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Abstract
The search for active inducers against diseases in the formula of therapeutic nutrients has become a necessity for many 
researchers. The study’s chief purpose was to make agronomic farming simpler by applying newly created therapeutic 
nutrients. The novelty of this research is the applied of algal extracts in adding to minerals as therapeutic nutrion. Calcium 
(Maxifos Ca), Ascophyllum nodosum (Greencal), and Arthrospira platensis (A. platensis), were tested for induction pepper 
plant resistance against Fusarium wilt. The disease index (DI), morphological growth, photosynthetic pigments, free pro-
line, total phenol, hydrogen peroxide  (H2O2), malondialdehyde (MDA), and antioxidant enzymes as reactions to the induc-
tion of protection in challenged tested plants were measured. Results revealed that the use of entirely different treatments 
significantly minimized the danger of Fusarium wilt. Treatment of infected plants with Maxifos Ca was the best treatment, 
as it reduced the DI to 25% and thus reduced symptoms and improved the percentage of plant protection from the disease 
by 69.6%. Surprisingly, it was widely assumed that Greencal was the greatest treatment for restoring vegetative growth, 
followed by Maxifos Ca and an algal extract, A. platensis. The application of Greencal, followed by Maxifos Ca, and then 
A. platensis significantly increased the expression of all metabolic resistance indices (phenols, polyphenol oxidase, and 
peroxidase). The best treatments for reducing the signs of stress represented in (MDA and  H2O2) were Maxifos Ca and then 
Greencal. According to the findings the use of Maxifos Ca, Greencal, and A. platensis as alternate therapeutic nutrients of 
eco-destructive chemically synthesized fungicides appears to be a significant methodology for reducing the harmful effects 
of Fusarium wilt on pepper plants.
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1 Introduction

The plant has the ability to attack r isks and chal-
lenges, and its ability to resist these risks depends 
entirely on its nutritional status [1]. The more plant 
diseases, the greater the consumption of pesticides 
to eliminate pathogens and protect the agricultural 

economy [2–4]. Capsicum annuum L. is a vital crop 
cultivated widely all over the world [5–7]. Fusar-
ium  fungus is considered one of the most danger-
ous pathogens of the pepper plant [8]. It is present 
in all types of agricultural soils, whether organic or 
conventional [9]. Fungi are considered one of the 
most dangerous pathogens of the pepper plant, and t 
is present in all types of agricultural soils, whether 
organic or inorganic. Despite the use of chemically 
synthesized fungicides being one of the most effec-
tive means of controlling fungal plant diseases, it 
is considered very harmful to the environment and 
climate [10, 11]. Indiscriminate and excessive use 
of chemical pesticides adversely affects soil vitality, 
plant health, and human health [9]. Natural induc-
ers can stimulate the plant to defend against patho-
gens and increase productivity without affecting the 
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vitality and fertility of the soil and at the same time 
therapeutic nutrients [12, 13]. Therapeutic nutrition 
is a diet that determines giving the plant nutrients 
and fertilizers that activate and stimulate physiologi-
cal processes and help improve the plant’s ability to 
face stress and r isks and reduce some diseases or 
side effects associated with those diseases [2, 14–16]. 
It is scientifically recognized that algae are one of 
the most powerful growth-stimulating organisms 
that push the plant to produce effective substances 
capable of raising the efficiency of physiological 
immunity from the formation of hormones, proteins, 
and phenolic substances and activating the work of 
antioxidant enzymes [16–18]. Macroalgae extract 
produces substances that work to block the progress 
of the pathogen or limit its progression and endur-
ance of stress conditions and reduction of oxidative 
blast in cells [19, 20]. Algae produce compounds that 
inhibit the activity of plant pathogens, such as phe-
nolics, and their oxidized products, which are con-
sidered more toxic to pathogens [21, 22], it releases 
phenols that are toxic to phyto pathogens [23]. Thus 
induced resistance is that resistance that is activated 
by biological or abiotic factors, which leads to the 
presence of some natural and chemical obstacles in 
the activated plant, which is a change in the plant’s 
physiology resulting from the acquired traits [24, 25]. 
Resistance inducers affect the host plant at levels of 
morphology, anatomy, or the creation of definite 
chemicals that restrict the phytopathogens or mini-
mize the disease severity [26, 27]. Marine algae are 
considered an actual bio-fungicide for phytopatho-
gens through algal bioactive metabolites such as oleic 
acid, fatty acid esters, palmityl, and myristic alcohol 
[28, 29]. A. platensis extract contains phenolics that 
resulted in their antifungal activity [30, 31]. Calcium 
is an important mineral that encourages plant expan-
sion through a variety of physiological routes [32], 
and plant tissues as cell wall breadth, and rebuilding 
[33]. The most important characteristic of the use of 
A. nodosum extract as therapeutic nutrients in plants 
is that it contains a substance: alginic acid, a natural 
chelating substance that chelates Fe, Zn, Mn, Mg, and 
Ca and activates the formation of polysaccharides and 
activates the formation of natural growth regulators, 
polyamine, and natural antibiotics within the plant 
[34]. Recently, phosphites and phosphonites have 
taken over the market as phytopathogens fungicides, 
providing a powerful preventive impact by stimulat-
ing defense mechanisms [35]. Therefore, the major 
goal of this study was to explore the activities of 
Greencal, Maxifos ca, and A. platensis to reduce the 
destructive effect of F. oxysporum on pepper as well 

