
Vol.:(0123456789)1 3

Biomass Conversion and Biorefinery 
https://doi.org/10.1007/s13399-022-03273-8

REVIEW ARTICLE

Exploring the metabolic features of purple non‑sulfur bacteria 
for waste carbon utilization and single‑cell protein synthesis

Naim Rashid1 · Udeogu Onwusogh2 · Hamish R. Mackey1

Received: 3 July 2022 / Revised: 17 August 2022 / Accepted: 29 August 2022 
© The Author(s) 2022

Abstract
In recent years, single-cell protein (SCP) has been considered a promising aquaculture feed to cope with the growing issue 
of food security. SCP is derived from microbes including algae, yeasts, and bacteria. Algae and yeasts have been comprehen-
sively studied as SCP sources in the last few years. However, their large-scale application is not yet economical. Recently, the 
use of purple non-sulfur bacteria (PNSB) has been realized as a sustainable source of SCP. PNSB display unique metabolic 
features that distinguish them from other SCP sources. They can grow under various light and electron donor/acceptor condi-
tions, can use a variety of low-cost carbon sources, give high substrate yield under their preferred photoheterotrophic growth 
mode, and demonstrate anti-pathogenic properties. They also use the infrared region of light that enables their straightforward 
enrichment under non-axenic conditions. Despite the unique characteristics of PNSB, their use as SCP has not been widely 
reported. This review provides comprehensive knowledge about different factors that influence the quality and quantity of 
SCP produced from PNSB. The effects of key factors including light, redox conditions, trace metals, carbon substrate, and 
substrate availability are discussed. Special focus is given to the use of PNSB as SCP in aquaculture and PNSBs concomitant 
role in improving water quality. This information would expand knowledge and enhance understanding to utilize PNSB as 
an alternative SCP source for aquaculture feed.
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1  Introduction 

The global population is expected to exceed 11 billion by the 
end of the twenty-first century. Currently, 800 million people 
are undernourished and a dramatic increase in this number 
is expected as the population grows to a projected 11 billion 
by the end of the century. Even by 2050, a 25–70% increase 
in the food supply is required [1]. Protein is a major constitu-
ent of food necessary for effective tissue growth. The limited 
supply of high-quality protein and its uneven distribution in 
the world cause malnutrition [2]. Global protein production 
relies primarily on animal and to a lesser extent plant sources. 

Animal-based protein accounts for 40% of human protein con-
sumption. Animal meat production has increased from 45 to 
233 million metric tons per year between 1950 and 2000 [3]. 
Animal protein contains all essential nutrients required for the 
human diet with high digestibility and a balanced supply of 
essential amino acids [4]. However, animal protein shows low 
feed conversion ratios compared to other protein sources. For 
example, 2–15 kg of plant material is required for 1 kg of ani-
mal products [3]. Additionally, animal-derived protein sources 
contribute to many environmental issues such as pollution of 
waterways from manure and fertilizer runoff; and greenhouse 
gas (GHG) emissions from animal belching, manure degrada-
tion, and energy associated with fertilizer and water supply [5].

Proteins derived from plant sources including soybean 
meal, chickpea, and rapeseed have been widely used. It is 
estimated that 40–50% of global plant sources are being used 
for feed production [3]. Plant protein sources have several 
limitations such as the presence of anti-nutritional elements, 
an imbalanced composition of non-essential amino acids, the 
deficiency of essential amino acids such as lysine, cysteine, 
histidine, and methionine [4, 6], and low digestibility. Their 
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production also puts additional stress on natural resources 
including land, water, and nutrients, although this is not as 
significant as for meat protein. The aforementioned char-
acteristics of plant protein make them less favorable as a 
sustainable and primary source of protein.

Aquaculture is considered a sustainable, renewable, and 
alternative protein source and is traditionally a major pro-
tein source for human consumption. Aquaculture feed con-
tains 35–60% crude protein compared to terrestrial livestock 
(12–26%) [7]. Fish are also a nutrient-rich food source contain-
ing vitamins A, B, and D, calcium, phosphorous, iodine, iron, 
and zinc [8]. Aquaculture is considered the fastest growing 
industry to cope with food security challenges [9]. An estimate 
shows an increase in world aquaculture from 32.4 million tons 
in 2000 to 52.5 million tons in 2008 [5]. Aquaculture produc-
tion has reached a million tons per year in East Asia and the 
Pacific, 8.14 million tons per year in South Asia, and 1.89 
million tons per year in the Middle East and North Africa. The 
largest aquaculture productivity is in China at 61 million tons 
per year [10] (Fig. 1). Aquaculture feed sales have increased 
from 12.2 million tons in 1995 to 50.7 million tons in 2015 [1].

Aquaculture is dependent on a high protein feed source. 
Aquaculture feed mainly relies on fishmeal, which is sourced 
from wild-captured forage fish. Often fishmeal is the pre-
ferred feed in aquaculture over animal and plant-based pro-
tein because of its high protein content and the presence 
of essential amino acids. Unfortunately, fishmeal has been 
overused to fulfill feed demand. It is estimated that a short-
age of up to 1.3 million metric tons of fishmeal may occur by 
2050, which would impair the aquaculture industry [7]. At 
present, soybean is being used as an alternative aquaculture 
feed, which presents nutritional and digestibility issues. This 
situation has put enormous pressure on forage fish supply 
and aquaculture sustainability. In this perspective, protein-
rich biomass from single-cell organisms, termed single-cell 

protein (SCP), could be considered a suitable alternative to 
fishmeal, which does not compete directly with human feed.

SCP is less energy-intensive and requires less water and 
area than plant-based protein sources. It returns less GHG 
emissions than the other competing sources and can be pro-
duced using substrates that are inexpensive and possibly 
derived from waste streams [7, 8]. SCP can be produced 
in indoor facilities displacing or reducing the reliance on 
environmental and seasonal variations, particularly for non-
phototrophic SCP sources. Finally, SCP does not require 
pesticides and herbicides in contrast to the production of 
plant-based protein [2].

Microorganisms used for SCP production vary in their 
productivity and cell composition due to their inherent meta-
bolic features. Depending on the species, they can accumu-
late up to 80% of cell biomass as protein [7, 11]. Therefore, 
it is important to study the characteristics of SCP to deter-
mine its suitability as an aquaculture feed. Algae have been 
considered viable SCP and certain species such as Spirulina 
are even cultured for human consumption. However, low 
digestibility is an issue associated with the use of algae as 
aquaculture feed [3, 6]. Yeasts can produce 45–55% of their 
biomass as SCP and its amino acid profile is comparable 
with fishmeal. However, their large-scale application is still 
limited due to high production costs. Bacteria are also a 
promising source of SCP and they can accumulate protein 
up to 80% of dry cell biomass. Methane oxidizing bacteria 
and hydrogen oxidizing bacteria, in particular, have been 
studied and commercialized for SCP production [2]. How-
ever, their commercial application has been limited due to 
the requirement of the high-energy substrate and typically 
high DNA content [8].

PNSB have received growing interest as an emerging 
source of SCP as they contain essential amino acids, are rel-
atively less toxic to the host [12, 13], can utilize inexpensive 

Fig. 1  Aquaculture production 
in different regions of the world



Biomass Conversion and Biorefinery 

1 3

substrates from wastewater resources, do not require dis-
solved oxygen or carbon dioxide to grow, but can also sur-
vive under aerobic conditions, and present high biomass to 
substrate yield [14]. PNSB are also easily enriched in non-
axenic conditions [15] due to their distinct combination of 
anoxygenic photoheterotrophy and photosynthesis utilizing 
the near-infrared region of the light spectrum. This allows 
them to outcompete other microorganisms that mostly grow 
to utilize the visible light region or chemoheterotrophically. 
Consequently, PNSB can maintain high abundance in the 
culture that leads to high purity of SCP. These features of 
PNSB, as summarized in Fig. 2, qualify them as promising 
feedstock for SCP production. Despite this, there are some 
technological and research barriers that impede the large-
scale application of PNSB as an SCP source which are dis-
cussed in this article. The purpose of this study is to review 
the existing studies and expand knowledge on the potential 
of PNSB as a SCP source and aquaculture feed. The effect 
of key parameters such as light, oxygen, carbon source, and 
trace elements that regulate PNSB growth and SCP con-
tent are discussed. Methods and potential for integration 
of PNSB with wastewater treatment for economical SCP 
production are also presented, along with a discussion on 
the suitability of PNSB-based SCP as an aquaculture feed. 
Lastly, a perspective is provided on the existing challenges 
and emerging trends to utilize PNSB for the sustainable pro-
duction of SCP.

