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Abstract
The production of high-value products from microalgae, one of the preferred emerging biorefineries’ feedstocks, relies on 
the crucial step of biomass fractionation. In this work, the fractionation of Chlorella vulgaris and Scenedesmus obliquus 
biomass was tested for protein extraction using a wide range of physical, chemical, and enzymatic treatment combinations, 
including ultrasound, cell homogenizer, cellulase, and alcalase combinations in aqueous and alkali extraction conditions. 
The impact of these processes on biomass carbohydrates was also evaluated. Alkaline-assisted ultrasound treatments using 
alcalase presented the highest protein extraction yield, reaching 90 g/100 g protein on C. vulgaris, closely followed by the 
same treatment in aqueous conditions (85 g/100 g protein). The same aqueous treatment achieved the best performance on 
S. obliquus, reaching 82 g/100 g protein. All treatments on both microalgae partially solubilized the polysaccharide fraction 
with all alkaline treatments solubilizing over 50 g/100 g sugars for all conditions. Overall, all the treatments applied were 
effective methods for biomass fractionation, although they showed low selectivity regarding the individual extraction of 
protein or carbohydrates.
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1 Introduction

Microalgae are one of the most innovative and promising 
biomass sources that have been suggested for biorefinery 
applications, namely for the production of biofuels, e.g., 
biodiesel from microalgae oil [1]. However, microalgae 
potential is much wider, as they have also been reported 
as a viable source of bioproducts [2], namely of pigments 
[3–5], protein [6, 7], amino acids [6], and fatty acids [8] for 
food and feed applications. The microalgae sector has gained 
increasing relevance in the EU, as part of the European 
Green Deal that includes the use of microalgae as an essen-
tial facet of the Blue Bioeconomy in the European space [9].

Microalgae have a large range of potential high-value 
commercial applications, in sectors such as bioplastics and 
biomaterials [10] with nutraceutical applications, due to 
their high nutritional value [11]. Applications for the produc-
tion of advanced biofuels have also gained increased interest, 
thereby granting microalgae an even more important role in 
climate change mitigation [12]. The first approaches to use 
microalgae in biorefineries were based on solvent extraction 
for isolation of their lipid fraction and subsequent conversion 
of bio-oil to biodiesel, while a protein and sugar-rich solid 
residue was left with little use. By itself, biofuel produc-
tion from microalgae is not economically viable [13], and 
needs to be coupled with the production of other high-value 
products for the economic feasibility of the approach. There-
fore, the most recent strategy is to target microalgae biomass 
towards the production of added-value products such as plat-
form chemicals, biomaterials, and food and feed products, 
which may also be connected to biofuel production.

Microalgae have an incredible ability to accumulate dif-
ferent types of macromolecules, depending on their growth 
conditions, thereby presenting a versatility in composition 
that is virtually unparalleled elsewhere in the biosphere. Due 
to this versatility, growth conditions are very important as, 
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for example, in nutrient-depleted microalgae, the protein 
content can drop significantly [14–16]. But this composi-
tional diversity that grants microalgae a huge potential for 
the production of many bioproducts is not the only interest-
ing aspect since they also have great wastewater treatment 
capabilities [17, 18]. Microalgae can be excellent bioreme-
diators with high effectiveness in removing pollutants and 
heavy metals from aqueous biomes [19]. Also, as the cultiva-
tion of microalgae can be a very costly process, the use of 
low-cost culture media like wastewater can make microalgae 
more economically sustainable [20].

Microalgae are adequate to be used in feed, and chemical 
industries. When compared to the lignocellulosic biomasses 
commonly used in biorefineries, microalgae do not contain 
lignin, which is a technical advantage in the fractionation 
and handling of downstream processes. Also, they are an 
alternative protein source for food and feed as they can con-
tain all essential amino acids [7, 21]. This amino acid profile 
is rarely found in terrestrial plants and can therefore become 
an integral part of non-meat diets that are increasingly popu-
lar in the Western world, providing a greener alternative to 
meat production, which is an important source of carbon 
emissions [13].

However, microalgae valorisation requires fractiona-
tion techniques to separate the most important components, 
mainly protein, and sugars, and the challenge is to find meth-
odologies that are cheap and can provide selective fractiona-
tion. Simple, fast, and economical fractionation methods are 
required for microalgae that allow for the release and easy 
recovery of most protein [22], facilitate downstream process-
ing [23], and also enable the separation and recovery of the 
sugar fraction.

