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Abstract
Energy demand is the major drawback to using mechanical treatments within the biorefinery context. These treatments use 
energy to reduce particle size and crystallinity and, as a result, increase the accessibility of cellulose. However, the study 
of energy demand in milling needs to be more noticed. Therefore, this study aims to study how operational variables affect 
particle size and energy demand on one of the most used milling technologies: ball milling. The variables considered were 
mass of biomass, mass of balls and time. It was found that time is the most affecting variable for particle size and energy 
demand. Additionally, it was possible to optimise milling regarding energy demand and particle size. Furthermore, it was 
found that from the three traditional laws of comminution Bond was the one that gave the best results in terms of accuracy.
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1  Introduction

The world’s population is continuously growing; thus, 
energy demand increases accordingly [1]. It is expected to 
increase to 8.5 billion by 2030 and reach nearly 10 billion by 
2050 [2]. Nowadays, energy is obtained mainly from nonre-
newable sources, either natural gas or fossil fuels. However, 
these natural resources are becoming scarce; therefore, alter-
native energy sources must be developed [3].

One alternative is lignocellulosic biomass (LCB) [4, 5]. It 
is the most significant renewable carbon source on the planet 
[6]. This biomass includes every plant and tree [2] and resi-
dues from agriculture, forestry, household and food industry, 
among others [7], thus contributing to the concept of circular 
economy. The composition of this biomass is mainly cellu-
lose, hemicellulose and lignin, in different proportions [8], 
and the energy, through biofuels: biodiesel [9], bioethanol 
[10], biogas [11] and platform chemicals such as sorbitol, 
furfural [12]and levulinic acid [13], among. However, the 
nature of lignin and how it is interlinked with cellulose and 
hemicellulose and the crystalline-like behaviour of cellulose 

structure gives LCB a recalcitrant nature that hinders its pro-
cessability [14]. Therefore, LCB needs to undergo pretreat-
ment to avoid its structure’s drawbacks.

Currently, a wide variety of pretreatments are available to 
increase the processability of LCB [15]. The classification 
is based on the driving force involved in the process. Physi-
cal treatments use energy to disrupt the matrix, thus reduc-
ing the crystallinity, resulting in an enhancement of sugar 
release. Depending on how the energy is applied, physical 
pretreatments can be classified as mechanical [16], micro-
waves [17] and ultrasonication [18]. Chemical pretreat-
ments use chemicals that can cleavage the bonds between 
the components of the LCB structure. Alkaline treatment 
[19], acid hydrolysis [20] and novel solvents such as Ionic 
liquids or deep eutectic systems [21, 22] are the techniques 
available. Biological pretreatments use microorganisms such 
as bacteria and fungi [23, 24]. These pretreatments promote 
the degradation of lignin and cellulose by the action of the 
enzymes they produce. Finally, the combination of physical 
and chemical pretreatments can be classified separately as 
physicochemical. It takes advantage of the physical changes 
the chemicals involved go through when the reaction con-
ditions change drastically, i.e., steam explosion and CO2 
explosion, among others [25, 26].

Among the available pretreatments described previously, 
physical treatment is the one that is always used when pro-
cessing LCB, more specifically, mechanical treatment. As 
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mentioned, these pretreatments use energy to disrupt the 
cell wall and make cellulose more accessible by reducing 
crystallinity and increasing specific surface area. Addition-
ally, the size is reduced, which increases manageability and 
bulk density. The technology available for mechanical size 
reduction is very well documented; knife mill [27], hammer 
mill [28], centrifugal mill [16], rod mill [29] and ball mill 
[30] are the most common. The ball mill is the most used in 
the literature [1]. Even though this technology has advan-
tages, energy demand and scale-up are its most significant 
drawbacks. However, only some studies have focused on 
researching and optimising energy demand and particle size. 
Therefore, this article aims to analyse the effect of process 
parameters for ball-milled wood chips on energy demand 
and particle size.