2  Single‑cell protein and sources

Single-cell protein is the form of protein produced from 
single-celled organisms [11], which includes microal-
gae, yeasts, and bacteria (Table 1). In addition to protein, 

SCP also contains carbohydrates, nucleic acids, miner-
als, omega-3 fatty acids, vitamins, enzymes, and carot-
enoids [16]. Unlike conventional protein sources, typically 
SCP is rich in essential amino acids including lysine and 
methionine.

Microorganisms display different biological characteristics, 
production potential, and SCP quality as an aquaculture 
feed [22], as elaborated in Table 2. Microalgae have been 
extensively studied as SCP sources. Several algae species 
have been exploited for the production of SCP [6]. The most 
prominent species used for SCP production are Chlorella sp., 
Dunaliella sp., and Spirulina sp. These species can grow in 
high salinity, alkalinity, and nutrient concentration [39]. They 
develop a natural protective system against light by producing 
pigments, chlorophylls, phycobiliproteins, and polyphenols, 
which provide health benefits. Digestibility is a major 
challenge to use algae as an SCP source. The presence of high 
fiber content and polysaccharides in algae biomass impact the 
digestibility [4, 6, 40]. Strict sterilization is also required to 
achieve a pure and high-quality algae biomass. Sterilization 
is an energy-intensive process posing an economical burden 
on algae biomass production. The current production of 
microalgae is only 9000 tons per year, which is much lower 
than other protein sources [39] and only contributes to 0.7% of 
total protein production globally. Current microalgae biomass 
production costs range $10–30  kg−1, which is much higher 
than soybean ($0.30  kg−1) [1].

Yeasts have been regarded as a promising source of SCP 
[1]. Yeasts generally grow heterotrophically under aerobic 
and anaerobic conditions. They can assimilate a wide range 
of organic carbon sources in pure form as well as those origi-
nating from waste streams. Yeasts are acidophiles in nature; 
therefore, they can grow at low pH and outcompete other 
microorganisms resulting in relatively pure biomass. They 

Fig. 2  Characteristics of PNSB 
and associated benefits
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offer adequate nutritional quality as an SCP [16, 44]. The 
amino acid profile is comparable with conventional protein 
sources; however, they lack sulfur-containing proteins. Still, 
their feed trials have demonstrated that 60% substitution of 
yeasts with fishmeal showed similar aquaculture growth 
[45]. Yeasts have been reported as a suitable protein source 
for fishes such as salmon and shrimp too [7]. However, their 
biomass contains a relatively high amount of nucleic acid 
that causes allergy and may lead to the death of the aquacul-
ture species. Currently, yeast-based SCP is being produced 
commercially, but its production is still limited due to high 
production costs [46].

Bacterial biomass can also be used as an SCP source. 
Bacteria can contain up to 80% of dry cell weight as a 
protein [7, 16]. They have a methionine content of more 

than 3% which is higher than other microbial sources. Sev-
eral bacteria have been exploited as SCP sources such as 
hydrogen oxidizing bacteria (HOB), methane-oxidizing 
bacteria (MOB), and PNSB. Bacterial biomass requires 
much less energy to assimilate nitrogen into protein than 
other conventional protein sources. An estimate shows 
that MOB and HOB require assimilatory energy of 361 
and 452 MJ·kg−1 N-protein, respectively. In comparison, 
1000 MJ.kg−1 N-protein of energy is required for turkey 
poultry to assimilate nitrogen into protein. In a study, MOB 
showed higher protein productivity (2.8 kg protein  m−3.
day−1) than soybean (5.4 ×  10–4 kg protein  m−3·day−1). It 
should be noted that soybean production was determined 
using yield per area with the assumption that 1 m of ver-
tical space is required (for plant height). Sustainable pro-
duction of SCP using these bacteria is still challenging due 
to the requirement of a high-energy substrate [8]. Another 
disadvantage of most bacterial cells is their high content of 
nucleic acids and endotoxins.

PNSB are emerging source of SCP. They can contain crude 
protein up to 70% of their biomass. Their amino acid compo-
sition is similar to soybean. They present a relatively lower 
amount of nucleic acids than the other microorganisms [37]. 
PNSB biomass contains coenzyme Q10 (CoQ10) and carot-
enoids (natural pigments), both of which are antioxidants, as 
well as sulfur-containing amino acids such as methionine and 
cysteine, that are very beneficial for aquaculture growth. They 
are described further in the subsequent sections.

3  Metabolic features of purple non‑sulfur 
bacteria

PNSB are versatile microorganisms characterized by a 
unique primary metabolism of anaerobic photoheterotro-
phy, with a broad range of other metabolic modes [47, 48]. 
They use light as an energy source, and organic carbon 
for biomass in an anoxygenic environment, fixing  CO2 for 
additional redox balance depending on the substrate. They 
can consume a broad range of organics including environ-
mental pollutants such as benzoic acid, nitrophenol, and 
halogenated aromatics to drive photosynthesis and energy 
generation. They can tolerate environmental stresses without 
pre-adaptation, such as high tolerance to salinity and heavy 
metals [49]. PNSB can switch between photolithoautotro-
phy, photo-organoheterotrophy, chemo-organoheterotrophy, 
and chemo-lithoautotrophy depending on the composition of 
electron donor and acceptor present in the growth medium. 
They are facultative anaerobes and can grow in both dark 
aerobic and dark anaerobic environments if light is not avail-
able [50, 51]. They can grow photoheterotrphically in the 
presence of light and limited oxygen. An intracytoplasmic 
membrane enables them to adapt to oxygen alterations. In 

Table 1  Protein content of different SCP sources

N.A*, not available

Organism Protein content, % References

Yeasts/fungi
 Aspergillus niger 38 [17]
 Candiad crusei 48 [18]
 Candiad tropicalis 56 [19]
 Candiad utilis 46 [17]
 Fusarium venenatum 44 [20]
 Kefir sp. 54 [21]
 Plurotus florida 63 [22]
 Trichoderma virideae 32 [23]

Microalgae
 Dunaliella salina 57 [24]
 Spirulina platensis 63 [25]
 Chlorella sorokiana 46–65 [26]
 Aphanothece microscopia 42 [27]
 Chlorella sp. 62–68 [17]
 Scenedesmus obliqus 30–50 [28]
 Euglena gracilis 50–70 [29]

Bacteria
 Bacilus subtilis 30–50 [30]
 Bacilus lichenniformis 38 [31]
 Cyanobacterium ammoniagenes 61 [32]
 Haloarcula sp. 76 [33]
 Methylococcus capsulatus 67–73 [34]
 Rhizospheric diazotrophs 55 [35]

Purple non-sulfur bacteria
 Rhodobacter sphaeroides SS15 54 [12]
 Afifella marina STW18 46 [12]
 Rhodopseudomonas palustris 72–74 [36]
 Rhodobacter blasticus 50 [37]
 Rhodopseudomonas palustris 50 [37]
 Rhodocyclus gelatinosus R7 56 [37]
 Rhodobacter capsulatus 45 [38]
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dark conditions, when oxygen is available, they produce 
energy by oxidative as well as substrate-level phosphoryla-
tion [52, 53]. In the presence of light, they perform photo-
synthesis and respiration when oxygen is available. PNSB 
also achieve high biomass yield under photoheterotrophic 
growth as they directly use photon energy to activate elec-
trons, received from the electron donor [54]. Table 3 sum-
marizes the advantages and disadvantages of PNSB as a 
source of SCP.

