Skip to main content
Log in

Lignin as a UV blocking, antioxidant, and antimicrobial agent for food packaging applications

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The overwhelming use of non-biodegradable plastics derived from petroleum has resulted in serious environmental pollution and ecological concerns, which has spurred the development of biodegradable and renewable alternative materials. As the most abundant aromatic polymer with excellent biodegradability and biocompatibility, lignin possesses huge potential for the production of a variety of functional and sustainable materials that can serve as plastic substitutes. In recent years, lignin-derived biodegradable films have attracted a great deal of attention in both fundamental research and practical applications, and there have been several noteworthy advances in this sector. Here we review lignin as UV blocking, antioxidant, and antimicrobial agent for food packaging applications. The most recent advancements in the preparation and advanced applications of packaging film materials derived from lignin are reviewed here from a sustainability perspective. The structural and chemical characteristics of lignin are introduced, followed by an extraction and incorporating techniques in polymer matrix. Finally, the food packaging applications of lignin from wood and non-wood sources of lignin-derived biodegradable film materials are discussed, along with potential future routes for sustainable and environmentally friendly lignin-derived film materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. Aadil KR, Barapatre A, Jha H (2016) Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Bioresour Bioprocess 3(1):27. https://doi.org/10.1186/s40643-016-0103-y

    Article  Google Scholar 

  2. Abdelaziz OY, Clemmensen I, Meier S, Costa CAE, Rodrigues AE, Hulteberg CP, Riisager A (2022) On the oxidative valorization of lignin to high‐value chemicals: a critical review of opportunities and challenges. ChemSusChem:e202201232. https://doi.org/10.1002/cssc.202201232

  3. Abushammala H, Mao J (2020) A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium ionic liquids. Polymers 12(1):195. https://doi.org/10.3390/polym12010195

    Article  Google Scholar 

  4. Agustiany EA, RasyidurRidho M, Rahmi DNM, Madyaratri EW, Falah F, Lubis MAR, Solihat NN, Syamani FA, Karungamye P, Sohail A, Nawawi DS, Prianto AH, Iswanto AH, Ghozali M, Restu WK, Juliana I, Antov P, Kristak L, Fatriasari W, Fudholi A (2022) Recent developments in lignin modification and its application in lignin-based green composites: A review. Polym Compos 43(8):4848–4865. https://doi.org/10.1002/pc.26824

    Article  Google Scholar 

  5. Ali DA, Mehanna MM (2022) Role of lignin-based nanoparticles in anticancer drug delivery and bioimaging: an up-to-date review. Int J Biol Macromol 221:934–953. https://doi.org/10.1016/j.ijbiomac.2022.09.007

    Article  Google Scholar 

  6. Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Wolcott M, Zhang X (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18(19):5133–5141. https://doi.org/10.1039/c6gc01007e

    Article  Google Scholar 

  7. Alzagameem K, Bergs Do, Korte D, Hüwe K, Kamm L, Schulze. (2019) Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 11(4):670. https://doi.org/10.3390/polym11040670

    Article  Google Scholar 

  8. Avelino F, de Oliveira DR, Mazzetto SE, Lomonaco D (2019) Poly(methyl methacrylate) films reinforced with coconut shell lignin fractions to enhance their UV-blocking, antioxidant and thermo-mechanical properties. Int J Biol Macromol 125:171–180. https://doi.org/10.1016/j.ijbiomac.2018.12.043

    Article  Google Scholar 

  9. Bhat R, Abdullah N, Din RH, Tay GS (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119(4):707–713. https://doi.org/10.1016/j.jfoodeng.2013.06.043

    Article  Google Scholar 

  10. Bilal M, Qamar SA, Qamar M, Yadav V, Taherzadeh MJ, Lam SS, Iqbal HMN (2022) Bioprospecting lignin biomass into environmentally friendly polymers—applied perspective to reconcile sustainable circular bioeconomy. In Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH, p s1–27. https://doi.org/10.1007/s13399-022-02600-3

  11. Bula K, Klapiszewski Ł, Jesionowski T (2019) Effect of processing conditions and functional silica/lignin content on the properties of bio-based composite thin sheet films. Polym Test 77:105911. https://doi.org/10.1016/j.polymertesting.2019.105911