In contrast to other molecules, such as starch and lipids 
that can be found in cell storage organelles, protein is present 
in almost every part of the cell and therefore can be easily 
removed by disrupting the cells and extraction with solvents. 
Microalgae commonly have rigid cell walls consisting of 
polysaccharides, mainly cellulose [24], and other polysac-
charides containing xylose, mannose, and uronic acids, or 
trilaminar layers with pectin and glycoproteins in the mid-
dle layer. Algeanan is also a biopolymer that forms an outer 
layer in several microalgae species, conferring protection 
against degradation, hydrolysis, and mechanical disruption 
of the cells [25] which will make protein extraction more 
challenging. This compound is present in some Chlorophyta 
species such as Scenedesmus and Chlorella [25] that were 
studied in this work. In addition to algeanan, some species of 
the Scenedesmus genus also present a crystalline glycopro-
tein in the cell wall, which can further affect cell disruption 
and product recovery, and increase the difficulty in protein 
extraction. However, some proteins can be found freely in 
the cytosol like ribosomes, free enzymes, and other protein 
complexes, and are easily accessible through cell disruption. 

Although some advances have been made in the past dec-
ade, the study of algal proteins and their extraction remain 
a poorly researched topic, when compared to proteins from 
terrestrial crops [26]. Protein extraction can be a challeng-
ing endeavor, due to the complexity of the cell walls, which 
are in many cases interlinked with protein [27]. Therefore, 
protein extraction is mostly achieved in two steps, cell dis-
ruption and protein recovery [28]. This extraction may be 
enhanced by the use of some pre-treatments that cause cell 
wall degradation, and improve accessibility [29]; i.e., cell 
disruption techniques can be used for the extraction of intra-
cellular components [7, 30, 31]. Many processes have been 
tested such as cell homogenization [32], ultrasonication [33, 
34], microwave radiation [35], high-pressure cell disruption 
[36], and enzymatic lysis kits [37]. Some of these meth-
ods, such as high-pressure homogenization and enzymatic 
treatment, have been reported to achieve extraction yields of 
around 80–90% [38], although their commercial application 
for algal protein extraction remains limited, due to issues 
with up-scaling and operational costs [26]. Furthermore, the 
effectiveness of these techniques is highly dependent on the 
algae species, and therefore individual studies are vital to 
assess their application suitability for each case [26].

Although effective for protein extraction, the impact of 
these technologies on the sugar fraction is usually not men-
tioned, and it is still largely unknown, despite its importance. 
Also, studies focusing on carbohydrate fractionation are few 
and only achieve sugar recovery rates above 50% when using 
very high concentrations of acid catalysts and severe and 
potentially uneconomic conditions [39].

In this work, a new approach to microalgae valorisation 
was studied to attempt an effective protein and carbohydrate 
separation. For this purpose, multiple physical, chemical, 
and enzymatic methods were tested, both per se and in com-
bination, including ultrasonication, cell homogenization, 
alkaline treatments, and cellulase and alcalase treatments for 
protein extraction from commercial Chlorella vulgaris. The 
most effective methods were selected and further validated 
on the microalgae Scenedesmus obliquus that was previously 
grown on secondary wastewater brewery’s effluent. The 
impact of protein extraction methods on the carbohydrate 
fraction in both algae was also evaluated, thereby providing 
a first insight into the effect of these pre-treatments in the 
sugar extraction from algae.

2  Materials and methods

2.1  Microalgae cultivation and harvesting

Chlorella vulgaris biomass was obtained from Allmicro-
algae (Pataias, Portugal), in freeze-dried form. Scenedes-
mus obliquus (ACOI 204/07, Coimbra University Culture 
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Collection, Portugal), obtained from the LNEG culture bank, 
was cultivated in 70-L vertical acrylic column photobioreac-
tors. This microalga was grown in brewery secondary efflu-
ent (Table 1) provided by Central de Cervejas, SA (Vialonga, 
Portugal) in batch mode, as described [39]. Microalgae were 
harvested in the exponential growth phase and concentrated 
using an in-house developed centrifugation methodology 
with a continuous dairy centrifuge (electric cream separa-
tor, Alfa Laval, Sweden) [39]. The centrifuged biomass was 
washed with distilled water and centrifuged again to obtain 
a concentrated paste with 90% moisture content. This paste 
was frozen (−18°C) and then freeze-dried for further use 
(Thermo Scientific Heto PowerDry LL3000, USA).