4  Factors influencing SCP productivity

Figure 3 illustrates the production process of SCP using PNSB. 
Briefly, the substrates, which may include fermented solid 
wastes or wastewaters containing organic carbon and nutri-
ents, are fed to the PNSB. Such waste streams should be devoid 
of heavy metal contamination or other harmful and persistent 

pollutants. Suitable streams include aquaculture water itself, 
as well as wastewaters from other agriculture activities and 
fermented food sources. PNSB assimilate the carbon and nutri-
ents from them under different conditions of light/dark and 
anaerobic conditions, remove pollutants and develop their bio-
mass during the cultivation process. After cultivation, biomass 
is separated from the aqueous medium and fed to aquaculture. 
To determine the suitability of biomass as an aquaculture feed, 
its biomass quality is evaluated based on certain factors men-
tioned in Fig. 3. The spent or treated water can be recycled to 
the cultivation tank or can be used for other purposes (agricul-
ture/industrial processes). Several parameters are controlled 
during the cultivation to achieve a desired growth rate and 
composition of biomass. The most critical parameters include 
light, oxygen supply, carbon utility, and trace elements. The 
following sections highlight the impact of these factors on 
PNSB growth dynamics as well as SCP productivity, the lat-
ter of which is generally not well reported.

Table 2  Comparison of 
different SCP sources

Sources [2, 9, 16, 22, 41–43]

Parameter Bacteria PNSB Microalgae Yeasts

Growth rate High High Low High
Biomass yield High Very high Low High
Purity of biomass Low Moderate High Low
pH 5–7 6–8 3–11 3–8
Culture mainte-

nance/regulation
Moderate Relatively easy Difficult Easy

Substrate diversity High High Low High
Growth mode Aerobic and anaerobic Anaerobic is preferred Aerobic Aerobic and anaerobic
Light requirements Nil Yes Yes Nil
Protein content High High High Relatively low
Methionine High High Low Very low
Lysine Very low Low Low High
Nucleic acids Very High Low Low High
Digestibility Fair High Low High
Aquaculture feed Yes Yes Yes Yes
Production cost Low Limited information High High

Table 3  Advantages and disadvantages of using PNSB as a SCP feedstock

Advantages Disadvantages

✓ Less contamination
✓ Can use broad light spectrum
✓ High substrate yield
✓ Can grow in high-strength wastewaters
✓ Contain high protein content (up to 80%)
✓ Can grow in unsterilized condition
✓ Can use simple and complex carbon sources
✓ High resource recovery potential
✓ Grow in both dark and light conditions
✓ Grow without oxygen supply
✓ Serve as probiotic and control aquaculture water quality
✓ Show high pollutants removal efficiency

✗ Give high biomass yield only under anaerobic/micro-aerobic conditions
✗ Low biomass purity with mixed microbial culture (MMC)
✗ Not widely studied as SCP source
✗ Barely studied at large scale
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4.1  Light

Light plays a vital role in the growth of PNSB [55]. PNSB 
capture incident light through the light-harvesting complex 
(LHC) and photoreaction center (RC) in the photosynthetic 
unit (PSU), which converts light energy into chemical 
energy. In PNSB, photosynthetic pigments such as bacte-
riochlorophylls (BChl) and carotenoids absorb light at dif-
ferent wavelengths (450–1000 nm) [56, 57]. At first, the 
carotenoid absorbs light and transfers it to BChl, which is 
responsible for charge separation [58]. Electron transport in 
PNSB is carried out by the RC and cytochrome complex. 
Ubiquinone located in the cytoplasmic membrane is respon-
sible for mediation between RC and cytochrome. Electron 
transfer is carried out due to proton motive force across 
the cytoplasmic membrane. Proton motive force is used 
to synthesize the intracellular energy carrier—adenosine 
triphosphate (ATP), transport the solute, and perform other 
metabolic reactions [59]. The cell’s response to the incident 
light depends on various characteristics of light including 
light intensity, photoperiod, and wavelength [60]. These 
characteristics of light have a profound effect on substrate 
conversion, microbial growth rate, biomass production, and 
bioproduct yield [61].

Light intensity Light intensity significantly affects the 
growth and energy metabolism of PNSB. The appropriate 
light intensity can increase the growth rate and the bio-
product yield. Liu, Daigger, Kang, and Zhang [60] inves-
tigated the effect of light intensity on pigment formation of 

Rhodopseudomonas palustris. The highest combined carot-
enoids and chlorophyll concentrations were obtained at a 
light intensity of 150 μmol-photons·m−2·s−1, though higher 
carotenoids were observed at 240 μmol-photons·m−2·s−1 
and high BChl at 3–50 μmol-photons·m−2·s−1. In a study, 
it found that a relatively high light intensity (8000 lx) was 
appropriate for the production of BChl and carotenoids [62]. 
Muzziotti, Adessi, Faraloni, Torzillo, and De Philippis [58] 
investigated the effect of light intensity on the carotenoid 
composition of Rhodopseudomonas palustris. It produced 
carotenoids such as spirilloxantin, rhodopin, anhydrorho-
dovibrin, lycopene, and rhodovibrin. The carotenoid com-
position changed with the light intensity, where lycopene 
was dominant at low light intensity and rhodovibrin at high 
light intensity. With an increase in light intensity (from 250 
to 1500 μmol-photons·m−2·s−1), lycopene reduced from 46.6 
to 3.0% only, and rhodovibrin increased from 12.7 to 42.2%. 
The total carotenoids decreased from 1.0 mg.g-CDW−1 
under low light, to 0.26 mg.g-CDW−1 under high light con-
ditions. They concluded that Rhodopseudomonas palustris 
presents a strategy to show photo-acclimation at a high light 
intensity. Furthermore, high light condition generates excess 
reducing power, which is dissipated by carotenoids through 
BChl. Light intensity also affects the biomass productivity of 
PNSB. Kim [14] found a decrease in the growth rate of Rho-
dopseudomonas palustris by 16% following a decrease in the 
light intensity from 350 to 87.5·W·m−2. Al-Azad, KarSoon, 
and Ransangan [63] determined the biomass productivity of 
Afifella marina at different light intensities (0–5000 lx) and 
found that the light intensity of 3000 lx governed the highest 

Fig. 3  An illustration of SCP production process using PNSB
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biomass productivity reaching a concentration of 4.97 g·L−1. 
A similar observation of 3000 lx was made by Siddique et al. 
[64] for a PNSB enriched mixed culture grown on fuel syn-
thesis process water.

Photoperiod Photoperiod affects the light photon absorp-
tion in the RC, electron transportation, and ATP synthesis 
[65]. Under a dark period, cell division and respiration occur 
that may lead to enhanced production of pigments by the 
expression of key genes in the PSU. Liu, Daigger, Kang, 
and Zhang [60] investigated the effect of photoperiod on 
the growth and pigments synthesis of Rhodopseudomonas 
palustris. The highest BChl (1.17 mg·g−1of biomass) pro-
duction was observed under a light/dark cycle of 16/8 h. Zhi, 
Yang, Zhang, Zhu, Meng, and Li [66] found that a light/dark 
cycle of 24/24 h returned the highest biomass productiv-
ity (2.07 g·L−1) for a mixed culture of PNSB (80% domi-
nated by Rhodopseudomonas). They further found that a 
light/dark cycle of 12/12 h gave the maximum carotenoid 
yield (1.3 mg·L−1of biomass), while 3/3 h cycle showed the 
highest protein productivity (826 mg·g−1 of biomass). ATP 
concentration was the highest (~ 1000 μmol·g−1 of protein) 
in the 12/12 h light/dark cycle. Light/dark cycle had no pro-
found impact on RubisCo enzyme. Another study revealed 
that a light/dark cycle of 2/1 h was the most suitable to 
achieve high biomass productivity (2.06 g·L−1) of Rhodop-
seudomonas [67]. It should be noted that the disparity in the 
results might be due to the use of different strains, purity of 
the inoculum, and/or growth conditions. For instance, Cao, 
Zhi, and Zhang [68] used an inoculum containing 80% Rho-
dopseudomonas, whereas in other studies, the culture purity 
was not mentioned.