    Article  Google Scholar 

  12. Chai Y, Wang Y, Li B, Qi W, Su R, He Z (2021) Microfluidic synthesis of lignin/chitosan nanoparticles for the pH-responsive delivery of anticancer drugs. Langmuir 37(23):7219–7226. https://doi.org/10.1021/acs.langmuir.1c00778

    Article  Google Scholar 

  13. Chemical Modification, Properties, and Usage of Lignin (2002) In Chemical Modification, Properties, and Usage of Lignin. Springer US. https://doi.org/10.1007/978-1-4615-0643-0

  14. Chen Z, Hu TQ, Jang HF, Grant E (2015) Modification of xylan in alkaline treated bleached hardwood Kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohydr Polym 127:418–426. https://doi.org/10.1016/j.carbpol.2015.03.084

    Article  Google Scholar 

  15. Chen Z, Ragauskas A, Wan C (2020) Lignin extraction and upgrading using deep eutectic solvents. In: Industrial crops and products, vol 147, Elsevier B.V, p 112241. https://doi.org/10.1016/j.indcrop.2020.112241

  16. Chiappero LR, Bartolomei SS, Estenoz DA, Moura EAB, Nicolau V, v. (2021) Lignin-based polyethylene films with enhanced thermal, opacity and biodegradability properties for agricultural mulch applications. J Polym Environ 29(2):450–459. https://doi.org/10.1007/s10924-020-01886-6

    Article  Google Scholar 

  17. Cybulska I, Brudecki G, Rosentrater K, Julson JL, Lei H (2012) Comparative study of organosolv lignin extracted from prairie cordgrass, switchgrass and corn stover. Biores Technol 118:30–36. https://doi.org/10.1016/j.biortech.2012.05.073

    Article  Google Scholar 

  18. Das A, Ringu T, Ghosh S, Pramanik N (2022) A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull:1–66. https://doi.org/10.1007/s00289-022-04443-4

  19. Dixit D, Pal R, Kapoor G, Stabenau M (2016) Lightweight composite materials processing. In: Lightweight ballistic composites: military and law-enforcement applications, Second edn. Elsevier Inc., pp 157–216. https://doi.org/10.1016/B978-0-08-100406-7.00006-4

    Chapter  Google Scholar 

  20. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701. https://doi.org/10.1007/s10924-013-0570-6

    Article  Google Scholar 

  21. Edebali S (2020) Comparison of chitosan-based biocomposites for remediation of water with Cr (VI) ions. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 39(4):245–251

    Google Scholar 

  22. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood (2020) Int J Biol Macromol 165:187–197. https://doi.org/10.1016/J.IJBIOMAC.2020.09.145

  23. El-Nemr KF, Mohamed HR, Ali MA, Fathy RM, Dhmees AS (2020) Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Int J Environ Anal Chem 100(14):1578–1602. https://doi.org/10.1080/03067319.2019.1657108

    Article  Google Scholar 

  24. Fernandez N, MÖrck R (1990) Carbon-13 NMR Study on Lignin from Bagasse. Holzforschung 44(1):35–38. https://doi.org/10.1515/hfsg.1990.44.1.35

    Article  Google Scholar 

  25. Galkin S, Ämmälahti E, Kilpeläinen I, Brunow G, Hatakka A (1997) Characterisation of milled wood lignin from reed canary grass (Phalaris arundinacea). Holzforschung 51(2):130–134. https://doi.org/10.1515/hfsg.1997.51.2.130

    Article  Google Scholar 

  26. Gordobil O, Olaizola P, Banales JM, Labidi J (2020) Lignins from agroindustrial by-products as natural ingredients for cosmetics: chemical structure and in vitro sunscreen and cytotoxic activities. Molecules 25(5):1131. https://doi.org/10.3390/molecules25051131

    Article  Google Scholar 

  27. Gregorova A, Hrabalova M, Kovalcik R, Wimmer R (2011) Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites. Polym Eng Sci 51(1):143–150. https://doi.org/10.1002/pen.21799

    Article  Google Scholar 

  28. Gujjala LKS, Kim J, Won W (2022) Technical lignin to hydrogels: an Eclectic review on suitability, synthesis, applications, challenges and future prospects. J Clean Prod 363:132585. https://doi.org/10.1016/j.jclepro.2022.132585

    Article  Google Scholar 

  29. Haghdan S, Renneckar S, Smith GD (2016) Sources of lignin. In Lignin in Polymer Composites. Elsevier Inc., p 1–11. https://doi.org/10.1016/B978-0-323-35565-0.00001-1