2.2  Pre‑treatment processes

All pre-treatments and their combinations were carried out 
in duplicate.

2.2.1  Aqueous extraction

For aqueous protein extraction, 0.5 g of freeze-dried micro-
algae (C. vulgaris and S. obliquus) were weighted to 50-mL 
closed flasks and suspended in 20 mL of distilled water 
(physical extraction) or buffer (enzymatic extraction) and 
incubated in an orbital shaker (Comecta; Spain) at 30 °C, 
250 rpm for 2 h. After incubation, the obtained suspension 
was subjected to further treatments of ultrasonication or cell 
homogenization, as listed below.

2.2.2  Ultrasonication

Sample ultrasonication was carried out using an ultrasound 
probe (Sonics vibracell, USA) with a treatment time of 2 
min in cycles of 5-s pulse and 15-s resting time. These con-
ditions were chosen after an optimization of ultrasonication 

conditions determined by chlorophyll extraction yield. Dur-
ing the treatment, an ice bath was used to prevent sample 
overheating and degradation that can normally occur in this 
process [37].

2.2.3  Cell homogenization

Cell homogenization was carried out using a Rotor Stator 
disperser homogenizer (Turrax-type homogenizer, Ato-
mixmill, Germany) for 30 s.

2.2.4  Enzymatic treatment

Sample preparation for enzymatic treatment was similar to 
the aqueous process, except that water was replaced by an 
adequate buffer. For samples treated with cellulase mixture 
(i), sample hydrolysis was carried out using 0.1M citrate 
buffer (pH 5.0). A  Cellic® CTec2 (Novozymes, Denmark) 
enzyme cocktail (199 FPU/ml) was used in a ratio of 0.5 
mg/g biomass, and samples were incubated at 50°C and 250 
rpm for 16 h.

For samples tested with alcalase (ii), the treatment was 
carried out using 0.1 M phosphate buffer (pH 8.0). Alcalase 
2.4L (Sigma-Aldrich, Germany) was used in a ratio of 0.5 
mg/g biomass, and samples were incubated at 60°C and 150 
rpm for 16 h. These enzymatic processes were tested both 
before (for C. vulgaris) and after physical treatment (for C. 
vulgaris and S. obliquus).

2.2.5  Alkaline pre‑treatment

The samples that were treated as above described were 
subjected to chemical protein extraction. For this, sodium 
hydroxide (2 M) was added until pH 12 was reached. Sam-
ples were then incubated in similar conditions as described 
in Section 2.2.1, except that temperature was 40°C.

2.2.6  Pre‑treated biomass separation and protein 
precipitation

Pre-treated samples were centrifuged (Ortoalresa digicen 
21 R, Spain) at 5300 g, and 15°C for 10 min to separate 
the pre-treated biomass biomass pellet from the supernatant. 
The supernatant was treated with an HCl 0.1 M solution to 
decrease pH to 2.5. The protein precipitate obtained was sep-
arated by centrifugation, in the same conditions as described 
above. The biomass pellets and protein precipitates were 
freeze-dried for further analysis.

2.3  Analytical methods

Throughout the work, for all experiments, deviations were 
typically lower than 5%.

Table 1  Physical and chemical composition of the brewery effluent 
used for the growth of Scenedesmus obliquus (adapted from [39])

COD chemical oxygen demand

Parameter

Chemical pH 7.13
Total solids (mg/L) 2690
Ash (mg/L) 1760
Total Kjeldahl nitrogen (mg/L) 5.6
COD (mg/L) 5376
Total oligosaccharides (mg/L) 11.40
Glucose (mg/L) 22.07

Elemental composition 
of dry solids

C (% dry weight) 11.83
H (% dry weight) 0.85
N (% dry weight) <0.3
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2.3.1  Quantification of extractives

Extractives content of microalgae (C. vulgaris and S. 
obliquus) was determined by sequential solvent extraction 
in Soxhlet using dichloromethane, ethanol, and water, using 
a modified method based on TAPPI-T204 cm-97 [40] and 
NREL/TP-510-42619 protocols for lignocellulosic biomass 
[41]. For this determination, 2 g of sample was weighted 
into extraction cartridges, inserted into a 125-mL Soxhlet 
apparatus, and extracted with 190 mL of solvent. The extrac-
tion times were 6 h for dichloromethane and 18 h for both 
ethanol and water. Extractives solubilized by each solvent 
were calculated by solvent evaporation in relation to the total 
dry mass.