2 � Materials and methods

2.1 � Biomass pretreatment

Biomass in this study was beech wood chips. These chips 
were left open to the air to reach ambient moisture content. 
Moisture was measured by drying the sample at 105 °C in a 
dryer KBC-25W (Binder Ltd., Tuttlingen, Germany) to con-
stant weight, reaching a value of 7.77 ± 0.01% wt. Initially, 
the piece was mechanically pretreated to homogenise it. The 
pretreatment was performed in an SM300 knife mill (Retsch 
Ltd. Haan, Germany) at 3000 rpm and a 10 mm sieve. Par-
ticle size distribution was evaluated using a shaker and the 
following sieving sizes: 10 mm, 7 mm, 5 mm, 2.5 mm, 
0.9 mm, 0.85 mm, 0.71 mm, 0.6 mm, 0.45 mm, 0.28 mm 
and 0.15 mm. Each sieve was weighed after and before to 
obtain the mass fraction using an analytical balance PCB 
6000–1 (Kern & Sohn, Ballingen, Germany).

2.2 � Particle size distribution

These analyses were performed according to the stand-
ard “method of determining and expressing particle 
size of chopped forage material by screening” [31]. The 
Rosin–Rammler-Sperling-Bennet (RRSB) distribution was 
used since it is the one recommended by the ASABE stand-
ard and is described by Eq. 1.

where F (-) is the accumulated mass fraction smaller than D 
(mm), DP (mm) represents a characteristic parameter of the 
distribution that corresponds to the diameter at the fraction 
equal to 63.2%, and n (-) is a parameter that indicates the 
dispersity of the distribution. The characteristic parameters 

(1)F = 1 − e
−

(

D

DP

)n

can be calculated from the experimental data using the lin-
earisation of the previous equation leading to Eq. 2.

where n is the slope of the data extracted from the sieve anal-
ysis and n·lnD is the intercept with the y-axis. The param-
eters of the RRSB distribution, DP and n, were reached 
by linear regression with the least square method. Know-
ing RRSB parameters, the values of DF can be determined 
according to Eq. 3.

Finally, D10, D50 and D90 particle size parameters were 
calculated by Eq. 3 for individual experimental runs, chang-
ing the F value accordingly. As the most representative 
value, particle size D50 was used for further modelling steps.

2.3 � Milling experiments

Size reduction of biomass was carried out using a Drum 
Mill TM 300 (Retsch Ltd., Haan, Germany). The attrition 
material inside the mill was stainless steel balls of 3 mm 
diameter. The rotating critical speed of the mill (Nc) was 
calculated using Eq. 4 [32]. The size reduction principle in 
ball mill is based on both breaking and tearing. On the one 
side, the milling drum rotates and the milling elements too, 
thus, falling and breaking the biomass. On the other side, 
biomass is comminuted by the tear forces between the mill-
ing elements (balls) and between those and the shell as well. 
To reach the dominance of breaking and avoid the centrifu-
gal effect of the batch, the recommended drum rotational 
speed must be equal to

where Dm is the diameter of the mill drum (30 cm) and dB 
is the diameter of the attrition material (3 cm). With these 
values, Nc equals 81.41 rpm, similar to the maximum value 
that can be used for the mill. Therefore, it was decided to 
operate the mill at a percentage of the maximum critical 
speed, for safety. The value of the speed was 75% of the 
maximum value for the mill, since it is lower than the critical 
speed, for safety reasons and to operate the mill properly.

Initially, the required mass of beech chips and attrition 
material is loaded in the mill, and the time starts, depend-
ing on the experiment. Energy demand was measured using 
a Fluke 438 Series II Power Analyzer (Fluke Corporation, 
Everett, WA, US) with a time step of 1 s. The idle power of 
the machine was also recorded by running the mill without 
sample or attrition material. Energy demand was calculated 
by Eq. 4.

(2)ln(−ln(1 − F)) = n ⋅ ln(D) − n ⋅ ln(Dp)

(3)
D

F
= D

P
(−ln(1 − F))

1/

n

Nc =
42.3

√

Dm − dB
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where ec (Ws) is the comminution energy, PT (W) is the 
power measured when biomass was introduced in the mill, 
t(h) is the milling time and PIDLE (W) is the power measured 
without biomass in the mill. PT and PIDLE were calculated 
using the trapezoidal rule. Specific energy demand e (Ws 
g−1) was calculated using Eq. 5.

where m (kg) and ec (Ws) are the comminution energy 
obtained in Eq. 4 and are the mass of biomass processed in 
the run (Eq. 5).