Light wavelength and source Light wavelength can have a 
significant impact on PNSB growth and biomass composi-
tion. PNSB can absorb light in the near-infrared wavelength 
region (805–1035 nm) through BChl a and b. Depending on 
PNSB species, they can also absorb light in a wavelength 
range of 300–500 nm using carotenoids [13, 69]. They can 
produce more than 75 types of carotenoids, which provide 
them photo-protection [70].

The light source and its associated spectra are important 
in the photosynthetic process. Natural light is the most eco-
nomical source but shows high variation in intensity diur-
nally, daily, and seasonally. Therefore, the effect of light 
on cell metabolism is best revealed under the provision of 
artificial light. Incandescent lamps have been widely used as 
a light source to carry out microbial cultivation in photobi-
oreators, but they are expensive due to their wide spectra and 
high heat energy losses. Light emitting diodes (LEDs) are 
considered an economical alternative to conventional light 
sources with added advantages of low energy requirements 

and narrow selective wavelength band. Thus, LEDs can be 
useful to improve light conversion efficiency [56, 71].

Narrow wavelength infrared (IR) light at 860 nm has 
been successfully applied for the cultivation of Rhodobacter 
capsulatus. IR helps to restrict microalgae growth, main-
tain PNSB dominancy and improve wastewater treatment 
performance [50, 72]. Suwan, Chitapornpan, Honda, Wilai, 
and Chiemchaisri [73] demonstrated the effect of infrared 
LEDs and tungsten lamps (covered with infrared transmit-
ting filter) on PNSB carotenoid formation and wastewa-
ter treatment performance. They found that infrared LED 
resulted in higher organic removal than the tungsten lamp, 
but carotenoid and BChl contents were less. High carotenoid 
and BChl formation under tungsten lamps was attributed to 
less light energy availability to the cells. Their study demon-
strated that IR LED showed 12 times higher photon emission 
efficiency than the tungsten lamp. Studies also reveal that 
LEDs have higher energy yields (10–100 times per kWh) 
than the other light sources [13].

Hulsen, Hsieh, Tait, Barry, Puyol, and Batstone [74] 
employed IR and white light on a mixed culture enriched 
with PNSB. They tested IR irradiated at 18  W.m−2 and white 
light irradiated at 27–36  W.m−2 (1.5–2 times higher than 
IR). Despite less energy input, the cells in the presence of 
IR could remove 90% of COD, 90% nitrogen, and 45% of 
phosphorous from concentrated poultry processing waste-
water. In comparison, the cells with white light removed 
98% chemical oxygen demand (COD), 94% nitrogen, and 
44% phosphorous. The culture with IR showed high relative 
abundance (~ 80%) of purple photosynthetic bacteria, com-
pared with the white light (~ 35%). Moreover, IR showed 
higher amino acids content than white light. Hence, it could 
be concluded that IR provides comparable wastewater treat-
ment performance and high-quality feed with relatively less 
energy input than white light.

Generally, PNSB prefer to grow under blue (435–480 nm) 
and red (605–700 nm) light [15, 65, 75], though reports of 
optimal wavelength differ between studies, possibly due to 
the species employed. Kuo, Chien, and Chen [56] investi-
gated the effect of different light sources including incan-
descent lamp (IL), halogen lamp (HL), fluorescent lamp 
(FL), and LEDs with blue (B), white (W), yellow (Y), red 
(R), and green (G) at a fixed light intensity of 2000 lx with 
Rhodopseudomonas palustris. Energy efficiency for bacte-
rial growth was in the order of B > W > Y > IL > G > HL > 
FL > R. Carotenoid was produced in the order of B > Y > 
W > G > IL > HL > R > FL. It was concluded that blue LED 
could save energy by 75% and increase carotenoid content 
by 348% compared to IL.

Hellingwerf, Vrij, and Konings [75] investigated the 
growth of Rhodobacter sphaeroides under a constant pho-
ton intensity of 1.25 ×  1014 photons  cm−2  s−1 and different 
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wavelengths (400–950 nm). The specific growth rates  (h−1) 
at 480 nm (blue color) and 580 nm (yellow color) were 
almost the same (12  h−1), whereas 660 nm (red) showed a 
lower specific growth rate (6.0  h−1). In contrast, Q Zhou, P 
Zhang, G Zhang, and M Peng [76] demonstrated the effect 
of yellow, white, blue, and red light on PNSB metabolism. 
They found that yellow light was the most suitable for pig-
ments formation, while the red light was appropriate to 
achieve high biomass yield and pollutants removal from the 
wastewater.

It is important to mention that PNSB produce a variety 
of BChl and carotenoids. The most common method of pig-
ments determination in relevant studies is based on spec-
trophotometric measurements. This method is problematic 
when several pigments are present in a sample having differ-
ent absorption peaks and extinction coefficients. Absorption 
peak and extinction co-efficients for individual pigments are 
lacking in the literature. Therefore, this method provides 
only an approximate measurement of pigments. Accurate 
measurement of the pigments would require further inves-
tigations to determine absorption peaks for individual pig-
ments and modifications in the existing formulae. Quantifi-
cation and identification of pigments through HPLC–MS are 
an alternative method that is more accurate and reliable [13].

Gabrielyan, Sargsyan, and Trchounian [77] demonstrated 
the effect of electromagnetic irradiation (EMI) on the growth 
of Rhodobacter sphaeroides. EMI is electromagnetic waves 
with a wavelength of 0.1–10 mm and 30–300 GHz fre-
quency. EMI is commonly produced by communication 
devices and is known to affect the cytoplasmic membrane, 
genome, water splitting, and other enzyme activities. They 
found an illumination with EMI for only 15 min increased 
the specific growth rate by 1.2-fold compared to cells with-
out EMI exposure. They concluded that EMI could alter 
membrane-associated metabolic activities of the cells. EMI 
can modify the cell’s structure, hydrogen flux, and ATP syn-
thesis capability [77].

4.2  Oxygen supply

Oxygen influences the electron transport chain, respiration, 
and the composition of the RC. Oxygen is an important fac-
tor to regulate the proliferation of PNSB in a microbial com-
munity matrix [65]. PNSB are facultative anaerobes so they 
can survive under aerobic conditions and show tolerance 
to oxygen supply, but prefer anaerobic conditions. Gener-
ally, under aerobic conditions, ATP is produced by oxidative 
phosphorylation, whereas substrate-level phosphorylation or 
photo-phosphorylation are involved under anaerobic condi-
tions to produce ATP. The provision of oxygen to PNSB in 
the presence of light allows them to shift their ATP synthe-
sis mechanism between oxidative or photo-phosphorylation 

[78]. In PNSB, a competition exists between oxidative phos-
phorylation and the photosynthetic pathway. The selection 
of a final metabolism depends on the ratio of oxygen and 
light [15].

In oxidative phosphorylation, the respiration chain is the 
most important to synthesize ATP. In this, organic material 
is converted into intermediate byproducts and then moved to 
the tricarboxylic acid (TCA) cycle [51, 79]. Oxygen is used 
as a final terminal electron acceptor that warrants further 
degradation of the organic material into the final product 
(Fig. 4a,b). In photo-phosphorylation, the photosynthetic 
electron chain is important. In this process, light is first 
absorbed by light pigments, which are then transferred to 
BChl. Thereby, BChl moves from ground state to high-
energy state after absorbing light and releases an electron 
that transports through the electron chain and ATP is pro-
duced [78]. In a study of the effect of oxygen and light in 
different treatments; namely light-anaerobic, natural light-
microaerobic, and dark-aerobic conditions, it was found that 
Rhodobacter sphaeroides strain could remove > 90% COD, 
TN, TP in all these treatments [79]. The biomass yield, mac-
romolecules degradation, and pollutant removal were higher 
under aerobic (dark or light) conditions in comparison to 
light-anaerobic conditions [51]. They argue that under aero-
bic conditions the cells carried out oxidative phosphoryla-
tion to remove pollutants while photo-phosphorylation was 
observed under anaerobic conditions. Meng, Yang, Zhang, 
and Wang [80] investigated the effect of DO on artificial 
sugar wastewater treatment, pigment removal, and biomass 
production using Rhodopseudomonas as an inoculant. It 
found that biomass production increased with an increase in 
DO and reached the maximum (1645 mg·L−1) at 4–5 mg·L−1 
of DO. The highest COD (93%) and ammonia (83%) were 
also found at this DO level. A DO of 2–4 mg·L−1 was suit-
able for pollutants removal and 1–2 mg·L−1 DO for pig-
ments production. They were of the view that at DO level 
0–4 mg·L−1 oxidative phosphorylation was the dominant 
energy metabolism, whereas a DO < 0.5 mg·L−1 photophos-
phorylation was the possible metabolic pathway. In another 
study, while using Rhodobacter sphaeroides, the same 
group concluded that aerobic condition was preferred for 
COD removal from the wastewater but detrimental for PNSB 
growth [81].