2.3.2  Moisture and ash content

The moisture content was determined by oven-drying at 
105°C to constant weight and the ash content was deter-
mined by incineration at 550°C for 16 h using NREL/
TP-510-42622 protocol [42].

2.3.3  Protein quantification

Nitrogen content of microalgae biomass and of both super-
natant and pellet obtained after protein extraction was deter-
mined using the Kjeldahl method [43] and a semiautomatic 
protein analyzer (Tecator, Sweden). Protein content was cal-
culated using a conversion factor of N × 4.78, as indicated 
for algae [44].

2.3.4  Carbohydrate analysis

Extracted and non-extracted biomass samples were sub-
jected to quantitative acid hydrolysis using 72% (w/w) 
 H2SO4 followed by hydrolysis with 4% (w/w)  H2SO4 at 
121°C in an autoclave for 1 h, according to NREL protocol 
for algae [45]. The acid-insoluble residue was determined by 
filtration using 1.22 μm glass fiber filters (VWR, USA), after 
correction for ash (incineration at 550°C for 16 h).

The monosaccharides in the hydrolysis liquor (glucose, 
mannose, xylose, galactose, and arabinose) were analyzed 
in an HPLC system (Agilent 1100 Series, Waldbronn, Ger-
many), equipped with a refractive index (RI) detector and a 
diode array detector (DAD). An Aminex HPX-87P column 
(Bio-Rad, Hercules, USA) in combination with a cation 
 Pb2+-guard column (Bio-Rad) was used. The column tem-
perature was 80°C, and water was used as eluent at a flow 
rate of 0.6 mL/min [46]. Samples were previously neutral-
ized, when needed, using barium hydroxide or a combina-
tion of Amberlite® MB-20 resin (Sigma-Aldrich, USA) and 
calcium carbonate [39]. All samples were filtered through 
0.22 nylon membrane filters (VWR, USA) before HPLC 

analysis. The percentage of polymeric sugars was calculated 
according to the methodology described in [39].

Sugars’ solubilization was calculated based on the com-
position of the residual solid obtained after the protein 
extraction treatments, according to the equation:

where SI corresponds to the biomass initial sugars, Ssol to the 
sugars in treated solids, and SY to the solid yield obtained 
with the treatment.

3  Results and discussion

3.1  Biomass composition

Two microalgae were used to evaluate the effects of different 
treatments on the protein and carbohydrate fractions of the 
biomass. Chlorella vulgaris was used as benchmarking due 
to its commercial relevance and availability, and for being a 
widely studied species. Therefore, it was used as a model in 
a more extensive set of test conditions, allowing screening 
to provide optimization to be further applied to Scenedesmus 
obliquus.

Table 2 shows the chemical composition of the micro-
algae used in this study. The protein content found on C. 
vulgaris is high, similar to those previously reported for this 
species [34, 47, 48], and in agreement with the commercial 
analysis certificate (provided by Allmicroalgae). The protein 
content found is only slightly lower than that of other species 
like the marine microalgae Dunaliella salina (57%) and the 
cyanobacteria Spirulina platensis (55.8%) [38, 48].

The high protein content of C. vulgaris suggests that this 
species is a highly viable source of this nutrient that can 
be potentially fractionated and further upgraded. Therefore, 
it is a suitable biomass for an extended battery of protein 
extraction tests.

S. obliquus protein content was 25.4%, a lower value than 
that previously reported for this [38] and other microalgal 
genera, e.g., Chlorella, Dunalliella, and Porphyridium [14, 
21, 34, 48]. This depends on the microalgae species but can 
also be attributed to the low nitrogen content of the cul-
ture medium [49]. In contrast to C. vulgaris, which has a 
quite low sugar content (6.9%), S. obliquus contains a much 
higher sugar content (16.0%), making it an interesting source 
of both protein and sugars.