  30. Hamidon TS, Idris NN, Hashim R, Appaturi JN, ... Sedliačik J (2022) Latest advancements in high-performance bio-based wood adhesives: a critical review. J Mater Res Technol 21:3909–3946

  31. Hussin MH, Rahim AA, Ibrahim MNM, Yemloul M, Perrin D, Brosse N (2014) Investigation on the structure and antioxidant properties of modified lignin obtained by different combinative processes of oil palm fronds (OPF) biomass. Ind Crop Prod 52:544–551

    Article  Google Scholar 

  32. Islam A, Sarkanen Kv (1993) The isolation and characterization of the lignins of jute (Corchorus capsularis). Holzforschung 47(2):123–132. https://doi.org/10.1515/hfsg.1993.47.2.123

    Article  Google Scholar 

  33. Jia W, Shi H, Sheng X, Guo Y, Fatehi P, Niu M (2022) Correlation between physicochemical characteristics of lignin deposited on autohydrolyzed wood chips and their cellulase enzymatic hydrolysis. Biores Technol 350:126941. https://doi.org/10.1016/j.biortech.2022.126941

    Article  Google Scholar 

  34. Kakroodi AR, Sain M (2016) Lignin-reinforced rubber composites. In Lignin in Polymer Composites. Elsevier Inc., p 195–206. https://doi.org/10.1016/B978-0-323-35565-0.00010-2

  35. Kang Y, Chen Z, Wang B, Yang Y (2014) Synthesis and mechanical properties of thermoplastic films from lignin, sebacic acid and poly(ethylene glycol). Ind Crop Prod 56:105–112. https://doi.org/10.1016/j.indcrop.2014.02.027

    Article  Google Scholar 

  36. Kaur R, Thakur NS, Chandna S, Bhaumik J (2020) Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents. J Mater Chem B 8(2):260–269. https://doi.org/10.1039/c9tb01569h

    Article  Google Scholar 

  37. Kaur R, Bhardwaj SK, Chandna S, Kim KH, Bhaumik J (2021) Lignin-based metal oxide nanocomposites for UV protection applications: A review. In Journal of Cleaner Production, Vol. 317. Elsevier Ltd., p 128300. https://doi.org/10.1016/j.jclepro.2021.128300

  38. Kim JY, Shin EJ, Eom IY, Won K, Kim YH, Choi D, Choi IG, Choi JW (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Biores Technol 102(19):9020–9025. https://doi.org/10.1016/j.biortech.2011.07.081

    Article  Google Scholar 

  39. Kim Y, Suhr J, Seo HW, Sun H, Kim S, Park IK, Kim SH, Lee Y, Kim KJ, Nam J, do. (2017) All biomass and UV protective composite composed of compatibilized lignin and poly (lactic-acid). Sci Rep 7(1):1–11. https://doi.org/10.1038/srep43596

    Article  Google Scholar 

  40. Krotscheck E, Böhm HM, Holler R (2008) XXXI international workshop on condensed matter theories (CMT31): Bangkok, Thailand, 2-8 December 2007. World Sci 22:25–26

    Google Scholar 

  41. Lapierre C, Jouin D, Monties B (1989) Lignin characterization of wheat straw samples as determined by chemical degradation procedures. In Physico-Chemical Characterisation of Plant Residues for Industrial and Feed Use. Springer Netherlands, p 118–130. https://doi.org/10.1007/978-94-009-1131-4_11

  42. Lee CBTL, Wu TY, Ting CH, Tan JK, Siow LF, Cheng CK, Jahim J, Mohammad AW (2019) One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresour Technol 278:486–489. https://doi.org/10.1016/j.biortech.2018.12.034

    Article  Google Scholar 

  43. Li Y, Yang D, Lu S, Qiu X, Qian Y, Li P (2019) Encapsulating TiO2 in lignin-based colloidal spheres for high sunscreen performance and weak photocatalytic activity. ACS Sustain Chem Eng 7(6):6234–6242

    Article  Google Scholar 

  44. Li S, Zhou J, Chen G, Qin S, Li H, Chen Y (2021) Preparation and properties of zein-chitosan nanonutrient delivery particles. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 37(16):279–286. https://doi.org/10.11975/j.issn.1002-6819.2021.16.034

