order kinetics with 0.0087, 0.0152 and 0.0164 s− 1, respectively. Additionally, 
PdNPs exhibit exceptional antimicrobial activity against both bacterial and fungal strains. This synthesis process proves to 
be cost-effective, devoid of toxic chemicals, and remarkably rapid. The findings suggest promising applications for PdNPs 
in fields like nanomedicine and environmental remediation, reflecting their potential for addressing water pollution issues.

Keywords  Salmalia Malabarica gum · Palladium nanoparticles · Methylene orange · Rhodamine-B · 4-Nitrophenol · 
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1  Introduction

Effluents from industrial processes often carry a significant 
load of organic dyes, which can contain both organic and 
inorganic toxic compounds [1]; among these dyes com-
monly used in various industries, including Rhodamine -B, 
Methyl Orange, and Methyl Blue [2]. Furthermore, 4-Nitro-
phenol (4-NP) serves as a critical and versatile precursor 
in the production of agricultural chemicals, pharmaceuti-
cal drugs, and dyes. Notably, colorants and dyestuffs find 
extensive applications in sectors such as textiles and food 
production, further contributing to the release of nitrogen-
containing organic compounds into the environment [3, 4]. 
The escalating use of these coloring agents and nitrogen-
based organic substances stands out as a leading cause of 
water contamination, especially in surface water bodies. 
The pollutants discharged into the liquid phase pose a sig-
nificant threat to aquatic ecosystems and their inhabitants. 
Exposure to these contaminants can result in various health 
issues, including but not limited to jaundice, cyanosis, quad-
riplegia, Heinz body formation, tissue necrosis, and more 
[5].

A significant challenge in dealing with dye pollutants is 
their large size, intricate molecular structure, high stability, 
and resistance to biodegradation. Due to their recalcitrance, 
these dyes must undergo treatment before being discharged 
into the environment. Conventionally, the treatment of 
wastewater containing such pollutants has relied on various 
techniques, including chemical treatments, electrochemical 
processes, ultrafiltration, coagulation, physisorption, chemi-
cal precipitation, and ion exchange methods [6]. In the quest 
for alternative methods to address this issue, researchers 
have explored the use of natural and synthetic adsorbents, 
such as animal charcoal, char/biochar, fibers derived from 
materials like coconut and jute, and graphene-oxide nano-
composites [7, 8]. Notably, graphene-oxide nanocompos-
ites have shown promise in efficiently removing dyes from 
wastewater [9]. However, it’s important to acknowledge that 
the aforementioned conventional methods have limitations. 
They often exhibit slow processing, high operational costs, 
and sometimes fall short in achieving complete removal of 
pollutants. Consequently, there is a pressing need for more 
efficient processes to effectively eliminate industrial efflu-
ents from the environment.

Currently, an efficient method for mitigating pollution 
in wastewater involves the utilization of nanocomposites 
or metal nanoparticles [10] in conjunction with NaBH4. 
Numerous studies have explored the degradation of colored 
pollutants using various metal nanoparticles, including Cu, 
Au, and Ag [11–14], as well as metal oxide nanoparticles 
like TiO2, ZnO, etc. [14–16]. Notably, PdNPs are renowned 
for their exceptional catalytic properties, which stem from 

their specific properties and chemical activity. PdNPs stand 
out as one of the most effective catalysts among metal 
nanoparticles. They have demonstrated their catalytic prow-
ess in various processes, such as the reduction of nitroarenes 
and Suzuki coupling reactions [17]. These catalytic prop-
erties make PdNPs a valuable tool in the quest to combat 
water pollution, offering a rapid and effective means of 
eradicating pollutants from wastewater [18, 19].

Metal nanoparticles exhibit well-established antimicro-
bial applications. Many chronic diseases in humans started 
from bacterial and fungal infections, which are commonly 
treated with antibiotics due to their potent antimicrobial 
properties [20]. However, the excessive and inappropri-
ate use of antibacterial agents has led to the development 
of antibiotic resistance, a growing global concern. Recent 
reports have raised the alarm about the emergence of super 
bacteria that may be impervious to all known antibiotics 
[21]. Bacterial resistance to antibiotics results in disease 
recurrence, posing a significant health challenge.