Most of the aforementioned studies do not demonstrate 
a complete behavior of PNSB to oxygen supply. A major 
limitation in the studies [51, 79–81] was that they did not 
carry out any microbial test to identify microbial commu-
nity during or after the treatment process. Though the cul-
tures started out using a single strain of PNSB no details 
of filtered air supply were provided. In aerobic treatment, 
there is a possibility that aerobic bacteria might contaminate 
the system and contribute to the treatment process. How-
ever, a number of studies have demonstrated the ability of 



Biomass Conversion and Biorefinery 

1 3

Rhodobacter and Rhodopseduomonas palustris to compete 
or grow in aerobic conditions. Izu, Nakajima, Yamamoto, 
and Kurisu [50] investigated the changes in bacterial com-
munity and proliferation of PNSB during the treatment of 
organic wastewater under aerobic and anaerobic conditions 
using Rhodobacter sphaeroides as an initial inoculant. Bac-
terial community changes were analyzed by fluorescence 
in situ hybridization (FISH) and gradient gel electropho-
resis (DGGE). Under anaerobic conditions, the proportion 
of PNSB was up to 80% of the community and the domi-
nant species were Rhodobacter sphaeroides and Rhodop-
seudomonas palustris. Under the aerobic condition, the 
presence of Aquaspirillum delicatum, Xenococcus sp., and 
Cytophaga sp. was observed. They recommended that to 
keep the dominancy of PNSB in a microbial culture, oxida-
tion–reduction potential (ORP) should be kept low (− 200 
to − 300 mV).

Madigan and Gest [82] showed the growth of Rhodop-
seudomonas capsulata (now Rhodobacter capsulatus) 
chemoautotrophically by supplying a mixture of gases,  H2 
as energy,  CO2 as a carbon, and  O2 as an electron accep-
tor. They indicated that 5%  O2 permits cell growth, 10% 
increased the growth rate, but at 20% growth was halted dur-
ing the early-log phase (low cell density). However, 10–20% 
oxygen supply during the log phase (high cell density) 

stimulated the cell growth and prevented the cells entering 
stationary phase. Exceeding 20% completely inhibited the 
growth. They argued that growth inhibition at high  O2 con-
centration was attributed to the inhibition of hydrogenase 
enzyme. Different species of PNSB display different levels 
of oxygen tolerance; therefore, the determination of accurate 
level of oxygen supply requires a dedicated study for each 
PNSB species.

H S a P L Rogers [83] used mixed culture of Rhodobacter 
capsulatus and Klebsiella sp. for the treatment of simulated 
agricultural wastewater. They found that 1% DO increased 
the cell biomass and the population of Rhodobactere cap-
sulatus increased (60%) with a significant increase in the 
level of BChl. Further increase in DO to 15% resulted in 
depletion of BChl; however, 50% of the microbial popula-
tion was still composed of Rhodobacter capsulatus. COD 
removal with 15% DO was higher (1305 mg.L−1) than at 
1% DO (1107 mg.L−1). It validates the facultative nature of 
Rhodobacter capsulatus. H S a P L Rogers [84] also utilized 
mono-culture of Rhodobacter capsulatus to treat wastewater 
under anaerobic and aerobic (1% DO level) conditions. It 
found COD removal of aerobic culture was higher than the 
anaerobic. Studies revealed that Rhodobacter capsulatus 
could utilize the photosynthetic chain and/or the respira-
tion chain [7, 15]. In the presence of excess oxygen, the 

Fig. 4  a Oxidative phosphoryla-
tion in PNSB and its features. b 
Photo-phosphorylation in PNSB 
and its features. Composed from 
Lu, Zhang, and Dong [51]
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respiration electron chain was active while in the presence 
of light photosynthetic electron chain was active. There is, 
however, a need to confirm the role of aerobic respiration 
with other PNSB species.

4.3  Carbon utilization and wastewater treatment

Carbon is an essential component of microbial growth. 
PNSB can use a wide variety of carbon sources such as 
organic acids, short-chain alcohols, hydrocarbons, sugars, 
yeast extract, amino acids, and inorganic carbon sources 
including  CO2 [22]. Under photoheterotrophic metabolism, 
they utilize light as an energy source and organic material 
as a carbon source, which provides higher biomass yields 
than photoautotrophic and chemoheterotrophic bacteria [14]. 
The utilization of carbon sources is inter-dependent on the 
presence of other macro- and micro-nutrients. Thus, main-
taining a certain C:N:P ratio is critical to drive PNSB growth 
and wastewater treatment. Nitrogen is less critical than other 
nutrients since N-fixation is common among PNSB; how-
ever, N-fixation comes at an energy cost and will therefore 
result in lower yields [85].

For aerobic heterotrophic bacterial cultures, a typical 
COD:N:P ratio is up to 100:5:1, while for anaerobic 
heterotrophic cultures, the ratio is up to 250:5:1. In contrast, 
for PNSB, the optimum COD:N:P ratio is 100:9:1.5 under 
anaerobic conditions due to the higher proportion of carbon 
directed to biomass [39]. However, this higher efficiency 
of biomass generation also means that if a natural complex 
wastewater substrate is being used, there is a higher 
likelihood that nutrient addition will be required [86]. PNSB 
do not necessarily require an electron donor or acceptor to 
generate ATP; therefore, their substrate yield can reach 
1.0 g COD·g COD  removed−1 [13]. It was reported that 
PNSB could use a variety of pure and waste carbon sources 
including acetate, butyrate, propionate, citric acid, mixed 
organic carbons, amylose, lactate, domestic wastewater, food 
processing wastewater, and anaerobic digestate. In general, 
pure substrates showed high biomass yield (0.5–1.0  g 
COD·g COD  removed−1) than waste carbon substrates 
(0.2–0.7 COD·g COD  removed−1). Acetate is reported to be 
the best-suited carbon source giving a biomass yield up to 
1.0 g COD·g COD  removed−1.

Carbon supply in pure form shows good growth 
performance; however, it is typically expensive making 
SCP production cost-prohibitive. Wastewater or effluent-
derived substrates provide a combined benefit of low-
cost substrate and recuperation of costs associated with 
wastewater treatment and management. Wastewater-
derived carbon sources must be compatible with the end-
use of SCP and contain no residual harmful compounds 
that could affect the quality or safety of SCP as a feed. 
Compounds present in the wastewater stream that may be 

detrimental in their original state must be able to be fully 
converted to non-harmful compounds and cell biomass 
in the culture process. Substrates containing heavy metal 
pollution are not suitable for use with PNSB to produce 
SCP as the negatively charged surface of PNSB leads 
to biosorption of positively charged heavy metals. This 
process is further enhanced by the excretion of extracellular 
polysaccharides that show a strong affinity for heavy 
metals. SCP production from safe and abundantly available 
wastewaters with consistent nutrients concentration is a 
challenge. Public perception and acceptability to use 
wastewater-derived SCP as aquaculture/animal feed are 
also important to select a suitable substrate.