as enhance plant growth by improving physiological 
immune responses.

2  Materials and methods

2.1  Source of pathogen F. oxysporum

The pathogen was received from Regional Center for 
Mycology et al.-Azhar University (RCMB) and confirmed 
according to Hibar et al. [36].

2.2  Source of inducers

Maxifos Ca® (calcium phosphite) and Greencal® 
(Ascophyllum nodosum extract) as a bio-stimulant 
obtained by AL-SALAM International for Develop-
ment and Agriculture Investment, Egypt from MAFA-
VEGETAL ECOBIOLOGY-Spain. Arthrospira plat-
ensis HSSASE5 KT277788 obtained from the botany 
and microbiology department, science faculty, Cairo 
University.

2.3  Pot experimental

The experiment was conducted at the experimental farm 
of ALSALAM International for Development and Agri-
culture Investment, Egypt.

Three-week-old pepper seedlings were cultivated 
in 40 × 40 cm pots, with every treatment having six 
seedlings. At a temperature of 22  °C and a relative 
humidity of 80%, the pots contained 7 kg of 1:3 sandy 
clay.  The pathogen. F. oxysporum  (107 spore / mL) 
was putted into pots. Maxifos Ca®, Greencal® and 
A. platensis (3 cm/L) spraying on the pepper leaves 
three times. Three replicates of each treatment were 
arranged in a completely randomized: T1-control 
healthy, T2-control infected, T3-healthy and Maxi-
fos Ca®, T4-health and Greencal®, T5-healthy and 
A. platensis, T6-infected pepper and Maxifos Ca®, 
T7-infected pepper, and Greencal® and T8-infected 
pepper and A. platensis).

2.4  Disease index

DI and protection were evaluated according to Attia 
et al. [37], with minor variations. The percent disease 
index (PDI) was firm using this equation: PDI = (1n
1 + 2n2 + 3n3 + 4n4)100/4nt, where n1–n4 represents 
the number of plants in each class and nt symbol-
izes the total number of plants studied. And the fol-
lowing equation was used to calculate % Protection. 
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% Protection = A − B/A 100%, where A is the PDI in 
infected control plants and B is the PDI in infected 
plants treated with different treatments.

2.5  Metabolic indicators for pepper resistance

Of The determination of photosynthetic pigments was 
accomplished by the technique of Abdelaziz et al. [38] with 
minor alternations, the mount of chlorophyll a (Chl a), chlo-
rophyll b (Chl b) as well as carotenoids in fresh leaves. 
pigments were extracted by dissolving (0.5 g fresh leaves) 
in 50 mL of 80% acetone, then filtered with filter paper 
Whatman no 1 then the obtained color was assayed spectro-
photometrically at 665, 649, and 470 nm. These equations 
were used to caculate the pigments; mg chlorophyll (a)/g 
fresh leaves = 11.63(A665) − 2.39(A649), mg chlorophyll 
(b)/g fresh leaves = 20.11(A649) − 5.18(A665), mg chloro-
phyll (a + b)/g fresh leaves = 6.45 (A665) + 17.72(A649), 
and Carotenoids = 1000 × O.D470 − 1.82  Ca—85.02 
 Cb/198 = mg/g fresh weight. “A” means the optical density.