Inorganic nanoparticles, particularly metallic nanopar-
ticles, have emerged as promising antibacterial agents to 
address these concerns [22]. Nanoparticles crafted from 
metals demonstrate remarkable efficacy in combating bacte-
rial and microbial resistance and are well-suited for targeted 
drug delivery. Notably, PdNPs have come to the forefront 
in recent years, offering innovative solutions as antibacte-
rial and antifungal agents [18, 23]. Their unique proper-
ties make them valuable contributors to the ongoing battle 
against antimicrobial resistance and infectious diseases.

PdNPs can be synthesized through various methods, 
including biological, chemical, sonochemical, electro-
chemical, or biochemical approaches [24, 25]. However, 
traditional chemical and physical methods have several 
drawbacks, such as the use of toxic chemicals that harm 
the environment and the need for costly, energy-intensive 
equipment operating at high temperatures and pressures. 
As a result of the use of harsh chemicals, chemical meth-
ods cause harm to the environment. These factors have 
prompted researchers worldwide to seek alternative, more 
cost-effective, environmentally friendly, and sustainable 
synthetic routes for PdNP production. Therefore, biological 
methods have been reported to synthesize NPs using bio-
logical materials such as plant extracts and biological spe-
cies by researchers.

Biogenic synthesis offers a method to prepare nanopar-
ticles using various plant and animal sources [26, 27]. 
Recent research has indicated that plant metabolites play 
a crucial role in capping and reducing agents during the 
green synthesis process [28]. A variety of leaf extracts and 
plant extracts were also used for the production of palla-
dium nanoparticles, including Solanum trilobatum [28], 
Anacardium occidentale [29] and pectin versus acaciagum 
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as polysaccharides [30]. In this regard, we have developed 
a simple and green method for synthesising palladium 
nanoparticles from Na2PdCl4 by using a non-toxic, renew-
able natural plant extract of Salmalia Malabarica (SM) 
gum. SM gum is abundantly available in nature. Nota-
bly, SM gum boasts a wide range of medical applications, 
including its use in treating dysentery, diarrhea, menorrha-
gia, styptic, hemoptysis, influenza, pulmonary tuberculosis, 
enteritis, and more [31]. The gum comprises various com-
pounds like terpenoids, glycosides, sugars, coloring agents, 
fatty compounds, and more. This study was undertaken to 
explore the promising applications of palladium nanopar-
ticles in general and the potential medicinal properties of 
SM gum.

Herein, we present a rapid and straightforward approach 
for the synthesis of PdNPs using SM gum, employing the 
microwave (MW) technique. The MW synthesis method, 
known for its advantages over traditional approaches, is 
simple, scalable, environmentally friendly, unambiguous, 
and highly efficient. Notably, the MW method significantly 
reduces reaction time due to its intense energy supply and 
unique heating mode. Importantly, this study marks the 
first instance in the literature of biogenic PdNP synthesis 
using SM gum with the microwave irradiation method and 
explores their catalytic and antimicrobial applications. SM 
gum’s stabilizing and reducing properties further enhance 
its effectiveness. Our research involves the synthesis of 
PdNPs with SM gum using microwave irradiation, followed 
by a comprehensive characterization by utilizing UV-Vis-
ible, FTIR, XRD, XPS, SEM, and TEM techniques. We 
also conducted reactions involving MO, Rh-B, along with 
4-NP in the existence of NaBH4, employing the synthesized 
PdNPs as a catalyst. Additionally, we studied the recyclabil-
ity of the PdNPs and investigated their antibacterial activity 
against different bacterial strains.

2  Experimental information

2.1  Materials

Salmalia Malabarica (SM) gum was procured from Hyder-
abad, India. All chemicals, reagents, and materials of ana-
lytical grade used in this study were sourced from Sigma 
Aldrich and SD Fine-Chem Limited (Mumbai, India).

2.2  Preparation of SM gum extract

We mixed 0.5  g of finely powdered SM gum in 100 mL 
of double distilled (DD) water in a beaker as the reaction 
mixture was stirred continuously for 3 h at 60 ºC. Unreacted 
materials were removed by cooling the reaction mixture to 
room temperature and filtering it with a Whatman filter.