2.4 � Experimental design

The design of experiments was carried out using Statgraph-
ics Centurion 19. It was carried out following a three-
level-three-factor Box-Benhken, with three central points, 
based on response surface methodology. This method has 
been widely used in industry and research to analyse the 
effects on the process and optimise [33–35]. Additionally, it 
allows to obtain results with the least experiments possible. 
In this work, time (h), mass of balls (kg) and mass of bio-
mass (kg) were the effects. The objective was to minimise 
energy demand (kWh·t−1) and D50 (mm). For the fitting of 
the experimental data, a second-order polynomial was used 
(Eq. 6). Table 1 shows the codification of the experiments 
and the range of values.

In Eq. 6, Y is the dependent variable considered, either 
energy or D50, Xi,j is the factors (biomass, balls and time) and 
bij is the coefficients obtained by Statgraphics.

3 � Results

Particle size distribution was evaluated using the RRSB 
distribution. The application of this distribution was con-
firmed by the influence of time on particle size. This set of 
experiments was performed aside from the ones obtained 
by the experimental design; the application of the RRSB 
distribution needed to be verified before any investigation 
was conducted. Figure 1 shows the RRSB distribution vs. 
the observed values.

Time has a significant effect on particle size, as was 
expected. This influence is especially significant in the first 
4 h of milling. However, from 6 to 8 h, the difference in 
particle size is negligible since the curves are close to each 

(4)ec = ∫
t

0

PTdt − ∫
t

0

PIDLEdt

(5)e =
ec

m

(6)Y = b
0
+
∑

bi ⋅ Xi +
∑

bii ⋅ X
2

i
+
∑

bij ⋅ Xi ⋅ Xj

other; this influence allowed the authors of this research to 
choose a suitable maximum milling time. As can be seen 
from the previous graph, modelled results fitted the observed 
results. Therefore, this distribution will be used to obtain the 
values for particle sizes D10, D50 and D90. Table 2 shows the 
parameters of the RRSB distribution for the experiments 
from the factorial design.

Regarding the accuracy of the distribution, in terms of 
R2 values, all the experiments had values above 0.8, and 
most deals were above 0.9. This distribution has been 
used for several grinding processes and has been proven to 
describe particle size appropriately [36, 37]. From Table 2, 
time is the most affecting energy and particle size variable. 
This can be seen when comparing experiments 6 and 1, 4 
and 10 and 5 and 12, where D50 was reduced from 0.932 
to 0.039 mm, from 0.543 to 5·10−3 mm and from 1.21 to 
0.105, respectively. Additionally, the mass of wood influ-
ences particle size, but unlike time, increasing biomass has 
a dampening effect on particle size, as seen in experiments 
2 and 3. Experiment 2 has a final particle size of 0.9 mm 
after 4.5 h using 0.5 kg of biomass. However, experiment 3, 
performed simultaneously using 0.1 kg of biomass, reaches 
a D50 of 0.064 mm. This is the result of the dampening effect 
of the biomass. Already milled biomass gets stacked on the 
balls, thus reducing the impact of the forces that generate 
the size reduction. The problems that the agglomeration of 
particles produced on reducing the efficiency of ball milling 
have been previously reported. It prevents particle size from 
being reduced further than a specified limit. Other authors 

Table 1   Factors and levels for the experimental design

Run Biomass (kg) Balls (kg) Time (h)

1 1 0 1
2 1  − 1 0
3  − 1 0 0
4 0 1  − 1
5 0  − 1  − 1
6 1 0  − 1
7  − 1 0  − 1
8 1 1 0
9  − 1 0 1
10 0 1 1
11  − 1 1 0
12 0  − 1 1
13 0 0 0
14 0 0 0
15 0 0 0
Factors Levels
Biomass (kg) 0.1 0.3 0.5
Balls (kg) 5 12.5 20
Time (h) 1 4.5 8
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found that increasing the energy of the milling process did 
not improve particle size reduction and reached a plateau at 
around 300 nm for silica particles [38]. This effect was also 
found in the size reduction of inkjet application ink [39]. 
The same result was found for ball-milled wheat straw. D50 
reduced from around 100 to about 20 µm, and increasing 
energy would not reduce particle size further [40]. In the 
current study, the same effect is reported, especially at high 
loads of biomass and high times, showing no significant 
reduction in the highest energy demand. Energy demand 
has a similar trend when compared to particle size. Time 
has the most significant influence, as expected since energy 
demand for the longest time is the highest. Additionally, the 
quantity of biomass has an exciting effect on energy demand 
since increasing biomass reduces energy demand. It can be 
explained by the reduced matter deposits in the bottom of 