A procedure by Umbreit et al. [39] was used for testing the 
total soluble sugars in the pepper-dried tissues, where 0.5 g 
dried plant shoots was mixed with 5 mL of 30% trichloro-
acetic acid and 2.5 mL of 2% phenol then filtered, then 1 mL 
of the mixture filtrate was treated with 2 mL of anthrone rea-
gent (2 g anthrone/L of 95%  H2SO4) then readied at 620 nm.

Soluble proteins were determined by the method 
Lowry et  al. [40]. One gram of the dried tissues was 
extracted by mixing with 5 mL of 2% phenol water and 
10 mL of distilled water was added; the solution was 
shaken for 12 h, filtered, and recompleted volume to 
50 mL with DW; then One mL of this filtrate was com-
bined with 5 mL of solution (50 mL of 2%  Na2CO3 pre-
pared in 0.1N NaOH and 1 mL of 0.5%  CuSO4 prepared 
in 1% potassium sodium tartrate) and 0.5 mL of Folin’s 
reagent (1:3 v/v). After 0.5 h, optical density was deter-
mined at 750 nm.

Free proline was estimated by the method of Bates et al. 
[41], and 0.5 g dried shoots was extracted by 10 mL of sul-
fosalicylic acid (3%), then 2 mL of the extract was mixed 
with 2 mL of ninhydrin acid and 2 mL of glacial acetic 
acid for an hour under boiling conditions, then stop the 
reaction by ice. Finally, 4 mL of toluene was added to the 
mixture and assayed at 520 nm.

Procedures by Dai et al. [42] were applied to measure 
the plant phenolics. One gram of dried pepper tissues 
was extracted in 10 mL of ethanol 80% for 1 day. Then 
re-extracted using 10 mL of ethanol 80%. The filtrate was 
then refilled to 50 mL with 80% ethanol, and then 0.5 mL 
of the filtrate was mixed well with 0.5 mL of Folin’s rea-
gent with shaken for 3 min, then 3 mL of DW and 1 mL 
of saturated sodium carbonate solution was added and 

thoroughly mixed then detected at 725 nm. The proce-
dure of [43] was used to assay the MDA content in fresh 
plant leaves. Fresh pepper leaves also were established 
for hydrogen peroxide  H2O2 content [44]. Embraced 
method of Srivastava [45] was used to determine POD. 
The activity of PPO was stately by the method of Hashem 
et al. [8].

2.6  Statistical investigates

A one-way analysis of variance (ANOVA) was applied 
to the resulting data. LSD by CoStat (CoHort, Monterey, 
CA, USA) was applied to demonstrate statistically relevant 
variances at p < 0.05 [46].

3  Results

3.1  Disease assessment

The data in Table 1 and Fig. 1 are shown that F. oxysporum 
infection produced a great percent disease index (PDI) of 
82.5%. Reducing the seriousness of the disease is the first 
mark of the efficacy of the tested Maxifos Ca, Greencal, and 
A. platensis extract in stimulating plant resistance. The data 
exhibited that treatment with the Maxifos Ca and Greencal 
recorded high protection by 69.6% and 63.63% and the low-
est PDI to 25% and 30% and came next A. platensis extract 
PDI by 37.2%.

3.2  Growth markers

The presented results in (Fig. 2) showed that Fusarium wilt 
damaged all pepper growth traits in contrast with healthy 
control. Regarding the effect of Greencal, Maxifos Ca, 
and A. platensis extract, it was detected that healthy plants 
treated with Greencal and Maxifos Ca respectively showed 
highly promising recovery. When it came to the effects of the 
treatments on the infected plants, it was noticed that Green-
Cal had the greatest efficacy for increasing plant growth 
(shoot and root lengths), followed by Maxifos Ca, and then 
algal extract A. platensis. On the other hand, Maxifos Ca 
induced the highest number of leaves, followed by Greencal 
and A. platensis.

