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Abstract
Globally, the fossil fuel reserves are depleting rapidly and the escalating fuel prices as well as plethora of the pollutants 
released from the emission of burning fossil fuels cause global warming that massively disturb the ecological balance. 
Moreover, the unnecessary utilization of non-renewable energy sources is a genuine hazard to nature and economic stability, 
which demands an alternative renewable source of energy. The lignocellulosic biomass is the pillar of renewable sources of 
energy. Different conventional pretreatment methods of lignocellulosic feedstocks have employed for biofuel production. 
However, these pretreatments are associated with disadvantages such as high cost of chemical substances, high load of 
organic catalysts or mechanical equipment, time consuming, and production of toxic inhibitors causing the environmental 
pollution. Nanotechnology has shown the promised biorefinery results by overcoming the disadvantages associated with 
the conventional pretreatments. Recyclability of nanomaterials offers cost effective and economically viable biorefineries 
processes. Lignolytic and saccharolytic enzymes have immobilized onto/into the nanomaterials for the higher biocatalyst 
loading due to their inherent properties of high surface area to volume ratios. Nanobiocatalyst enhance the hydrolyzing 
process of pretreated biomass by their high penetration into the cell wall to disintegrate the complex carbohydrates for the 
release of high amounts of sugars towards biofuel and various by-products production. Different nanotechnological routes 
provide cost-effective bioenergy production from the rich repertoires of the forest and agricultural-based lignocellulosic 
biomass. In this article, a critical survey of diverse biomass pretreatment methods and the nanotechnological interventions 
for opening up the biomass structure has been carried out.
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1 Introduction

In the world, the need for fossil fuels is about 84 million bar-
rels (Mb) per day, and in 2019, it was about less than 16 Mb 
per day due to the restrictions on transportation to contain 
the outbreak of COVID-19. Over the years of 2019–2025, 
the demand for fossil fuels increased by 5.7 Mb per day 
at an average yearly rate of 950 kilo barrels per day [1]. 
Globally, the consumption trend of fossil fuel is in danger 
all over the world [2]. It is evident from the recent survey 

that the reserves of crude petroleum may be depleted soon. 
Hence, there is an urgent need to foster a sustainable source 
of renewable energy [3, 4]. Annually, the worldwide demand 
of biofuels is set to increase by 28% in the upcoming year of 
2026. In Asia, around 30% of the biofuel production will be 
increased by 2026, beating the European biofuel production. 
India will become the third largest market of biofuel produc-
tion in near future. The consumption of renewable sources 
for energy needs is meagre 23.7%; that warrants making use 
of maximum energy derived from the sustainable and renew-
able sources on the priority basis. Now, the primary focus 
is to use the bio-based raw materials rather than the con-
ventional for the production of renewable energy. Approxi-
mately 93% of all renewable energy is provided by biofuels 
and the remaining being renewable electricity. The biofuel 
output grows 24% over the time period of 2019–2024 (IEA, 
2019) [5].
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Biofuels produced from residues, wastes, and dedicated 
crops account for around 45% of biofuels consumed in the 
year 2030 in the net zero scenario, and it was high from an 
examination of approximately 7% in 2020. Presently, animal 
fats and cooking oil are primarily used for biofuel produc-
tion as non-food-crop feedstocks. But these feedstocks are 
present in very limited amounts. Thus, there is a demand 
for new and advanced technologies to be commercialized to 
expand the production of biofuel. For example, biomass-to-
liquids and cellulosic ethanol technologies use lignocellu-
losic biomass (LB) residues and waste feedstocks to produce 
low-carbon biofuels for use in the transportation sector. The 
utilization of biofuels instead of fossil fuels is one of the 
primary ways to limit carbon emission. As a matter of fact, 
biofuels make up 64% of the renewable energy consump-
tion in the year 2030 in the net zero emissions by 2050 sce-
nario [6]. Different renewable technologies are available for 
energy production by using different energy sources such 
as biomass, water, wind, geothermal, and solar. All these 
energy sources are called renewable energy by the Interna-
tional Energy Agency (IEA) [5].