the milling chamber, ameliorating the rebound generated by 
the falling balls. Experiments 1 and 9 show this effect. While 
experiment 1 has an energy demand of 889.52 kWh·t−1, 
experiment 9 shows an energy demand of 4112.35 kWh·t−1, 
showing a fourfold decrease while increasing four times the 
mass of biomass. Other authors found similar values for 
comminution energy. Some authors found energy values of 
500 kWh·t−1 and 2150 kWh·t−1 for reduction ratios of 66% 
and 87%, respectively, for the comminution of Douglas fir to 
increase sugar yield [41]. However, other researchers found 
higher values for energy demand for similar reduction ratio 
values. For a reduction ratio of 74%, energy demand was 
3020 kWh·t−1 [40]. In the current study, the values are lower 
than the previously cited research; however, values are very 
similar if total energy is considered. For a 65% reduction 
ratio, energy demand was 189.38 kWh·t−1 (1576 kWh·t−1 

Fig. 1   RRSB distribution func-
tion for ball-milled biomass at 
different times: 69 rpm, 0.3 kg 
biomass and 8 kg balls. Lines 
are simulated values and dots 
are experimental values
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Table 2   Parameters of the 
RRSB distribution for each 
experiment

Experiment Biomass (kg) Balls (kg) Time (h) Energy (kWh·t−1) Dp (mm) D50 (mm) n R2

0 Pretreatment 3.253 2.63 1.733 0.994
1 0.5 12.5 8 889.52 0.096 0.039 0.414 0.806
2 0.5 5 4.5 189.38 1.375 0.900 0.865 0.997
3 0.1 5 4.5 396.04 0.141 0.064 0.468 0.979
4 0.3 20 1 294.20 0.950 0.543 0.655 0.992
5 0.3 5 1 116.50 1.750 1.213 1.001 0.995
6 0.5 12.5 1 124.57 1.396 0.932 0.907 0.994
7 0.1 12.5 1 565.19 0.630 0.343 0.603 0.981
8 0.5 20 4.5 654.92 0.171 0.073 0.433 0.923
9 0.1 12.5 8 4112.35 0.004 1.00E-03 0.210 0.900
10 0.3 20 8 1258.36 0.018 5.00E-03 0.295 0.865
11 0.1 20 4.5 1043.46 0.040 1.00E-02 0.257 0.844
12 0.3 5 8 601.33 0.212 0.105 0.520 0.956
13 0.3 12.5 4.5 746.36 0.226 0.095 0.422 0.985
14 0.3 12.5 4.5 793.32 0.273 0.114 0.420 0.979
15 0.3 12.5 4.5 711.86 0.234 0.099 0.428 0.974
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total energy), and for an 86% reduction ratio, energy demand 
was 565.19 kWh·t−1 (2094.57 kWh·t−1 total energy).

3.1 � Mathematical model and statistical analysis: 
effect of process variables on D50 and energy 
demand

The process variables’ effect and mathematical model were 
analysed in-depth using Statgraphics Centurion 19 software. 
It allows the design of experiments to be carried out, so data 
can be analysed to find effects and relationships between the 
dependent and the independent variables. Table 3 shows the 
coefficients of the model.

Using the coefficients from the previous table and 
Eq.  6, a mathematical expression can be used to pre-
dict the values of D50 and energy demand using only the 

process parameters. Additionally, it was possible to build 
the Pareto plots using the p-values from the table. The 
p-value can help to decide if a factor significantly affects 
the dependent variable. If the p-value is lower than 0.05, 
this factor has a significant effect with a 95% confidence 
level. Figure 2 shows the Pareto plots.