3.3  Photosynthetic pigments

The data shown in Fig. 3 proved that Fusarium wilt resulted 
in a major shortage of chlorophyll pigments (a and b) as well 
as carotenoid content by 51.95%, 16.13%, and 60.62%. The 
results are obtainable for the recovery of photosynthetic pig-
ments due to employing all treatments. On the other hand, 
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it was established that using of Greencal was the greatest 
inducer to augment plants Chl a, b, and carotenoids of both 
healthy and F. oxysporum–infected plants. For more, it was 
found that all of the tested inducers caused an improvement 
in photosynthetic pigments.

3.4  Free proline and phenol content

The results in Fig.  4 indicated that the Fusarium wilt-
infected plants showed an increase in the free proline and 
phenol contents by 5.88% and 22.5%. On the other hand, 
the application of tested elicitors Maxifos Ca, Greencal and 
A. platensis extract enhanced the resistance of the plant by 
increasing free proline and phenol contents. Concerning the 
effect of tested elicitors on both (healthy and infected), it 
was established that all tested elicitors trigger an increase 
of free proline and phenol contents. Whereas the treatment 
of Greencal, Maxifos Ca, and A. platensis extract, respec-
tively, was more effective in increasing free proline as well 
as phenol contents.

3.5  H2O2 and MDA

Results in Fig. 5 obviously showed that Fusarium wilt dis-
ease resulted in a rise in  H2O2 and MDA. On the other hand, 
it was observed that Maxifos Ca, Greencal and A. platen-
sis significantly reduced the generation of  H2O2 and MDA. 
Accumulation of  H2O2 and MDA increased in Fusarium 
wilt-infected plants. Treatment of Fusarium wilt-infected 
plants with Maxifos Ca, Greencal, and A. platensis reduced 
the generation of  H2O2 and led to a declined MDA. The 
results shown that the greatest effective treatments for reduc-
ing  H2O2 and MDA were foliar spraying with Greencal.

3.6  Antioxidant enzymes activity

As shown in Fig. 6, significant rises in the activity of POD 
and PPO in infested pepper seedlings. Furthermore, all 
treatments promoted POD, PPO activities, and the great-
est rates for PPO were noticed due to the application of 
Greencal, Maxifos Ca, and followed by A. platensis respec-
tively. Application Greencal on health as well as infected 
plants was the best stimulator for POD and PPO antioxidant 
enzymes activity.

4  Discussion

Plants are exposed to many stress factors that become more 
severe with the increase in climate changes [47, 48]. Sev-
eral scientific studies dealt with the serious destructive of 
Fusarium vascular wilt disease on many crops and vegeta-
bles [49]. Scientists focused on reducing the risk of plant 
diseases by using biotic and abiotic inducers to stimulate 
plant physiological immunity and pathogen resistance [50]. 
Reducing disease symptoms and severity of infection is 
strong and clear evidence of resistance to disease. As shown 
in the results of this study, the decrease in symptoms and the 
severity of pathological infection were a result of the use of 
treatments Maxifos Ca, Greencal, and A. platensis extract, 
where Maxifos Ca and Greencal recorded high protection 
and lowest PDI, then came next A. platensis extract. These 
results can be explained by that green Maxifos Ca contain-
ing calcium phosphate, where calcium plays a major role in 
the formation of strong cell walls to prevent the penetration 
of fungus and the failure of the disease cycle, and phos-
phorus participates in many enzymatic reactions [51–53]. 