2.3  Biosynthesis of PdNPs with Salmalia Malabarica 
gum extract

The 18 mL of SM gum extract was mixed with 12 mL of 0.5 
mM Na2PdCl4 solution in a beaker. 750 watts of microwave 
irradiation was applied to the reaction mixture for 7 min. 
The mixture was turned into a grey colour after microwave 
irradiation [32]. It suggests the palladium nanoparticles 
formation. After centrifuging for 10 min at 5000 rpm, the 
dark grey residue was obtained. We discarded the superna-
tant solution. PdNPs residue was washed three times with 
deionized water/methanol (1:1 v/v). These steps were used 
to remove unwanted substances from PdNPs. PdNPs were 
dried at 65 °C for 2 h. Furthermore, the obtained pure pal-
ladium nanoparticles were characterized and assessed for 
their biological and catalytic properties. The catalytic [32] 
and antibacterial activity procedure [33] and characteriza-
tion techniques were present in the supplementary informa-
tion file.

3  Results and discussion

3.1  UV-visible spectroscopic analysis

UV-Vis spectra were used to monitor the green synthe-
sis of PdNPs using SM gum by a microwave irradiation 
method through a color evolution of the solution. A pale-
yellow solution of Pd2+ ions changed to black when the 
SR gum was added. It indicates that PdNPs were formed 
by reducing Pd2+ to Pd0. Figure 1 shows UV-Vis spectra of 
SR gum, Na2PdCl2 solution, and PdNPs. Absorption peaks 
were observed for Pd2+ ions at 360 and 450 nm [34], but 
no peak was detected for gum. A wavelength maximum 
was not observed for the PdNPs (gum + Pd2+). The results Fig. 1  UV- Vis absorption spectra of SM gum, Pd (II) solution, and 

PdNPs
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contained irregular and monodispersed palladium nanopar-
ticles [39]. The energy-dispersive X-ray (EDX) spectrum 
displayed a distinct Palladium metal peak (Fig. 3b), provid-
ing unequivocal confirmation of the presence of palladium 
nanoparticles [40]. The EDX spectrum also suggested the 
successful immobilization of palladium nanoparticles on 
SM gum materials. This observation strongly indicates that 
palladium nanoparticles are uniformly distributed across the 
surface of the SM gum matrix.

3.4  XRD and TEM analyses

PdNPs were investigated by XRD to determine their crys-
tallinity. XRD (Fig. 4) showed four characteristic peaks at 
2θ = 39.65°, 45.24°, 65.14°, and 78.65°, respectively, and 

demonstrate that there are no Pd2+ ions in the solution, indi-
cating that all Pd2+ ions have been reduced to Pd0. UV-vis-
ible PdNPs do not exhibit plasmonic properties due to their 
non-absorbing properties [35].

3.2  FTIR spectroscopic analysis

The FTIR spectrum of green synthesized PdNPs using 
SM gum is shown in Fig. 2. The bands at 3395 cm− 1 and 
2912  cm− 1 were associated with -OH and aliphatic -C-H 
bonds in the FTIR spectrum of SM gum (black line in 
Fig. 2). These two strong absorption bands observed at 1790 
and 1690  cm− 1 were attributed to C = O stretching in the 
spectrum of aliphatic ester and aromatic amide, respectively 
[36, 37]. The absorption bands found at 1508, 1302, and 
1058  cm− 1 were due to bending vibrations of N-H, C-O, 
and CO-O-CO for aromatic amides, aromatic esters, and 
anhydrides, respectively. The gum-capped PdNPs showed 
high-intensity vibrational bands (pink line in Fig. 2) at 3445, 
2917, 1734, 1615, 1427, 1227, and 1041 cm− 1. Shifts in the 
bands were observed from 3395 to 3445, 2912 to 2917, 
1790 to 1734, 1690 to 1615, 1508 to 1427, 1302 to 1227, 
and 1058 to 1041 cm− 1 [38]. These results indicate that the 
synthesized PdNPs might be capped by functional groups 
present in the gum.