As can be seen from the parity plots regarding D50, all 
the factors have a significant effect on reducing particle 
size, except for the term A2. Therefore, when using the 
mathematical expression for D50, the only factor that can 
be erased without affecting accuracy significantly is A2. On 
the other hand, regarding energy, time is the only factor 
that affects energy demand significantly. Therefore, there 
is a linear dependence between energy and time. After the 
effects of the elements were obtained, a statistical analysis 
of the model was also carried out through the ANOVA 
table. It helped to indicate the robustness and significance 
of the model. Table 4 shows the statistical values (ANOVA 
analysis) for both models.

From the statistical analysis shown in Table 3, the p-value 
of the model for D50 is lower than 0.05. This means that 
the model is statistically significant, with a 95% confidence 
level. Therefore, the factors considered in the design of 
experiments can be used to predict D50. Furthermore, regard-
ing accuracy, this expression fits the experimental data well 
since the R2 value is 98.57% and the adjusted value is 96%. 
On the other hand, the mathematical expression for energy 
meets different requirements. The p-value for the model is 
higher than 0.05, which means that the factors considered 
cannot predict energy changes. From an accuracy point of 
view, the R2 value; however, the adjusted R2 value is lower; 
therefore, the mathematical expression for energy is not sta-
tistically significant, and its accuracy needs to be better.

Table 3   Coefficients and p-values for the mathematical model of D50 
and energy demand

Ball milling factor Y1: D50 Y2: energy

bij p-values bij p-values

Intersection 0.972455 -  − 1105.09 -
X1: biomass 3.2897 0.0011  − 2879.42 0.0731
X2: balls  − 0.0792582 0.0008 250.985 0.3482
X3: time  − 0.26998 0.0001 201.012 0.0281
X1X1 0.266667 0.8083 8446.82 0.3741
X1X2  − 0.128833 0.0048  − 30.3134 0.8966
X1X3  − 0.196786 0.0185  − 993.646 0.0909
X2X2 0.00263852 0.0162  − 9.19889 0.1954
X2X3 0.00542857 0.0163 4.56505 0.7335
X3X3 0.017585 0.0036 27.308 0.3785

Standardized Pareto Chart for D50

0 3 6 9 12 15
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Standardized Pareto Chart for Energy
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-

Fig. 2   Pareto plots for D50 and energy demand

Table 4   ANOVA table for both 
models

Transformation Model d.f p-value Error d.f Stnd. error R2 Adj. R2

Energy None 9 0.1411 5 666 83.06 52.57
D50 None 9 0.0004 5 0.0801 98.57 96
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Therefore, the mathematical expression could not predict 
the results regarding energy. As a result, it was decided to 
change the data pool from energy. The hypothesis behind 
these results is that the gap between energy demand values 
is huge. For example, experiment 9 has an energy demand 
of more than 4000 kWh·t−1 and experiment 5 is just above 
100 kWh·t−1, which is about 40 times higher. So, to reduce 
this gap, it was decided to use the logarithm of the values 
of energy instead of the raw values. Figure 3 shows the 
new values for the factors and the statistical analysis of the 
model, with the logarithm transformation in energy and the 
new Pareto chart.

The transformation of the energy raw values into the 
logarithm values lead to an increase in the accuracy of the 
mathematical model from 83 to 95.34%. The factors that 
significantly influence energy demand also increased; the 
mass of biomass, the mass of balls and the squared effect of 
balls were added as significant since the p-values for these 
effects were lower than 0.05. From the previous Pareto 
plots, time increases energy demand, which makes sense 
since the more time the mill works, the higher the energy 
demand. The same effect occurs with the mass of balls. On 
the other hand, the mass of biomass reduces energy demand. 
This effect was confirmed in Table 1. Increasing the mass 

of biomass reduces energy demand because it dampens the 
impact of falling balls. Furthermore, the statistical analysis 
also improved since the p-value of the model became lower 
than 0.05, which, unlike the raw values, makes it statisti-
cally significant with a 95% confidence level. Therefore, this 
model will be the one used forward.

Finally, when the mathematical expressions for D50 and 
energy demand were obtained, it was possible to obtain the 
surface response surfaces to find the optimum values for 
both independent variables to minimise energy and particle 
size (Fig. 4).