Substrates can be composed of complex organic material 
that may not be degraded by a single type of microbe. In 
this case, a mixed microbial culture is employed to degrade 
organic materials. Initially, it was thought that PNSB 
could not degrade macromolecules without pretreatment 
to solubilize them. However, recent research provides 
evidence of macromolecules degradation by PNSB under 
microaerobic conditions [87]. The organic strength of 
the waste substrate is also important for growth. Dilute 
wastewater from the aquaculture system is reported to be 
suitable for SCP production and its use as a fish feed [22, 68, 
88]. High-strength wastewater such as meat processing may 
cause ammonia inhibition and less light permeation due to 
high turbidity. To overcome this issue, the wastewater may 
need several orders of dilution to grow PNSB. Petrochemical 
wastewater containing a high concentration of alkane and 
hydrocarbon can be a potential substrate for PNSB. Only a 
few studies have demonstrated the growth potential of PNSB 
in high-strength wastewaters and the effect of dilution. PNSB 
have been reported to grow in pharmaceutical wastewater 
containing recalcitrant organic compounds and toxic 
substances [39]. A number of substrates have been reported 
for the production of SCP through PNSB (Table 4). The 
basic selection criteria for any substrate would be its organic 
carbon content, pre-treatment requirements, easy availability, 
and cost. Food wastewater originating from the processing 
of potato, fruit, vegetable, and oil have been a promising 
feedstock for SCP production. Similarly, wastewater 
originating from the juice and beverage industries can be 
a potential substrate for PNSB [89]. Wastewater produced 
from these industries contains high COD concentrations but 
low concentrations of nitrogen and phosphorous. Thus, the 
addition of nitrogen and phosphorous would be required to 
utilize it as a substrate. Rhodopseudomonas palustris has 
also been cultivated on palm and soybean cooking oils which 
could provide an effective way to valorize waste streams 
of used cooking oil [90]. However, its impact on SCP, like 
various other substrates tested for PNSB degradation and 
culturing, was not demonstrated. This is a necessary connect 
that should be focused on in future.
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4.4  Trace elements

Metal ions play an important role in cell metabolism [98, 
99]. Trace metals serve as cofactors for various enzymes 
to catalyze biochemical reactions. Trace metals include Ca, 
Cu, Fe, K, Mg, Mn, Mo, Na, Zn, Ba, Co, Ni, Sr, and V. 
An appropriate concentration of trace metals is required to 
maintain cell growth. Low concentrations can prevent key 
metabolic processes while high concentrations can result in 
binding with the cellular surface, internal cell accumulation, 
and inhibition. The binding and transportation of metals are 
a complex phenomenon. It is affected by several parameters 
including salinity, the concentration of monovalent and 
divalent ions, pH, and competition between metals ions, and 
other nutrients. An imbalance in the supply of metal ions 
can change the cell structure, morphology, and functionality 
of key biomolecules including proteins, nucleic acids, and 
the activity of the RC. Each metal ion plays a unique role in 
microbial metabolism [98].

Fe is a common metal and is involved in respiration, pho-
tosynthesis, and nitrogen fixation. It helps to detoxify reac-
tive oxygen and electron transport in the cell. Fe limitation 
can lead to an arrested yield of phycobilisomes, light, and 
oxidative stress. The valence state of Fe impacts its bioavail-
ability and transportation in the cell [70]. It can regulate 
the genes in the Fe-S cluster, which is the center of many 
biomolecules including cytochrome, nicotinamide adenine 
dinucleotide (NADH), and succinate. It helps to improve 
pigment yield and BChl. Fe can improve the synthesis of 
ATP. Wu, Zhang, Li, Lu, and Zhao [100] observed a 42% 

higher ATP yield in a medium amended with 20 mg·L−1 
of Fe than in the control. However, Fe dose higher than 
20 mg·L−1 would oxidize intracellular oxygen which dam-
ages the hydrogenase activity, and eventually, growth was 
halted. They stressed that an optimized concentration of Fe 
should be supplied to the cells to achieve high biomass yield 
and substrate conversion.

Cu plays an important role to improve microbial growth 
and biomass production [98]. Cu is an important component 
of plastocyanin and the electron transport chain; it helps 
to turn light energy into chemical energy. Cu exists in free 
ions, inorganic complexes, and chelates, but it is mostly bio-
available to the organisms in free ionic form. Panwichian, 
Kantachote, Wittayaweerasak, and Mallavarapu [101] indi-
cated that an inappropriate concentration of  Cu2+ (0.57 mM) 
can alter the shape of PNSB from rod-like structure to fila-
mentous that impacts pollutants removal potential of PNSB 
such as heavy metals.

Co is an effective element to promote microbial growth 
and is a component of vitamin B12 and succinyl-coenzyme, 
which plays a leading role in substrate-level phosphoryla-
tion. It is also important to promote ATP production [98, 
102, 103]. Co can substitute other trace nutrients includ-
ing Zn and Cd. It accelerates the generation of ATP, amino 
acids, protein, and substrate removal. A typical optimal dose 
of Co ranges from 5 to 140 mg·L−1 [70].

Zn is an important element of microbial growth, DNA 
transcription, protein structure, and gas transfer [104]. A 
study found that 130 mg·L−1 of Zn was an appropriate dose 
to achieve high substrate conversion [105]. Na and K are 

Table 4  Substrates used for 
various PNSB species

Substrate Species Reference

Palm and soybean cooking oil Rhodopseudomonas palustris [90]
Juice industry wastewater Afifella marine [89]
Food waste (tofu) Rhodobacter sphaeroides [91]
Brewery wastewater Rhodopseudomonas [92]
Dairy wastewater Rhodobacter sphaeroides [93]
Potato starch Rhodopseudomonas [94]
Meat processing (slaughter house) wastewater Rhodopseudomonas faecalis Rhodop-

seudomonas palustris
[95]

Aquaculture Rhodopseudamonas palustris [88]
Food processing Mixed culture of PNSB [73]
Agro-industrial wastewater Mixed culture of PNSB [96]
Sugar wastewater Rhodopseudomonas [66, 80]
Pineapple wastewater Rhodobacter sphaeroides [37]
Dairy wastewater Rhodopseudomonas capsulatus [37]
VFAs rich food industry wastewater Rhodopseudamonas palustris [60]
Poultry processing wastewater Mixed culture of PNSB [86, 96]
Vegetable oil Rhodopseudomonas palustris [90]
Acetate based synthetic wastewater Mixed culture of PNSB [54]
Swine wastewater Rhodopseudomonas palustris [97]
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essential for the maintenance of osmotic pressure in the cells 
[70], but requirements differ significantly based on genus 
and strain. Mo is important to regulate electron transfer 
and energy metabolism. Mo is used for the assimilation of 
nitrogen and regulation of the nitrogenase enzyme [70, 98, 
106]. Ni improves anaerobiosis and the pollutants removal 
efficiency of PNSB [107]. Mn is essential for photosynthesis 
and it plays a central role in the electron transport chain. 
Mn serves as a cofactor for several enzymes. The addition 
of Mn also increases COD removal and biomass yield. Like 
other trace metals, its high concentration (194 mg.L−1) also 
inhibits treatment efficiency and biomass yield [70].

Mg is an essential element to activate several enzymes 
in the cell. Mg concentration affects carotenoids yield and 
BChl functioning [108]. An appropriate concentration 
of Mg can help to increase the production of ATP, BChl, 
and cell growth, but is largely dependent on the substrate 
and other operational conditions. Mg shows high efficacy 
as an additive when used in light anaerobic conditions. 
Wu, Zhang, and Li [109] investigated the effect of Mg on 
biomass development of PNSB. It was found that with the 
addition of the optimal dose (10 mg·L−1) of Mg, the biomass 
was improved by 70%. They concluded that Mg improved 
BChl and ATP production by 60% and 33%, respectively. 
Synthesis of intracellular biomolecules such as protein, 
lipids, and nucleic acids involves the consumption of 
ATP molecules generated from the PSU. Thus, increased 
photosynthetic activity and high ATP yields increased 
biomass yield.