3.3  SEM and EDX analysis

The SEM analysis was conducted to assess the surface 
morphology and shape of the palladium nanoparticles. The 
results revealed that the PdNPs were predominantly quasi-
spherical in shape. However, a few exhibited irregular 
shapes, as depicted in SEM images (Fig. 3a). Further exam-
ination indicated that the surface of the SM gum matrix 

Fig. 3  SEM image of PdNPs stabilized with SM gum and its EDX spectrum

 

Fig. 2  FTIR spectra of (a) SM gum (black colour) and (b) PdNPs sta-
bilized with SM gum (pink colour)
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Bragg angle; β represents the full width at half maximum 
of the strongest peak, and k is a shape-dependent Scherrer’s 
constant [42]. The crystallite size of PdNPs calculated from 
XRD was in good agreement with the TEM analysis.

The TEM images (Fig. 5a) provide a clear depiction of 
the PdNPs that were synthesized, displaying their precise 
sizes and shapes. These particles were predominantly spher-
ical in shape and uniform in size, with an average size of 
approximately 10 ± 2  nm. Furthermore, the PdNPs exhib-
ited excellent dispersion, and high-resolution TEM images 
revealed a smooth surface [42]. As shown in Fig. 5b, there 
is a distinct spherical shape of 5 nm PdNPs. The TEM anal-
ysis clearly illustrates that the SM gum created a protec-
tive surface layer over the PdNPs, effectively preventing 
their aggregation. Moreover, the SEAD analysis (Fig.  5c) 
revealed well-defined lattice parameters, indicating that the 
synthesized PdNPs possess a high degree of crystallinity. 
A histogram developed from the analysis of 100 PdNPs is 
presented in Fig. 5d.

3.5  X-ray photoelectron spectroscopy (XPS) analysis

In order to determine the chemical state of Pd in nanopar-
ticles, XPS was employed, which is a surface-sensitive ana-
lytical technique. The XPS spectra (Fig. 6) of Pd exhibited 
two distinct peaks: one at a high energy band of 340.98 eV 
and another at a lower energy of 335.97  eV. These peaks 
correspond to the Pd 3d3/2 and 3d5/2, respectively and fully 

indexed to (111), (200), (222) and (311) planes of PdNPs 
(Joint Committee on Powder Diffraction Standards files 
No. 89–4897). XRD spectrum of the synthesized PdNPs 
showed that PdNPs were crystallized in a face-centered 
cubic structure [41]. The high intense peak (111) observed 
in the XRD pattern represents that PdNPs are more favoured 
to grow along the (111) orientation. Furthermore, the XRD 
pattern demonstrated the highly crystallized nature of the 
PdNPs. From Scherrer’s equation D = kλ/βcosθ, an average 
crystallite size of 9.40 nm was found for PdNPs. In Scher-
rer’s equation, λ represents the wavelength θ represents the 

Fig. 5  (a) TEM image of PdNPs, (b) 5 nm of PdNPs, (c) SAED of PdNPs and (d) particle size distribution histogram

 

Fig. 4  Powder X-ray diffraction pattern of PdNPs
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Pd (II) ions to elemental palladium while undergoing oxida-
tion themselves to form carbonyl and carboxyl groups [45]. 
Besides, the FTIR analysis corroborated the essential role 
of hydroxyl and carbonyl groups in both the synthesis and 
stabilization of PdNPs. The FTIR spectra obtained before 
and after PdNPs synthesis revealed a noticeable decrease 
in the hydroxyl and carbonyl bands [39]. At the same time, 
the COO- band at 1790 cm− 1 was due to the groups on the 
surface of the nanoparticles. These results confirmed that 
the reduction and stabilization of PdNPs were mediated by 
the hydroxyl and carbonyl groups in SM gum [46].

3.7  Catalytic properties of PdNPs

Using 4-NP, MO, and Rh-B as substrates, PdNPs were eval-
uated for their catalytic activity. UV-Vis spectroscopy was 
used to monitor the reactions.