Table 1  Protection of Maxifos 
Ca, Greencal, and A. platensis 
against fusarial wilt

Treatments Disease indicators levels DI (disease 
index) (%)

Protection (%)

0 1 2 3 4

Control infected 0 0 2 3 5 82.5 0
Maxifos Ca 4 3 2 1 0 25 69.6
Greencal 3 3 3 1 0 30 63.63
A. platensis 3 3 2 2 0 37.5 54.5

Fig. 1  Symptoms of wilt 
disease A-untreated infected, 
B-infected treated with Green-
cal C-infected treated with A. 
platensis and D-infected treated 
with Maxifos Ca

A B C D
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Several mechanisms have been postulated to support fungal 
growth inhibition by calcium phosphate [54, 55]. The tox-
icity of phosphite to phytofungal was due to an increased 
level of inorganic polyphosphate, which is known to inhibit 
key phosphorylation reactions in phytopathogenic fungi 
[56, 57]. Also, calcium phosphite is involved in activating 
plant defense response against many fungal pathogens [58]. 
On the other hand, the treatment of Greencal had a strong 
effect on reducing the severity of Fusarium wilt symptoms 
due to the presence of A. nodosum extract. These results are 
supported by many studies [59–61], where they reported 
that A. nodosum has antifungal effects. Marin algae secrete 
certain substances that include some sugars, amino acids, 
organic acids, as well as pathogen-inhibiting substances [62, 
63]. Recently, scientific reports have proven that these vital 
compounds extracted from algae spread in the soil adjacent 
to plant roots or through leaves and are considered the most 
powerful biofertilizers [64–66]. Application of Greencal 
caused a significant improvement which the most effective 
treatment for recovering plant (shoot and root lengths) fol-
lowed by Maxifos Ca and came next algal extract A. platen-
sis, which indicates a strengthening of the plant’s structural 

immunity and a decrease in the destructive impacts of phy-
topathogens. Our results are similar to the heavily studies 
[4, 55]. It was detected that Fusarium wilt-infected plants 
pretreated with Greencal and A. platensis showed encour-
aging disease recovery. These previous results are similar 
to the study of [26]; they described that the application of 
marine algae enhanced plant vegetative growth by polysac-
charides creation. The use of A. nodosum to improve pepper 
growth has been suggested as a prospective management 
performance in plant yield enrichment [56]. These findings 
are in line with those reported by [34], who establish that 
treated plants with algal extract significantly enhanced their 
all morphological criteria. The rise in plant growth and crop 
with algae might chiefly be due to the release of plant nutri-
ents and the plant growth regulators [57]. The Ca and boron 
deficiency in plants caused alterations in growth, physio-
logical, biochemical, and yield attributes due to which fruit 
productivity gets reduced [67]. Fusarium wilt disease leads 
to a failure to capture light and carry out the photosynthesis 
process and imbalance in the formation of carbohydrates and 
proteins [68–70]. The results of this study showed an imbal-
ance and a severe deficiency in the content of chlorophyll 

Fig. 2  Effect of Maxifos Ca, 
Greencal, and A. platensis on 
growth markers. (Data represent 
mean ± SD, n = 3). T1-control 
healthy, T2-control infected, 
T3-healthy and Maxifos Ca, 
T4-health and Greencal, 
T5-healthy and A. platensis, 
T6-infected pepper and Maxifos 
Ca, T7-infected pepper and 
Greencal, and T8-infected pep-
per and A. platensis)
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and carotene pigments, and these results are consistent with 
many previous studies. It is worth mentioning in this study 
that the application of Maxifos Ca, Greencal, and A. plat-
ensis extract led to a significant improvement in the con-
tent of chlorophyll and carotene pigments. The present data 
reported that Greencal was the greatest effective treatment 
to enhance plants’ levels of Chl a, b, and carotenoids of both 
healthy and F. oxysporum–infected plants These results can 

be explained by the biological role of Greencal, which con-
tains A. nodosum extract in addition to calcium and boron 
elements that work to raise stress and stimulate plant immu-
nity [64]. The increase of proline avoids damage to the pho-
tosynthesis pigments by catching the free radicals that trig-
ger the destruction and failure of the photosynthesis process 
[71, 72]. Plants are forced to increase the level of proline and 
phenol after the occurrence of fungal infection to defend 