Now, the primary focus is to use the bio-based raw mate-
rials rather than the conventional for the production of 
renewable energy. Biofuel production is one of the feasible 
choices for sustainable nature [7]. It is predicted that bio-
fuel is outstanding amongst other promising contenders to 
conquer the energy emergency and deal with this disturbing 
circumstance, since it has the capacity to limit a large por-
tion of the natural issues [8]. LB is one of the most signifi-
cant bio-based raw materials for the production of renew-
able energy. It shows significant advantages such as being 
eco-friendly, cost effective, easily available, and contains 
a high amount of carbohydrates which gives high yield of 
biofuels. In addition, the utilization of these lignocellulose 
wastes limits the environmental pollution links with its dis-
posal [9]. The lignocellulose biomass has proven a pillar for 
the biofuel industries [10]. The LB mainly consists of three 
components: cellulose (30–50%), hemicellulose (20–35%), 
and lignin (5–30%). Their composition concentration var-
ies depending on the type of raw material. The chemical 
composition of various feedstocks is described in Table 1. 
In this regard, different types of edible crops which contain 
high sugar content, oils, and starch have been used for the 
production of first-generation biofuels such as biohydrogen, 
biogas, bioethanol, biodiesel, and bio-oil [11].

Currently, only 2% of the biofuels are used for transport 
services. But it is assumed that about 27% of the vehicle fuel 
demand will be fulfilled by biofuels in 2050 [12]. Gao and 
his co-workers assessed that the residuals of farming (66%) 
and timberland (34%) forms a sum of 12,693 petajoule bio-
mass which was utilized for producing the energy. All these 
studies revealed that forest waste and agricultural waste are 
the best sources for biofuel production. Therefore, there is 

huge demand for innovative techniques for the production of 
biofuels by utilizing the waste materials [13, 14]. Agricul-
tural (sugarcane bagasse, corn stover, rice husk) and forest 
(wood pellets, pine needles) residues can be used for the 
production of biofuels. The complex structure of the LB is 
the major challenge in biofuel production. Sugarcane is the 
most common LB used in Brazil and India [15, 16]. Dif-
ferent types of LB containing raw materials are utilized for 
the commercial production of biofuels and their chemical 
composition are described in Table 2.

Various pretreatment methods were used such as physical, 
chemical, and biological. They disintegrate the lignin from 
hemicellulose and cellulose present in the complex structure 
of biomass. These carbohydrates (holocellulose) are further 
converted into the renewable mix of sugars by enzymatic 
hydrolysis [17]. These conventional pretreatment methods 
have certain drawbacks such as costly chemical substances, 
catalysts, process complexity, and causing pollution in the 
environment. The suitable biomass pretreatment methods 
should have certain properties such as preservation of hemi-
cellulosic and cellulosic parts, limited release of toxic inhibi-
tors, low cost, less demand of energy, and reutilization of 
chemicals. Most of the conventional pretreatment methods 
have certain drawbacks such as high processing cost, process 
complexity, production of degradation products, low pro-
cessing efficiency, lack of selectivity, limited release of sugar 
molecules, and causing pollution in the environment [18].

Recently, nanotechnology has shown tangible results in 
the biomass based biorefinery by minimizing the limitations 
associated with the conventional pretreatment methods [19]. 
Nano-dimensional materials possess unique properties such 
as high surface area to volume ratios for high saccharolytic 
enzyme loading for the efficient biomass processing [20]. 
However, the utilization of nanomaterials for improving the 
biofuel production comes under the scope of nanobiotech-
nology. Different metal oxide nano-catalysts like titanium 
dioxide, calcium oxide, magnesium oxide, and strontium 

Table 1  Composition of various lignocellulosic biomass

Lignocellulose 
biomass

Cellulose Hemicellulose Lignin Reference

Cassia fistula 56.67 7.12 6.22 [144]
Sugarcane bagasse 42.00 20.00 25.00 [145]
Corn stalk 34.85 29.87 8.16 [146]
Corn stovers 32.70 20.90 25.40 [147]
Miscanthus 52.10 21.30 18.60 [148]
Cocoa pods 32.30 27.70 21.44 [149]
Sago palm bark 42.60 24.30 19.20 [150]
Waste cotton 36.00 18.00 16.70 [151]
Neem wood bark 17.58 42.56 39.86 [152]
Sugarcane straw 36.90 19.70 13.70 [153]
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have been made with a significant amount of catalytic action 
for manufacturing the biodiesel [21, 22]. Nanotechnology 
can possibly accomplish the economical and well-organ-
ized methods of biofuel industries [23]. Nanomaterials can 
be used to immobilize the enzymes which were used for 
hydrolyzing the biomass [24]. Nanomaterials likewise have 
a high potential for recovery, and reusability of enzymes in 
the scale up of biofuel production. One example is magnetic 
nanoparticles which have the ability to enhance the chemis-
try of lignocellulose biomass at molecular level. Their mag-
netic nature helps in the recycling process by applying the 
magnetic field which makes this process cost-effective [25, 
26]. The primary focus of the pretreatment process is the 
complete digestibility of the LB with the limited use of harsh 
chemicals, limited generation of inhibitory compounds and 
least amount of pollution in the environment. All these goals 
are fulfilled by utilizing the nanotechnological intervention 
for biomass pretreatment and hyper production of biofuel in 
a cost-effective manner. Here, we review the lignocellulose 
biomass material availability and its potential application to 
enhance the biofuel production through nanotechnological 
interventions.