3.7.1  The catalytic reduction of 4-NP to 4-AP

A reduction of 4-NP to 4-AP in the presence of NaBH4 
was used to determine the catalytic effectiveness of PdNPs. 
Chemical reactions cause the colour to change from light 
yellow to deep yellow. The UV-Vis spectrum of 4-nitrophe-
nol showed an absorption band at 315 nm [47]. Nitrophe-
nolate ions are formed in solution when NaBH4 is added to 
4-NP, as indicated by the strong absorption peak at 405 nm 
(Fig. 8a). The peak intensity at 405 nm was retained for up 
to 120 min without the addition of PdNPs. This indicates 
that p-nitrophenolate was not reduced fully by NaBH4 alone. 
By adding 5 mg of PdNPs to the reaction mixture (p-nitro-
phenolate ion), the catalytic effectiveness of PdNPs was 
tested and recorded over a variety of time intervals using a 
UV-Visible spectrophotometer [48]. Figure 8b reveals that 
the absorption peak intensity at 405 nm was decreased rap-
idly. There is an electron transfer process between PdNPs 

match to reduced Pd(0)NPs. These findings are consistent 
with previous studies [43]. Therefore, the XPS spectrum 
analysis confirmed the successful preparation of zero-valent 
PdNPs using SM gum as a reducing and stabilizing agent 
[44].

3.6  Mechanism for PdNPs formation

SM gum played a dual role as both a reducing and stabiliz-
ing agent in the synthesis of PdNPs (as shown in Fig. 7), 
facilitating the reduction of Pd(II) to Pd(0). The composition 
of SM gum includes a variety of compounds such as terpe-
noids, carbohydrates, alcohols, esters, carboxylic acids, and 
carbonyl derivatives. Notably, the carboxylic, carbonyl, and 
hydroxyl groups within the gum were pivotal in reducing Pd 
(II) ions to their elemental Pd(0) state. Phytochemicals pres-
ent in the gum possess potent antioxidant properties and high 
reducing capacity. This allowed them to effectively reduce 

Fig. 7  Schematic representation of PdNPs formation 
mechanism
 

Fig. 6  XPS spectrum showing the binding energy of Pd 3d
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linear relationship was presented between ln Ct/C0 and reac-
tion time [52, 53]. The rate constant at the room temperature 
reaction was determined as 0.0152 s− 1.

3.7.3  Rhodamine-B dye reduction studies

Rh-B is used in textiles, paper, paints, leather, textile dyeing 
and other applications. Rh-B dye is highly soluble in water 
and has a basic nature. However, it can cause serious envi-
ronmental and biological problems, perhaps irritate the eyes 
and skin and cause cancer. Utilizing PdNPs and NaBH4 in 
conjunction with Rh-B dye, this study evaluated its catalytic 
degradation. In the presence of NaBH4, Rh-B reduction 
shows absorption peaks at 615 and 665 nm in the UV-Vis 
spectrum [54, 55]. Even after 60 min, there was still a sharp 
peak at 550  nm in the case of Rh-B + NaBH4 (Fig.  10a), 
suggesting that NaBH4 alone could not be reduced by 
Rh-B effectively. PdNPs induced Rh-B reduction in 240 s 
(Fig. 10b). As the reaction time increased, the intensity of 
absorption bands at 550 nm decreased, accompanied by a 
change in colour from red to colourless [56, 57]. In the pres-
ence of PdNPs, Rh- Rh-B was reduced completely [58, 59]. 
Figure 10c showed a linear relationship between ln Ct/C0 
with reaction time, suggestive of pseudo-first-order kinetics 

and 4-nitrophenol [49]. After 220  s, we observed that the 
absorption peak at 405 nm gradually declined, and a new 
peak at 298 nm was developed, which implies the formation 
of 4-nitrophenol. 4-Nitrophenol was catalytically reduced 
in 220 s. As shown in Fig. 8c, ln (At/A0) is plotted against 
reaction time. The plot indicates that the reaction followed 
a pseudo-first-order kinetic model, with a rate constant of 
0.0087 s− 1 at room temperature.