The lipid fraction as given by the dichloromethane 
extractives [50, 51] was 2.8% and 5.3% for C. vulgaris and 
S. obliquus, respectively. For protein production and to 
facilitate downstream purification, this lipid content could 
be lowered with a small nitrogen supplementation, since 

(1)Solubilized Sugars =
SI −

(

SY × Ssol

)

Ssol × 100
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nitrogen-limited environments boosted the production and 
accumulation of lipids in other microalgal species [15].

Although ash content is not often reported for micro-
algae, the values found for both biomasses were slightly 
higher than the desired values. However, the ash content of 
S. obliquus was obtained after washing with distilled water 
during the harvest process which led to a 10% reduction in 
ash content. This value could be further lowered by using 
additional washing steps or by the use of acid buffer solu-
tions (around pH 4), such as citrate buffer.

3.2  Protein extraction

Different fractionation methods mainly targeted for protein 
extraction including ultrasound, homogenization (disper-
sion), alkali, and enzymatic (cellulase and alcalase) treat-
ments were used to break cell walls and release protein. 
Some combinations of these treatments were also tested to 
evaluate their effect on protein extraction.

Figure 1 shows the effect of the extraction process or 
combination of processes on the protein extraction yield 
from C. vulgaris, under aqueous conditions only (panel 
A), and in aqueous conditions followed by alkali treatment 
(panel B). Data are shown as the percentage of protein in 
relation to the initial biomass protein obtained in the pre-
cipitate and in the corresponding liquid fraction.

Overall, alkaline-assisted treatments had a better perfor-
mance on protein extraction, as protein recovery yield can 
be enhanced in alkaline conditions [47].

In aqueous conditions (panel A), the treatments were 
compared with an aqueous control. It has been reported 
that in microalgae, a significant fraction of the protein can 
be found free inside the cell walls [14]. Moreover, it has 
been documented that water can be an excellent solvent for 
protein extraction when compared with other solvents such 
as ethanol and methanol [23, 52], which can cause protein 
denaturation [53], and facilitate its downstream processing. 
Therefore, the aqueous treatment only (control) can be a 
good benchmark for comparing with other treatments. It 
amounted to 34%, slightly higher than the water-extract-
able fraction determined in the chemical characterization 
(Table 2). The extraction yield above this value suggests 
the impact of each treatment on cell disruption and in the 
desegregation of protein from the cell structure and other 
macromolecules, making the protein available for recovery.

This protein out-diffusion from the cells by aqueous 
extraction was higher than that previously reported for this 
microalga [34]. This difference could be attributed to cell 
fragility derived from the manufacturing process, since 
the sample was from an industrial source, and commonly 
employed processes like freeze-drying have been reported to 
have some positive effect on protein extraction [54].

Overall, when comparing the aqueous treatments, only 
5 of the assays had yields close to the control, with a max-
imum increase of 15%. All the others amounted to yield 
increases ranging from 34 to 52%. Regarding the physical 
non-combined treatments, the turrax-type homogenizer 
yielded the lowest protein recovery, only 10% higher than 
the aqueous control. This physical method is based on the 

Table 2  Chemical 
characterization of the 
microalgae Chlorella vulgaris 
and Scenedesmus obliquus used 
in this work

ND not detected
*From which, 0.74% for C. vulgaris and 1.32% for S. obliquus correspond to starch
**Determined in water extractives

Biomass component (g/100 g dry weight) C. vulgaris
(this work)

S. 
obliquus
(adapted 
from 
[39])

Protein 44.73 25.40
Carbohydrates Glucose* 2.13 8.69

Xylose ND 1.79
Arabinose 0.74 0.71
Galactose 2.97 3.57
Mannose 1.05 1.55
Total sugars 6.88 16.30

Extractives Dichloromethane 2.79 5.33
Ethanol 8.61 11.75
Water 27.74 17.45

Protein** 12.53 8.05
Carbohydrates** 2.29 5.50

Ash 11.36 15.78
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rotor-stator principle and is commonly used in disrupting 
microalgae for lipid extraction [55] or carotenoids [56]. In 
contrast, the application of ultrasound treatment resulted 
in one of the highest aqueous protein recoveries, with 71% 
of total protein. This process does not rely on mechanical 
aspects but on the application of ultrasonic waves that causes 
cavitation of the cell walls. As such, it can easily affect a 
wider number of cells and effectively disrupt cell walls and 
cell membranes, causing the release of intracellular compo-
nents [57]. This method has been reported as effective for 
cell disruption and protein recovery [58].