Despite the studies described, the effect of trace metals on 
PNSB growth and subsequently on SCP production has not 
been adequately studied, particularly with relation to cell and 
amino acid composition and with different genera of PNSB. 
The available studies show that trace metals catalyze various 
metabolic functions in the cell and have a significant impact 
on microbial growth, biomass yield, ATP synthesis, pollut-
ant removal, and pigment formation. Thus, manipulating the 
concentrations of trace metals provides a potential means to 
improve SCP productivity and enhance its quality.

5  SCP as an aquaculture feed

SCP can be derived from different microbial sources and 
used as aquaculture feed. It should ideally contain good 
ingredient characteristics and have a high digestibility, 
palatability, nutrient utilization, and ingredient functionality 
[110, 111]. Ingredient characterization involves the 
biochemical composition of the SCP, its source, and 
processing. Key composition parameters include protein 
content, amino acid profile, nucleic acid, lipids, dry matter, 
moisture content, fats, toxins, and vitamins and vary 
depending on the aquaculture species grown. Digestibility 

is characterized by energy contents and nutrients excreted 
by aquaculture organisms relative to what was fed and is 
one of the key issues using SCP as an aquaculture feed 
as low digestabtility leads to increased feed requirements 
and increased water treatment costs. The digestibility of 
SCP varies from 65 to 96% [7]. SCP digestibility can be 
improved by controlling microbial cultivation conditions, 
pre-treatment of microbial biomass, and the addition of 
methionine and cysteine in the feed [39]. A study reported 
that a pre-treated SCP showed the same nutrient and 
protein quality as a control (without pre-treatment), but the 
former showed high digestibility for amino acids, fats, and 
carbohydrates. Ingredient palatability refers to the taste or 
flavor of the diet, which is important to ensure the feed is 
consumed by the aquaculture organism. Nutrient utilization 
is a measure of SCP contribution to growth measured in 
terms of weight gain, feed conversion ratio (FCR), blood 
glucose, and thyroid hormone level. Ingredient functionality 
demonstrates physical properties of feed including sink rates, 
pellets durability, porosity, viscosity, adsorption capacity, 
and gelatinization property [63, 112]

5.1  PNSB as an SCP aquaculture feed

PNSB biomass can be used as an alternative to fishmeal. It 
is characterized by high crude protein content, amino acids 
including those that contain sulfur such as methionine, and 
cysteine, and other nutrients including CoQ10, and carot-
enoids [13]. Depending on PNSB species, they can pro-
duce a crude protein content up to 0.3–0.6 g-protein·g-dry 
 biomass−1. Recent investigations have shown that the amino 
acid profile of PNSB-based SCP is comparable with com-
mercial fishmeal. PNSB biomass contains carotenoids that 
are used as supplements in aquaculture feed. Carotenoids 
are anti-oxidants and protect against diseases. Carotenoids 
enhance salmonid health and improve their immune system.

A typical value of carotenoids in PNSB biomass 
ranges 0.5–13  mg·g dry  biomass−1 [73, 113, 114]. 
Although carotenoids can be added to aquaculture as a 
supplement, direct use of carotenoids containing biomass 
is recommended for efficiency. CoQ10 is an immune-
stimulant and anti-oxidant compound that improves feed 
efficiency, digestive enzyme activity, and the growth of 
aquaculture species [115]. Depending on PNSB species and 
growth conditions, they can produce CoQ10 ranging from 
2.5 9.3 mg·g dry  biomass−1. In comparison, carotenoids 
and CoQ10 in microalgae range 1.0–70 mg·g dry  biomass−1 
[116, 117] and 0.094–0.141 mg·g dry  biomass−1, [118, 
119], respectively. Large variation in pigments yield has 
been reported in the literature among different species 
of microalgae. It was noted that the pigment yield has 
been determined in different experimental settings across 
the studies; therefore, any comparison based on these 
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studies would not provide an accurate estimation. It is 
also important to note that the dominant carotenoids differ 
between microalgae and PNSB. Schmidt [120] investigated 
pigments in eleven strains of PNSB. They found that 
rhodopin and rhodopinal were the major pigments, whereas 
spirilloxanthin and β-Carotene were also present in those 
strains. Silva, Ferreira, Dias, and Barreiro [121] reported 
on the basis of 10-year bibliometric study on microalgae-
derived pigments that the most dominant pigments in 
microalgae were chlorophylls, phycocyanin, astaxanthin, 
and β-carotene.

Delamare-Deboutteville, Batstone, Kawasaki, Stegman, 
Salini, Tabrett, Smullen, Barnes and T Hülsen [122] used 
a mixed culture of PNSB as an aquaculture feed under 
different replacement ratios (33%, 66%, and 100%) and 
evaluated its impact on Barramundi (Lates calcarifer) 
growth, mortality, and FCR. A fishmeal replacement of 
33% and 66% had little or no detrimental impact on fish 
growth; however, 100% replacement reduced the growth and 
increased the FCR. Saejung, Chaiyarat, and Sanoamuang 
[113] investigated the effect of feeding three different PNSB 
species: Rhodobacter sphaeroides, Rhodopseudomonas 
palustris, and Rhodopseudomonas faecalis PA2, to shrimp. 
The shrimp fed with Rhodopseudomonas faecalis PA2 and 
Rhodopseudomonas palustris showed 82% and 46% survival 
rates, respectively. Shrimp using Rhodobacter sphaeroides 
completely died within 12 days of cultivation. These negative 
results are in contrast to most reported literature that shows a 
positive impact of PNSB in aquaculture feed. For instance, in 
a similar study [47] utilizing Rhodopseudomonas palustris 
and Rhodobacter capsulatus as a shrimp feed observed an 
increase of shrimp weight by 25% compared to a commercial 
diet. The use of PNSB in the diet showed better-feed 
conversion rate than the commercial diet. Moreover, the use 
of PNSB in feed suppressed growth of Vibrio pathogens 
by 80%. Chumpol, Kantachote, Rattanachuay, Torpee, 
Nitoda, and Kanzaki [123] also showed that PNSB produce 
antivibrio compounds that inhibit shrimp pathogenic 
Vibrio sp. and safeguard them against luminous vibriosis 
and hepatopancreatic disease, which are common issues in 
shrimp farming. They also found that PNSB improve the 
survival rate and growth rate of shrimp [124]. Seangtumnor, 
Kantachote, Nookongbut, and Sukhoom [125] found 
that PNSB produce proteolytic enzymes and antivibiro 
compounds, identifying ten PNSB strains that were able to 
avert the pathogenic effect of Vibrio sp. and support shrimp 
cultivation. Until now, the use of PNSB as aquaculture 
feed has not been widely explored, and thus, its large-scale 
application is not demonstrated yet. Future studies should be 
carried out to establish the suitability of PNSB biomass as 
aquaculture feed, its limitations, and strategies to overcome 
them. However, initial testing indicates a highly beneficial 
feed for the aquaculture industry.

5.2  Integration of PNSB for aquaculture wastewater 
purification and SCP production

Disease outbreaks, especially in shrimp farming, is a pri-
mary constraint in the aquaculture system. Poor water qual-
ity is a primary cause leading to the growth of pathogenic 
bacteria and the production or accumulation of toxins [9]. 
Pathogenic infection is controlled by the use of antibiot-
ics and chemical additives [126]. The use of antibiotics in 
large quantities leads to the presence of antimicrobial resi-
dues in the aquaculture system and is a threat to human and 
animal health. Also, in shrimp aquaculture, only 20–30% 
of nitrogen supplied turns into shrimp biomass, the rest 
deposits at the bottom of the shrimp pond. This causes the 
generation of ammonia and hydrogen sulfide which are toxic 
to the shrimp's health [89, 127]. It affects oxygen concen-
tration, pH, and contamination by supporting the growth 
of unwanted phytoplankton and microorganisms [9, 128]. 
The use of chemicals to control water quality has adverse 
environmental and ecological effects, and thus, impairs the 
sustainable aquaculture industry. Therefore, an alternative, 
safe, and environmentally friendly approach is required to 
maintain aquaculture water quality.