3.7.2  MO dye reduction studies

PdNPs catalytic efficacy was evaluated by reducing MO 
dye. Figure 9a shows the absorption spectrum of MO dye, 
which exhibits two distinct bands at 260 nm (n - π* elec-
tronic transition) and 450 nm (π - π* electronic transition). 
Figure 9a shows the absorption spectrum of MO dye when 
reduced with NaBH4 without PdNPs. The two absorption 
bands remained unchanged even after 180 min without the 
PdNPs catalyst. It assumes that MO dye reduction was not 
completed [50, 51]. After adding 5 mg of PdNPs to the reac-
tion mixture, the peak intensities (in Fig. 9b) were rapidly 
decreased. The dye solution was turned colourless from 
orange within 240 s, which indicates a complete reduction. 
A pseudo-first-order kinetic model is evident from Fig. 9c. A 

Fig. 9  UV -Visible Absorption spectra of (a) MO in the presence of NaBH4 and in the absence of PdNPs, (b) Time-dependent MO reduction with 
NaBH4 and PdNPs catalysts, and (c) Linear plot of (Ct/C0) vs. time

 

Fig. 8  (a) UV-Vis spectrum of 4-NP with NaBH4 as the sole catalyst. 
(b) UV-Vis spectrum of 4-NP with a PdNPs catalyst in the presence of 
NaBH4, showing the absorption maximum corresponding to (I) 4-NP, 

(II) 4-Nitrophenolate, and (III) 4-Aminophenol and (c) The reduction 
of 4-NP against ln (Ct/C0) versus time
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3.7.5  Catalytic recyclability of PdNPs

PdNPs catalyst reusability was assessed by undergoing 
a variety of reduction cycles with 4-NP, MO, and Rh-B. 
Afterwards, the catalyst was washed, dried with methanol 
and water, and reused after being cleaned and dried [9, 
63]. Figure 12 shows the recycling capability of PdNPs in 
the reduction reactions of 4-NP, MO, and Rh-B. After five 
cycles, PdNPs showed no significant loss in catalytic activ-
ity [64].

3.8  Antibacterial activity of PdNPs

Antibiotics employ several mechanisms to target bacte-
ria, affecting critical processes like DNA replication, cell 
wall synthesis, and translation. However, despite these 
multifaceted attacks, bacteria have developed resistance 
mechanisms, rendering antibiotics ineffective. In contrast, 
the mode of action of metal nanoparticles, such as palla-
dium nanoparticles, directly targeting the bacterial cell wall 

at room temperature, with a constant rate of 0.0164 s− 1. The 
increased activity of PdNPs may be due to their higher sur-
face-to-volume ratio, high surface coverage, enhanced elec-
tron transfer properties, and effective reduction of kinetic 
barriers [60, 61].

3.7.4  The catalytic reduction mechanism of the dyes

Figure 11 shows a possible catalytic reduction mechanism 
for 4-NP, Rh-B and MO, utilizing PdNPs as catalysts. Ana-
lytes’ molecules (i.e., 4-NP, MO, and Rh-B) were absorbed 
on the surface of PdNPs during the first stage of the reduction 
process. PdNPs transferred electrons from BH4− (donor) to 
analytes (acceptor) through electrostatic interactions [32]. 
These reactions have occurred at the surface of PdNPs [62]. 
By transferring electrons, dyes on the surface of PdNPs 
were reduced. As the PdNPs were desorbed from their sur-
face, their byproducts diffused into the bulk of the solution.

Fig. 11  Catalytic reduction mechanism of MO, 
Rh-B dyes, and 4-NP by PdNPs in the presence 
of NaBH4.

 

Fig. 10  UV -Visible Absorption spectra of (a) Rh-B in the presence of NaBH4 and the absence of PdNPs, (b) Time-dependent Rh-B reduction with 
NaBH4 and PdNPs catalysts, and (c) Linear plot of (Ct/C0) vs. time
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4  Conclusions