Regarding energy, time is the operational parameter with 
the highest influence since the slope from Fig. 4a, c in the 
time axis is the most significant. This effect is also confirmed 
in Fig. 1. On the other hand, biomass has the opposite effect 
since increasing biomass reduces energy demand. There-
fore, fast times and high biomass load are recommended to 
obtain the lowest energy demand possible. The mass of balls 
increases energy demand for low values, from 5 to 14 kg. 
However, from 14 to 20 kg, the effect is negligible. As a 
result, the optimisation values to minimise energy demand 
should be in the region of short times (2–4 h), low mass of 
balls (5–11 kg) and high biomass load (0.3–0.5 kg). From 
the point of view of particle size (Fig. 4b, d, f), time also 

Ball milling factor
Y2: Energy

bij p-values
Intersec�on 4.05924 -
X1: Biomass -4.08433 0.0064

X2: Balls 0.28762 0.0093
X3: �me 0.357342 0.0007

X1X1 1.48938 0.7457
X1X2 0.0453283 0.7007
X1X3 -0.00671088 0.9786
X2X2 -0.00914364 0.0315
X2X3 -0.00179 0.7897
X3X3 -0.00903871 0.5521

Sta�s�cal analysis
Model Energy

Model d.f. 9
P-value 0.0078

Error d.f. 5
Standard error 0.334

R2 95.34
Adjusted R2 86.94

Standardized Pareto Chart for Energy

0 2 4 6 8
Standardized effect

AC

BC

AA

AB

CC

BB

B:Balls

A:Biomass

C:time +
-

Fig. 3   Statistical analysis and Pareto chart for the logarithm transformation of energy
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has the most significant effect. It decreases from the begin-
ning. However, there is a point where particle size is not 
reduced further; from 4 h, the effect of time starts to fall, 
and up to 6 h milling time, particle size is not reduced more. 
Therefore, the time of milling should be at most 4 h. It was 
found that increasing biomass load has an interesting effect 
on D50, especially at short times and low mass of balls. How-
ever, increasing milling time and the quantity of balls lead to 
smaller sizes. The powder generated by the mill agglomer-
ated on the surface of the balls, thus reducing the effectiv-
ity of the grinding process. For times longer than 4 h, the 

mass of balls has nearly no effect on particle size because it 
reached a minimum at this milling time. The effect of balls 
is more significant for shorter times (< 4 h). In this region, 
as seen in Fig. 4b, D50 is the smallest at increasing mass of 
balls. The green region can show this. In the graphs, some 
areas are below zero; these regions should not be consid-
ered a good result because size cannot be negative. So, these 
regions will not be considered in the optimisation.

The trends shown in Fig. 3b, d, f are similar to those 
found by [42]; in this study, B4C powder was used. How-
ever, the effect of the milling conditions is similar. The most 
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affecting variable considered was time. It should be noted 
that the mass of balls and biomass were joined in a ratio.

Finally, the optimisation shown in Table 5 was carried 
out with the considerations highlighted before. The condi-
tions were to minimise particle size and energy demand, and 
the equations to calculate them were developed by the soft-
ware with the coefficients from Table 2, for particle size and 
Fig. 3, for energy. The minimum limits for size and energy 
were 0.3 mm and 350 kWh·t−1, respectively. The limits for 
the independent variables were set by those chosen on the 
experimental factorial design.

3.2 � Comparison of the results with the traditional 
comminution laws

Obtaining the optimum conditions to minimise energy and 
size and, as a result, the costs of the process is a valuable 
tool. However, it would only be complete with the relation-
ship between particle size and energy demand. Figure 5 
shows the relationship between energy and D50.

The relationship shown in the previous figure has been 
extensively studied. Researchers have found the same trend 
for the milling of amaranth grain [43], Douglas fir [41] or 
wheat straw [40] using a planetary ball mill.

Traditionally, this relationship has been calculated by the 
traditional comminution laws, being Kick, Bond and Rit-
tinger, using the generic expression that follows (Eq. 6).

where E is the energy demand, C is a constant, r is a model 
parameter which depends on the law used and is non-dimen-
sional, D is the final particle size, and D0 is the initial par-
ticle size; in this work, it was 2.63 mm. According to the 
literature, the energy used in Eq. 6 is exclusively needed 
for the comminution of the particle. Measuring this energy 
is challenging, especially in ball milling, since most of the 
energy is lost in the collision between balls [44]. That is 
the reason why energy demand values used are the differ-
ence between total energy and idle energy. Although these 
laws were initially developed for the mining industry, several 
authors have applied them to the comminution of biomass 
[45, 46]. Therefore, they were applied in this work, and a 
parametric analysis using the generic expression (Eq. 6) was 
carried out to find the values of C and r. Table 6 shows the 
comminution laws’ values and the parametric analysis.