Enzymatic treatments are highly dependent on the com-
position and complexity of the cell wall [59]. Therefore, 
two different enzyme cocktails were tested, with cellulase 
affecting cell integrity by breaking down cellulose, and alca-
lase disrupting by targeting the cell wall proteins. Compared 
to cellulase, alcalase was much more effective, extracting 
80% of the initial protein, mostly in the non-acid precipi-
table form. Furthermore, due to the proteolytic capabilities 
of alcalase, these will most likely be in peptide form [59]. 
These peptides can have interesting high-value applications 
as protein supplements and in nutraceutical applications 
[59], making this process not only an effective method for 
protein extraction but also for simultaneous protein process-
ing. On the other hand, if the functional properties of the 
protein are important for its further application, this method 
is not adequate [59]. The use of cellulase resulted in only 
15% higher extraction than the aqueous control. This can 
be explained by the presence of carbohydrate polymers 
like algeanan, which provide cell wall stability and protec-
tion [25], making them more resilient against non-specific 
enzymes [60].

Several combinations of these treatments were also 
tested. In cellulase-assisted treatments, the protein yields 
obtained were quite similar compared to their non-enzy-
matic counterparts. In alcalase-assisted treatments, the 
enzyme impact was much higher, leading to an increase of 
11–15% in ultrasound treatments and 27–35% in homog-
enizer treatments. It has been suggested that combining 
ultrasound with other treatments makes a strong boost in 
protein extraction for some microalgal species [61]. How-
ever, the boosting effect in ultrasound-based treatments 
was low, suggesting that adding enzymes to the ultrasound 
treatment might not be cost-effective. This is even more 
pronounced when comparing the ultrasound combined 
with the pure alcalase treatment, where the yield increase 
was just 2–6%.

The application of the enzyme cocktails either before or 
after the physical treatment was also tested. It only had a 
slight boosting effect (5%) when the enzyme was applied 
before the physical treatment. Overall, the highest recovery 
yield was 86 g/100 g total protein when using alcalase fol-
lowed by ultrasound.

After all the treatments under aqueous conditions, alka-
line conditions were also tested (Fig. 1(B)). By itself, the 
alkaline extraction resulted in a 24% boosting effect, when 
compared to the aqueous control, with a protein extraction of 
58.5% of the total protein. This was higher than previously 
reported for this microalga [34]. In the case of alkali treat-
ments, six were similar to the alkali control, with a maxi-
mum yield increase of 18%. All the other conditions yielded 
a 23 to 35% higher protein increase. Although the alkaline 
treatment only led to better results than the aqueous treat-
ments using only homogenizer and cellulase, it still did not 

Fig. 1  Protein extraction yield 
in the precipitate and in solution 
obtained with all the different 
process conditions applied to 
Chlorella vulgaris 
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outperform the use of alcalase, which was suggested as a 
cheaper method [62].

When the alkali process is applied after other treatments, 
the protein yield was increased in all of the conditions, 
between 12 and 30%, and more notorious for the least effec-
tive aqueous treatments (cellulase and homogenizer). This 
boosting effect was milder in the other treatments. Overall, 
the application of alkaline extraction decreased the differ-
ence between the extraction yields obtained (59% in the 
lowest and 92% in the highest), compared with the yields 
verified in the aqueous extractions (between 34% and 86%). 
Overall, the highest protein recovery was obtained for the 
ultrasound treatments using alcalase, followed by an alkali 
treatment, by which a recovery of 93 g/100 g total protein 
was obtained. These results are in agreement with previous 
findings stating that this chemical treatment is effective for 
protein recovery [34, 54].

Most of the protein recovered was obtained in solubilized 
form. The highest yield of protein recovered as precipitate 
was 33.3% of the total protein obtained for the aqueous 
ultrasound treatment, higher than the 29% obtained with its 
alkali counterpart. The applied acid precipitation method 
was selected as it is a cheap and simple method for protein 
recovery [20], although it was not very effective in this case.