Fig. 3  Effect of Maxifos Ca, 
Greencal, and A. platensis on 
photosynthetic pigments. (Data 
represent mean ± SD, n = 3). 
T1-control healthy, T2-control 
infected, T3-healthy and Maxi-
fos Ca, T4-health and Greencal, 
T5-healthy and A. platensis, 
T6-infected pepper and Maxifos 
Ca, T7-infected pepper and 
Greencal and T8-infected pep-
per and A. platensis)

Fig. 4  Effect of Maxifos Ca, 
Greencal, and A. platensis on 
free proline and total phenol. 
(Data represent mean ± SD, 
n = 3). T1-control healthy, 
T2-control infected, T3-healthy 
and Maxifos Ca, T4-health and 
Greencal, T5-healthy and A. 
platensis, T6-infected pepper 
and Maxifos Ca, T7-infected 
pepper and Greencal and 
T8-infected pepper and A. 
platensis)
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against the risk of oxidative explosion and capture free radi-
cals [73, 74]. The results of this study showed that Greencal, 
Maxifos Ca, and A. platensis extract triggers an increase 
of free proline and phenol content that confirms the occur-
rence of high resistance against the Fusarium wilt disease 
in agreement with other heavily studies [72, 75]. Phenols 
demonstration an vital role in scrubbing and capturing free 
radicals, that resulted to minimize oxidative stress in pepper 
plants [76]. The accumulation of phenolics in pepper plants 
acts as an adaptive strategy against Fusarium vascular wilt 
disease [77, 78]. Oxidative stress caused by F. oxysporum 
led to severe interruption to plant cells and the proliferation 
of the contents of MDA and  H2O2 in the leaves of pepper 
plants. These results are in agreement with [79, 80]. Sup-
plementation of diseased plants with Maxifos Ca, Greencal, 
and A. platensis respectively reduced the generation of  H2O2 
thus resulting in a MDA declined. The results exposed that 
the most effective treatment in reducing  H2O2 and MDA was 
foliar spraying with Greencal all the way through accumula-
tive antioxidants that hunt reactive oxygen species and avoid 
plant membranes against oxidative stress [49].

5  Conclusion

In conclusion, Maxifos Ca, Greencal, and A. platensis 
caused a significant increase in all aspects of the pepper 
plant. Maxifos Ca and Greencal developed in recovering 
growing, chlorophyll contents, proline, phenolic com-
pounds, and antioxidant activity of pepper plant. A clear 
promotion in the resistance of F. oxysporum and promo-
tion cell metabolism, suggesting the growth suppres-
sion and regulation by Maxifos Ca®, Greencal®, and A. 
platensis. Accordingly, Maxifos Ca® and Greencal® are 
promising agents for potential in the agricultural appli-
cation and as a smart biological control against pepper 
Fusarium wilt. The current study recommends the use of 
Greencal® (a unique formulation of seaweed Ascophyl-
lum nodosum with calcium), Arthrospira platensis, and 
Maxifos Ca® (contains calcium in the form of phosphite, 
which increases plant resistance to biotic and abiotic 
stresses as well, increases vegetative growth and supports 
immune responses). Therefore, Greencal® and Maxifos 
Ca® consider therapeutic nutrients to improve immune 

Fig. 5  Effect of Maxifos Ca, 
Greencal, and A. platensis on 
 H2O2 and MDA. (Data represent 
mean ± SD, n = 3). T1-control 
healthy, T2-control infected, 
T3-healthy and Maxifos Ca, 
T4-health and Greencal, 
T5-healthy and A. platensis, 
T6-infected pepper and Maxifos 
Ca, T7-infected pepper and 
Greencal and T8-infected pep-
per and A. platensis)

Fig. 6  Effect of Maxifos Ca, 
Greencal, and A. platensis on 
POD and PPO. (Data represent 
mean ± SD, n = 3). T1-control 
healthy, T2-control infected, 
T3-healthy and Maxifos Ca, 
T4-health and Greencal, 
T5-healthy and A. platensis, 
T6-infected pepper and Maxifos 
Ca, T7-infected pepper and 
Greencal and T8-infected pep-
per and A. platensis)
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responses and enhance plant health against fungal wilt 
disease to reduce the use of chemical pesticides.
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