    Article  Google Scholar 

  45. Lora JH (2002) Characteristics, industrial sources, and utilization of lignins from non-wood plants. In Chemical Modification, Properties, and Usage of Lignin. Springer US, p 267–282. https://doi.org/10.1007/978-1-4615-0643-0_14

  46. Mankar AR, Pandey A, Pant KK (2022) Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics. Biores Technol 345:126528. https://doi.org/10.1016/j.biortech.2021.126528

    Article  Google Scholar 

  47. Martınez-Flores E, Negrete J, Torres Villasenor G (2003) Structure and properties of Zn–Al–Cu alloy reinforced with alumina particles. Mater Des 24(4):281–286

    Article  Google Scholar 

  48. Mujtaba M, Lipponen J, Ojanen M, Puttonen S, Vaittinen H (2022) Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. Sci Total Environ 851:158328. https://doi.org/10.1016/j.scitotenv.2022.158328

    Article  Google Scholar 

  49. Pasquini D, Pimenta MTB, Ferreira LH, Curvelo AADS (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol-water mixtures and carbon dioxide at high pressures. J Supercrit Fluids 36(1):31–39. https://doi.org/10.1016/j.supflu.2005.03.004

    Article  Google Scholar 

  50. Posoknistakul P, Tangkrakul C, Chaosuanphae P, Deepentham S, Techasawong W, Phonphirunrot N, Bairak S, Sakdaronnarong C, Laosiripojana N (2020) Fabrication and characterization of lignin particles and their ultraviolet protection ability in PVA composite film. ACS Omega 5(33):20976–20982. https://doi.org/10.1021/acsomega.0c02443

    Article  Google Scholar 

  51. Pratima. (2018) Biopulping. In: Biotechnology for pulp and paper processing. Springer, Singapore, pp 113–147. https://doi.org/10.1007/978-981-10-7853-8_8

    Chapter  Google Scholar 

  52. Raman A, Sankar A, Abhirami SD, Anilkumar A, Saritha A (2022) Insights into the sustainable development of lignin-based textiles for functional applications. Macromol Mater Eng 307(8):2200114. https://doi.org/10.1002/mame.202200114

    Article  Google Scholar 

  53. Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2017) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5(1):625–631. https://doi.org/10.1021/acssuschemeng.6b02003

    Article  Google Scholar 

  54. Sadeghifar H, Ragauskas A (2020) Lignin as a UV Light blocker-a review. In Polymers, Vol. 12, Issue 5. MDPI AG, p 1134. https://doi.org/10.3390/POLYM12051134

  55. Saraf VP, Glasser WG (1984) Engineering plastics from lignin. III. Structure property relationships in solution cast polyurethane films. J Appl Polym Sci 29(5):1831–1841. https://doi.org/10.1002/app.1984.070290534

    Article  Google Scholar 

  56. Shankar S, Rhim JW (2017) Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll 71:76–84. https://doi.org/10.1016/j.foodhyd.2017.05.002

    Article  Google Scholar 

  57. Stücker A, Schütt F, Saake B, Lehnen R (2016) Lignins from enzymatic hydrolysis and alkaline extraction of steam refined poplar wood: Utilization in lignin-phenol-formaldehyde resins. Ind Crop Prod 85:300–308. https://doi.org/10.1016/j.indcrop.2016.02.062

    Article  Google Scholar 

  58. Sugiarto S, Leow Y, Tan CL, Wang G, Kai D (2022) How far is Lignin from being a biomedical material? In Bioactive Materials, Vol. 8. KeAi Communications Co. p 71–94. https://doi.org/10.1016/j.bioactmat.2021.06.023

  59. Sun R, Tomkinson J, Wang S, Zhu W (2000) Characterization of lignins from wheat straw by alkaline peroxide treatment. Polym Degrad Stab 67(1):101–109. https://doi.org/10.1016/S0141-3910(99)00099-3

    Article  Google Scholar 

  60. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11(3):339–434. https://doi.org/10.1039/b815310h

    Article  Google Scholar 

  61. Vostrejs P, Adamcová D, Vaverková MD, Enev V, Kalina M, Machovsky M, Šourková M, Marova I, Kovalcik A (2020) Active biodegradable packaging films modified with grape seeds lignin. RSC Adv 10(49):29202–29213. https://doi.org/10.1039/d0ra04074f

    Article  Google Scholar 

  62. Wang Y, Padua GW (2003) Tensile properties of extruded Zein sheets and extrusion blown films. Macromol Mater Eng 288(11):886–893. https://doi.org/10.1002/mame.200300069