PNSB can remove toxic metabolites including nitrogen, 
phosphorous, and metals. PNSB can degrade organic mate-
rials and help the recycling of nutrients, thus, providing 
ecological benefits for sustainable aquaculture production. 
In a study, it found the use of the mixed culture of PNSB 
containing Rhodobacter sphaeroides and Afifella marina 
STW18 reduced the ammonia, nitrate, nitrite, and COD of 
aquaculture water. In a similar study, Zhang, Shu, Wang, Fu, 
Li, Deng, Liang, and Shen [88] found that the addition of 
Rhodopseudamonas palustris improved the quality of aqua-
culture water by removing nitrogen. Sujjat and Julian [129] 
found that Afifella marina was useful to control dissolved 
inorganic carbon in aquaculture tank and it was comparable 
with commercially established probiotics Bacillus sp. More-
over, PNSB serve as biocontrol agents and can displace the 
need for the use of antibiotics or other chemicals to suppress 
the growth of pathogens and increase aquaculture resistance 
against the diseases [126].

6  Challenges and prospects

PNSB are promising feedstocks for SCP production; 
however, their large-scale application is still not economical. 
SCP cost largely depends on the substrate yield and therefore 
selection of suitable wastewater can greatly reduce this 
cost. Identification of an appropriate wastewater stream 
requiring minimum or no modifications.i.e. dilution, 
nutrients addition, and pre-treatment is of utmost importance 
for the economical production of SCP. Safety is a primary 
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concern in this regard; this can be overcome by using clean 
wastewater sources including dairy, beverage, juice, and 
sugar industry wastewaters. Additional resource recovery 
from wastewater and re-utilization of material (water/
residual nutrients) could also potentially reduce SCP 
production costs.

A further challenge is consistent SCP composition, 
particularly due to the limited control over wastewater 
composition. In this context, only those wastewaters should 
be selected which show relatively consistent composition. 
PNSB provide some advantage in this regard as they are 
easily enriched and can therefore provide a dominant 
component of the SCP that remains stable when MMC 
cultured SCP is used. Howeer, the presence of RNA and 
toxins produced by different microorganisms in MMC 
remains a key concern. The toxins can cause an allergic 
reaction and can also lead to aquaculture death. The 
presence of toxins in SCP can be minimized by selecting 
a suitable production microorganism that does not produce 
toxins. However, risks are much reduced with PNSB as they 
contain lipopolysaccharides that are not harmful, and have 
even been demonstrated to reduce the effects of harmful 
lipopolysaccharides from other gram-negative bacteria 
[130–132]. Nevertheless, more study is required in this 
area to understand the antagonistic effects between PNSB 
lipopolysaccharides and the lipopolysaccharides from other 
organisms, as well as their overall risk.

PNSB biomass productivity is crucial to demonstrate the 
economical production of SCP. Until now, PNSB cultivation 
has been mainly carried out in photo-bioreactors (PBRs). 
The biomass productivity in PBRs is limited mainly due 
to improper mixing, in-efficient light permeation, nutrients 
gradient, and mass transfer issues. The most commonly 
used PBRs for PNSB are flat panel, tubular, bubble column, 
and upflow anaerobic sludge blanket (UASB). A detailed 
description of the PBRs can be found elsewhere in the 
literature [133, 134]. The existing design of these PBRs 
is actually derived from microalgae cultivation systems, 
which are generally suitable for aerobic growth. PNSB, 
being anaerobes/facultative anaerobes demand different 
design configurations. Their mixing requirements can be 
much cheaper than algae as they would not require mixing 
of air and  CO2 in the culture. Therefore, purpose-built PBRs 
should be designed for PNSB cultivation. Recently, the use 
of biofilm reactor for PNSB growth has received widespread 
attention as it provides high-density culture with a minimum 
or no dewatering requirements for biomass harvest [135, 
136]. Still, its use is challenging due to the light, nutrients, 
and pH gradient formation across the biofilm support.

Another critical issue of PNSB SCP which has received 
minimal research attention is harvesting [39]. Harvesting is 
very challenging due to dilute and stable cell suspension. 
Harvesting accounts for the major cost (20–30% of total) 

of biomass production with most organisms [137] due to 
the energy-intensive nature of most separation technologies 
such as centrifugation, filtration, chemical flocculation, 
and dissolved air f lotation. Recent research have 
demonstrated that harvesting through bio-flocculation can 
substantially reduce the harvesting cost as in this technique 
cell aggregation is carried out merely by manipulating 
cultivation conditions. Until now bio-flocculation has been 
rarely studied in the perspective of PNSB harvest. Another 
method of cost-effective harvest could be the proliferation 
of PNSB growth conditions to develop a biofilm. Bio-
film growth can give almost 100 times more concentrated 
biomass than the traditional suspended culture growth 
system, and thus, reduces the dewatering and harvesting 
costs [138]. Moreover, it returns high SCP yield and better 
quality than the suspended culture. T Hulsen, E M Sander, 
P D Jensen and D J Batstone [135] revealed that the biofilm-
based biomass of PNSB showed significantly higher crude 
protein, amino acids, BChl, and total carotenoids than the 
suspended culture biomass in a culture treating a red meat 
processing water. In addition, PNSB abundance in the 
biofilm was higher (57%) than in the suspended culture 
(43%). Nevertheless, further studies are required to assess 
the reliability of biofilm technology across different species 
of PNSB and the optimum culture conditions to induce 
biofilm.

Finally, public awareness and acceptability are important 
to enter SCP in commercial markets. Thus, quality and regu-
latory issues should be addressed and communicated to the 
public. The probiotic demonstrations of PNSB to date with 
shrimp farming studies provide an area of great commercial 
and environmental value that could be beneficial to persuade 
the public and industry, due to the reduction in chemical 
usage and mortality. Further research attention is required 
to fully demonstrate the role of PNSB as probiotics with dif-
ferent aquaculture species and further validate which PNSB 
provide these benefits and under what conditions. Moreover, 
most studies to date that have included feed trials have done 
so at a small scale. Larger scale, longer duration feed testing 
is required to fully demonstrate the value or risks associated 
with this source of SCP, including a comprehensive evalua-
tion of the SCP quality by the various aspects that comprise 
a good feed [111, 112].

7  Conclusions

PNSB are interesting mediators to synthesize SCP. They 
present unique metabolic characteristics that can promise 
an economical and sustainable production of SCP and pro-
duce biomass of suitable composition, with various other 
beneficial biomolecules that enhance their value as an SCP 
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source. However, their real potential as SCP has only been 
evaluated with a handful of aquaculture species and requires 
more in-depth benchmarking against other microbial SCP 
and commercial aquaculture feeds.

While various culturing conditions have been studied 
with PNSB, the majority of studies have focused on bio-
hydrogen production and to a lesser degree polyhydroxy-
alkanoates and CoQ10. Limited studies have focused on 
how culturing conditions such as lighting intensity, lighting 
wavelength, lighting frequency, pH, mixing, and oxygen 
influence the cellular composition of PNSB, and thus, the 
quality of SCP.

The integration of the resource recovery approach with 
SCP production would offer numerous benefits. However, 
there is a need to identify suitable wastewater streams, PNSB 
species which can grow in these substrates that will return 
high substrate yield and evaluate micronutrient requirements 
that may be necessary to add. So far, little attention has been 
paid to determining the role of trace elements but they play 
a vital role in light absorption, catalyzing photosynthetic 
reaction, and many other metabolic functions. Exploring 
the effect of trace metals can govern an improvement in 
SCP yield, composition, and cell morphology (to achieve 
easy harvest) and must be assessed against the economic of 
productivity gains.

SCP digestibility, nutrient utilization, and the feed 
conversion efficiency can help to determine the suitability 
of PNSB SCP for aquaculture and these values are barely 
reported. The presence of toxins and other harmful agents in 
SCP and their impact on aquaculture health should also be 
explored in addition to further identifying the role of PNSB 
as a probiotic. These factors should be assessed both at a 
laboratory scale and with further large-scale long-term feed 
trials.
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