The three comminution laws give accuracy results, in 
terms of the regression coefficient, higher than 70%. How-
ever, the parametric model gave an accuracy of 90.98% 
regarding the R2 value. The comminution constant was 94.2 
kWh·t−1·mm0.4, and the r value was 1.42. Regarding the 
three comminution laws, the most accurate with the set of 
data was Bond’s law which agrees with the bibliography 
since Bond’s law is said to describe ball milling behaviour 
the best[47].

3.3 � Validation

The validation of the model was performed by carrying out 
additional experiments at different conditions used for the 
development of the model but within the maximum and 
minimum values of the independent variables. The results 

(7)E =
C

r − 1
⋅

[

1

Dr−1
−

1

Dr−1
0

]

Table 5   Optimization results for energy and D50

Energy (kWh·t−1) D50 (mm) Biomass (kg) Balls (kg) Time (h)
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Table 6   Results for the 
traditional laws of comminution 
and the parametric model of the 
general expression

a work index

Bond Rittinger Kick Parametric model

Constant 53.6 ± 5.889a 17.29 ± 2.89 1209.81 ± 160.6 94.2 ± 22.6
r 1.5 2 1 1.42 ± 0.056
R2 85.55 71.92 80.2 90.98
Mean absolute
error

1545.82 2328.61 1768.4 237.096
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will be compared to those obtained with the model to assess 
whether it can replicate the experimental values with good 
accuracy. Table 7 shows the results and the conditions of 
the experiments.

As can be seen, the model developed can replicate the 
results obtained experimentally, especially for experiments 
17 and 18. Regarding energy, it can be said that the model 
can predict the energy demand just with the conditions.

Regarding experiment 16, the difference between the 
experimental and the modelled is higher than expected. 
However, it should be noted that the values for D50 under 
these conditions are very small; therefore, measurements 
other than screen sieve analysis should be performed. On 
the other hand, D50 values below 0.3 mm are not commonly 
used within the biorefinery concept, in fact, according to the 
bibliography, the recommended particle size for the success-
ful hydrolysis of biomass is between 1 and 2 mm [48], and 
in this range of values, the model is accurately enough. For 
the assessment of the accuracy of the model, the parity plots 
were obtained (Fig. 6).

As can be seen from the previous figure, the model pre-
dicts accurately the energy values and is always below 10% 
error. Regarding D50 there is some when simulated values 
are compared to experimental ones, especially a size below 
0.2 mm. However, as it was stated before, these values are 
not frequently used for biomass valorisation under the biore-
finery concept.

4 � Conclusions

In this work, the effect of process parameters (milling time, 
mass of biomass and mass of balls) on ball milling of wood 
chips has been assessed. Regarding D50, it was found that 
all the factors considered affected particle size except for the 
quadratic term for biomass. The energy was more affected by 
time; however, accuracy was low (R2 = 83.06). Therefore, it 
was decided to transform the results for energy to the loga-
rithmic values. With this transformation, R2 was increased 
to 95.34, and it was found that time biomass and balls, as 
well as the quadratic term of mass of balls, were the most 
affecting factors.

Additionally, it was possible to obtain a relationship 
between energy demand and particle size. The traditional 
comminution law that is more suitable for ball milling was 
Bond, which agrees with the literature found. However, a 
parametric model showed that the most suitable values for 
the constant and r values in the generic expression of the 
comminution laws were 94.2 and 1.42, respectively.

Table 7   Results and conditions 
used for the validation

Experiment Biomass Balls Time Experimen-
tal energy

Energy 
simulated

Experimental D50 Simulated D50

16 0.3 12.5 4.5 7.52 6.91 0.0248 0.0044
17 0.3 12.5 4.5 6.39 5.99 0.330 0.369
18 0.3 12.5 4.5 6.18 6.38 0.346 0.328
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