This study focused on the eco-friendly and rapid synthesis 
of PdNPs using SM gum via microwave irradiation, pre-
senting an efficient and environmentally benign method. 
The average particle size of PdNPs measured by XRD and 
TEM was 10 ± 2  nm with crystalline and spherical struc-
tures. The XPS spectra of PdNPs displayed two distinctive 
peaks at the high energy band 340.98 eV and low energy 
band 335.97  eV, which are the characteristics of Pd 3d3/2 
and 3d5/2, respectively, and matches to fully reduced Pd 
(0) NPs. The catalytic activity of PdNPs was remarkable, 
achieving a 99% reduction of 4-NP, MO, and 98% reduc-
tion of Rh-B dyes. Significantly, the PdNPs catalyst could 
be reused multiple times without substantial loss of catalytic 
activity. Furthermore, these PdNPs exhibited strong antibac-
terial properties, with a zone of inhibition diameters mea-
suring 19 ± 0.30, 15 ± 0.25 and 15 ± 0.27 mm for Bacillus 
subtilis, Bacillus cereus and Escherichia coli, respectively. 
Bacillus subtilis showed good antibacterial activity, while 
others showed moderate to good antibacterial activity. This 
study underscores the potential of PdNPs to swiftly reduce 
environmental pollutants and suggests their suitability for 
future biomedical applications.

circumvents the issue of resistance compared to antibiotics 
[65]. Consequently, metal nanoparticles offer a promising 
alternative for combating microbes. Palladium nanopar-
ticles, in particular, have garnered significant attention due 
to their unique biological properties, including their antimi-
crobial and anticancer capabilities [12]. These nanoparticles 
interact with bacteria in various ways. Smaller PdNPs can 
penetrate directly into bacterial cells, while larger nanopar-
ticles remain outside the cells. This results in a continuous 
release of Pd2+ ions. These released ions disrupt the bacte-
rial cell membrane by binding to it [66]. Once the cell wall 
is destabilized, palladium nanoparticles gain entry into the 
bacterial cell, where they interact with lipids, proteins, and 
DNA. This interaction leads to the dysfunction of the bacte-
rial cell, ultimately inhibiting its growth and survival.

The PdNPs antibacterial tests were conducted against 
Gram-positive (Bacillus subtilis and Bacillus cereus) and 
Gram-negative (Escherichia coli). Disc diffusion was used 
to measure zone inhibitions of tested bacterial cultures [67, 
68]. The zones of inhibition were observed with PdNPs 
(Table  1 & S. Figure  1). There were inhibition zones of 
19 ± 0.30 mm and 15 ± 0.25 mm, respectively, for Bacillus 
subtilis and Bacillus cereus (Gram-positive strains). The 
inhibition zone for Gram-negative Escherichia coli was 
15 ± 0.57 mm. Good antibacterial activity was demonstrated 
against Bacillus subtilis by PdNPs, but moderate activity 
was observed for other bacteria [69]. The antibacterial effect 
of PdNPs was significant for both Gram-positive and Gram-
negative bacteria [64]. The antibacterial activity of PdNPs 
was increased by increasing its concentration. A comparison 
of the antibacterial activity of PdNPs is presented in Table 2.

Table 1  Antibacterial activity of PdNPs (Zone of inhibition in mm)
Microorganisms Zone of Inhibition (mm) at different 

concentrations
PdNPs concentrations 60 µg 80 µg 100 µg
Bacillus subtilis 15 ± 0.25 16 ± 0.22 19 ± 0.30
Bacillus cereus 12 ± 0.32 13 ± 0.27 15 ± 0.25
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Amoxicillin 16 ± 0.18 17 ± 0.20 19 ± 0.15

Table 2  Comparison of the antibacterial efficacy of green synthesized 
PdNPs with extracts from various plants
Plant source Zone of Inhibition (mm) Refer-

enceGram + Ve Gram -Ve
B. subtilis B. cereus E. coli

Filicium decipiens 
leaf extract

12 ± 0.25 - 27 ± 1.2  [70]

Melia azedarach leaf 
extract

8.3 ± 0.33 7.3 ± 0.33  [71]

lemon peel extract 12 13  [72]
Almond nuts extract 15 ± 0.03 12 ± 0.35 16 ± 0.3  [73]
Carica papaya aque-
ous leaf extract

15 - 11  [74]

Salmalia Malabarica 
gum

19 ± 0.30 15 ± 0.25 15 ± 0.27 Present 
work

Fig. 12  Recyclability of PdNPs towards the reduction of (a) 4-NP, (b) MO, and (c) Rh-B dyes
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