A better option for protein recovery could be membrane 
separation avoiding the precipitation step, which would 
increase the protein extract purity [63]. Nevertheless, acid 
precipitation has several advantages as compared to other 
methods such as salts or ethanol, as these could bring dif-
ficulties in the downstream process or contamination by 
undesired compounds in the precipitate [64]. The purity of 
the precipitates was also determined (% of protein in the 
total precipitate) and found to be up to 60% for most condi-
tions. On average, the purities were 10% higher on aqueous 
treatments than on their alkali counterparts. These values 
indicate protein fragmentation into small peptides, inhibiting 

their precipitation by acid. Also, the isoelectric point of the 
protein from this particular case can differ from the pH 2.5 
applied, which has been suggested for similar species [65].

The most effective treatments for protein extraction 
from C. vulgaris were then applied to S. obliquus. These 
included both enzymatic and ultrasound treatments. The 
results obtained are shown in Fig.  2. As alkaline treat-
ments in C. vulgaris had a masking effect on the impact of 
the physical treatments when used in combinations, only 
ultrasound was tested for comparison. The control aqueous 
extraction yielded 11% of total protein extraction, a lower 
value than that obtained for C. vulgaris. This might indicate 
a higher resistance of this microalga, not reaching the 32% 
water-extractable protein found in the chemical characteri-
zation (Table 2). This could be attributed to the duration 
of the treatment (2 h) when compared to the 16 h of water 
extraction for chemical characterization. Alkaline extraction 
yielded an increase of 30% in relation to the aqueous coun-
terpart, higher than for C. vulgaris but still only reaching 
42% of total protein recovery. Ultrasound treatment provided 
a yield of 38.6 g/100 g total protein, with the precipitated 
fraction representing 58% of the total extracted protein, 
the highest value found for all treatments. However, this 
result was nearly half the reported in other studies [37], for 
protein-richer Scenedesmus strains. The alkaline version of 
this treatment provided a very mild yield increase of 7%, 
but the precipitated fraction dropped significantly to 22.6%, 
indicating a severe impact of the alkaline conditions on the 
structure of protein and its acid precipitation capabilities.

When using enzymes, the combination of ultrasound 
treatment and cellulase is virtually ineffective, providing 
a similar extraction yield as the ultrasound treatment only. 
This does not happen for alcalase, which is highly effective 
both by itself and in combination with ultrasound, reaching 
yields of 78% and 82%, respectively. These results suggest 
that contrary to C. vulgaris, S. obliquus is more resistant to 

Fig. 2  Protein extraction yield 
in the precipitate and in solution 
obtained for all the different 
process conditions applied to 
Scenedesmus obliquus 
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physical treatments, but it is highly vulnerable to proteolytic 
enzymes which can be a powerful tool in the fractionation 
of this biomass.

3.3  Carbohydrate extraction

The effect of protein extraction processes on carbohydrate 
fraction is generally neglected in studies dealing with protein 
extraction from algal biomass [29, 34]. In this work, the 
effect of the different protein extraction processes on sugar 
solubilization was also evaluated. Figure 3 shows the data 
obtained regarding the potential total sugar extraction and 
the corresponding monomeric sugar composition is given in 
Figs. 4 and 5. Aqueous control resulted in a sugar extraction 
of 45% of the total algae carbohydrates, 12% more than the 
33% total water-soluble sugars measured by Soxhlet extrac-
tion, in the biomass characterization (Table 2). In general, 

aqueous treatments had a lower effect on sugar solubiliza-
tion than treatments followed by alkaline conditions. These 
showed a very pronounced effect, with a minimum sugar 
solubilization of 59.8% for alkali treatment only, and a maxi-
mum of 91.4% for the ultrasound and alcalase treatment with 
the same alkaline step. This was expected as alkaline treat-
ments are known to have an important impact on hemicel-
lulose solubilization in lignocellulosic materials [66].

The sugar yields obtained for alkali and aqueous extrac-
tions exceed both hydrothermal and alkaline pre-treatment 
results previously reported for this microalgae species [67]. 
Also, the sugar solubilization obtained in these mild con-
ditions was similar [68] or much higher [69] than those 
reported for dilute acid hydrolysis of macroalgae in much 
more severe conditions. In microalgae, carbohydrates can be 
found mainly in starch grains, as glycolipids in intracellular 
membranes, and in cell walls as part of the structural matrix 

Fig. 3  Total sugar solubilization 
yield (in relation to the initial 
carbohydrates in the algae) 
obtained for all the protein 
extraction processes applied to 
Chlorella vulgaris 
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Fig. 4  Individual solubiliza-
tion yield obtained for different 
sugars for all aqueous process 
conditions applied to Chlorella 
vulgaris 
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[70]. As both species had very low starch content (Table 2), 
most of the solubilized carbohydrates must derive from cell 
wall structural components. Therefore, it shows that treat-
ments like ultrasound, rarely used in more conventional 
lignocellulosic biomasses [71], can be extremely effective 
for sugar solubilization in microalgae, opening up the pos-
sibility for alternative treatments to provide an innovative 
valorization of microalgae sugars.