    Article  Google Scholar 

  63. Wang T, Wang M, Fu L, Duan Z, Chen Y, Hou X, Wu Y, Li S, Guo L, Kang R, Jiang N, Yu J (2018) Enhanced thermal conductivity of polyimide composites with boron nitride nanosheets. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-018-19945-3

    Article  Google Scholar 

  64. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Market Res 4(1):26–32. https://doi.org/10.1016/j.jmrt.2014.10.009

    Article  Google Scholar 

  65. Winters EP, Deardorff DL (1958) Zein as a film-type coating for medicinal tablets**College of Pharmacy, University of Florida, Gainesville. J Am Pharm Assoc (Scientific Ed) 47(8):608–612. https://doi.org/10.1002/jps.3030470823

    Article  Google Scholar 

  66. Wulandari R, Ratnawati. (2019) Effects of processing temperature and lignin on properties of starch/PVA/lignin film prepared by melt compounding. J Phys Conf Ser 1295(1):012058. https://doi.org/10.1088/1742-6596/1295/1/012058

    Article  Google Scholar 

  67. Xing Q, Ruch D, Dubois P, Wu L, Wang WJ (2017) Biodegradable and high-performance poly(butylene adipate-co-terephthalate)-lignin UV-blocking films. ACS Sustain Chem Eng 5(11):10342–10351. https://doi.org/10.1021/acssuschemeng.7b02370

    Article  Google Scholar 

  68. Xing Q, Buono P, Ruch D, Dubois P, Wu L, Wang WJ (2019) Biodegradable UV-blocking films through core-shell lignin-melanin nanoparticles in poly(butylene adipate-co-terephthalate). ACS Sustain Chem Eng 7(4):4147–4157. https://doi.org/10.1021/acssuschemeng.8b05755

    Article  Google Scholar 

  69. Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113(6):1213–1224. https://doi.org/10.1002/bit.25903

    Article  Google Scholar 

  70. Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139

    Article  Google Scholar 

  71. Yang W, Owczarek JS, Fortunati E, Kozanecki M, Mazzaglia A, Balestra GM, Kenny JM, Torre L, Puglia D (2016) Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crops Prod 94:800–811. https://doi.org/10.1016/j.indcrop.2016.09.061

    Article  Google Scholar 

  72. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int J Biol Macromol 89:360–368. https://doi.org/10.1016/j.ijbiomac.2016.04.068

    Article  Google Scholar 

  73. Yang W, Fortunati E, Gao D, Balestra GM, Giovanale G, He X, Torre L, Kenny JM, Puglia D (2018) Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain Chem Eng 6(3):3502–3514. https://doi.org/10.1021/acssuschemeng.7b03782

    Article  Google Scholar 

  74. Yang W, Weng Y, Puglia D, Qi G, Dong W, Kenny JM, Ma P (2020) Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol 144:102–110. https://doi.org/10.1016/j.ijbiomac.2019.12.085

    Article  Google Scholar 

  75. Zhang Y, Naebe M (2021) Lignin: a review on structure, properties, and applications as a light-colored UV absorber. In: ACS Sustainable Chemistry and Engineering, vol. 9, Issue 4. American Chemical Society, pp 1427–1442. https://doi.org/10.1021/acssuschemeng.0c06998

  76. Zijlstra DS, Lahive CW, Analbers CA, Figueirêdo MB, Wang Z, Lancefield CS, Deuss PJ (2020) Mild Organosolv lignin extraction with alcohols: the importance of benzylic Alkoxylation. ACS Sustain Chem Eng 8(13):5119–5131. https://doi.org/10.1021/acssuschemeng.9b07222

    Article  Google Scholar 

Download references

Acknowledgements

Author Anushikha would like to thank the Ansys Inc., India, for providing financial support under ANSYS Fellowship Award to carry out this research work during her M.Tech (Packaging Technology) program.

Author information

Authors and Affiliations

Authors

Contributions

Anushikha: investigation, visualization, data curation, writing—original draft. Kirtiraj K. Gaikwad: conceptualization, methodology, resources, manuscript writing, editing and review, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Kirtiraj K. Gaikwad.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anushikha, Gaikwad, K.K. Lignin as a UV blocking, antioxidant, and antimicrobial agent for food packaging applications. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-022-03707-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03707-3

Keywords

Navigation