Treatments using cellulase did not significantly increase 
sugar solubilization. This is likely due to the great variability 
of polysaccharides that compose the microalgae cell walls 
[72] and the other long-chain protective polymers [60] that 
may not be susceptible to enzymes that specifically target 
the glycosidic linkages in cellulose.

Figures 4 and 5 show the impact of the tested treatments 
on individual sugar removal. Glucose removal was above 
40% of the total glucose in all treatments, both alkali and 
aqueous, although alkali treatments showed a higher impact 
on other sugars. Mannose solubilization could reach 100% 

removal in the majority of treatments that were followed by 
the alkaline step. The same solubilization boosting effect 
was verified for galactose, but to a lesser extent. Arabinose 
solubilization was also higher in alkali treatments.

Figure 6 illustrates the effects of the tested treatments 
on the sugar fraction of S. obliquus. All treatments strongly 
impacted the sugar fraction of S. obliquus, with the lowest 
solubilization of 56.6% obtained for the aqueous control. 
This contrasts with previous reports where the recovered 
carbohydrates were significantly less [67]. Solubilization 
exceeded 75% for all the other treatments and achieved 
higher or similar recovery yields for sugar and protein. As 
verified on C. vulgaris, these types of processes showed low 
selectivity for extraction of S. obliquus protein. The impact 
of the extraction methods on the sugar fraction is more sig-
nificant for S. obliquus since it has a higher amount of sugar 
than C. vulgaris. Regarding the individual sugars (Fig. 7), 
the results obtained were quite similar to those found for C. 
vulgaris, with mannose being also the most affected sugar.

Fig. 5  Individual solubilization 
yield obtained for different sug-
ars for all process conditions, 
followed by alkaline treatment, 
applied to Chlorella vulgaris 
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carbohydrates in the algae) 
obtained for all the protein 
extraction processes applied to 
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Overall, all the treatments tested for protein extraction 
also had an important impact on the sugar fraction, mak-
ing these treatments a viable tool for further carbohydrate 
valorization. Their low selectivity towards the removal of 
only the protein fraction of the microalgae is a limitation 
that can be intrinsic to algae biomass. However, they can 
be a cheap, mild, and effective alternative for biomass frac-
tionation since they require low temperatures (between 30°C 
and 60°C), and can prevent the protein and sugar degrada-
tion that can occur in other hydrothermal pre-treatments at 
higher temperatures [73]. Therefore, these processes can be 
effective for microalgae biomass fractionation if an efficient 
process for protein recovery, e.g., membrane separation, can 
be implemented.

4  Conclusions

Overall, all the treatments applied to C. vulgaris and S. 
obliquus were effective for the extraction of both protein 
and carbohydrates. Aqueous ultrasound treatment seems to 
be the most effective among the physical methods tested. 
Furthermore, all treatments resulted in higher extraction 
yields than those of the control, indicating their effective-
ness in disrupting cell wall integrity and enhancing protein 
and sugar availability for solubilization and extraction.

Regarding the enzymatic treatments, only alcalase 
produced high protein extraction yields while also result-
ing in high sugar solubilizations, indicating that it can 
be viable, although non-selective alternative to physical 
methods. The aqueous ultrasound treatment was one of 
the best for protein extraction of both microalgae, with a 
lower impact on the carbohydrates, which prevents some 
potential downstream issues when compared to alkaline 

treatments, also being a simpler and cheaper alternative 
to enzymatic treatments.

These types of processes may be applied to microal-
gae for the production of low-purification supplements 
of protein or carbohydrates that can be used in food and 
feed applications, or as a complete growth medium or sup-
plement for fermentation purposes for further valoriza-
tion. Furthermore, the residual solid fractions obtained 
after extractions still present a relevant potential for fur-
ther applications, e.g., anaerobic co-digestion to produce 
biogas or as fertilizer.
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