2  Past and present status of forest 
and waste materials

Forests are very important for our life. Forests play an 
important role in managing climatic conditions on the earth. 
The waste produced from forest is also a source of lignocel-
lulose biomass which is further used for biofuel produc-
tion, which is the best source of renewable energy. The main 
materials of the forest’s wastes are the logging residues and 
forest thinning used for the production of biofuel [27]. In the 
past several generations, the manufacturing of wood chips 
has been extended by using forest, with the help of industry 
experts assessing that about 24 million metric tons of overall 
modern pellet creation will arrive in the year 2019, and this 
is similar to the raw material of approximately 50 million 
 m3 of wood. Significantly, most of the modern pellet crea-
tion for the power generation and the International Renew-
able Energy Agency (IRENA) documented all the informa-
tion under the group of strong biofuels and the balanced 
wastes. Now, the worldwide producing limit has rose via 
52,146 MW in 2009 to 95,687 MW in the year 2018, along 
the fastest additions happening in the European Union from 
15,912 to 24,081 MW and 14,140 to 34,845 MW from Asian 
countries [28]. There are very few pros of forest residues. 
Forest resources and manure might be accessible through-
out the year and biomass stockpiling may not be necessary. 
The maintenance of economic charges is the major hurdle 
to produce energy from the forest debris. Forest residues are 
scattered across enormous regions, and in this way cause Ta
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high harvesting charges during collection. Besides, biomass 
transport and taking care of expenses are high because of 
low mass thickness, low energy thickness, and high damp-
ness content [29].

The waste of forest biomass consists of various types of 
chemical groups and components which rely on the incep-
tion of their by-product [30]. The food crops significantly 
select the forests and energy producing crops which fur-
ther can be utilized for the production of second-generation 
biofuels. Hydrogen fuel could be delivered naturally just as 
through chemical routes. Basically, two processes are uti-
lized for the production of hydrogen gas from the timberland 
and agricultural waste biomass. The first process is gasifica-
tion in which the biomass converts into combustible gas and 
the other process is pyrolysis similar to gasification. The 
forest wastes are basically separated into mass and elective 
forest wastes which includes the stubbles, humus, wood and 
dead seeds, spores, and leaf litter, respectively [31].

Carbon-to-nitrogen (C/N) substances of various wood-
land wastes assume a significant part in different sectors. 
Forest waste has a diverse proportion of C/N and various 
supplements that can be utilized as manure crude materi-
als. Both carbon and nitrogen are important for microbial 
cell development and metabolic processing. The working of 
anaerobic absorption is significantly influenced by the C/N 
proportion of the influent substrate [32].

At the world level, the USA, Brazil, India, and China are 
the nations with the maximum number of studies, which 
are centered around the utilization and abuse of farming 
deposits, derived from cereal harvests, fundamentally wheat 
and corn, as they are the primary makers of this kind of 
yields [33]. Many scientists, essentially from government 
and academic organizations, have contributed extensively 
to this examination and concluded that the dominant part of 
cellulose remains unused. It comprises gigantic resources of 
energy production, along with an astonishingly enormous 
manufacturing of lignocellulose biomass at 1 ×  1010 metric 
tons around the world [34]. It is surveyed in India that about 
915 million metric tons of biomass availability involves 
both agricultural and forestry land wastes which includes 
657 and 260 million metric tons per year, respectively. The 
collective potential power from both the assets is evaluated, 
i.e., 33,292 MW electric in which the agricultural assets is 
18,730 MW electric and the woodland and the waste land 
includes 14,562 MW electric [27, 35].

3  Conventional approaches of biomass 
pretreatment

Lignocellulosic biomass (LB) is considered as a dormant 
source of biofuel because of its plentiful worldwide acces-
sibility. The basic constituents of LB are lignin, cellulose, 

and hemicellulose. Lignin links with cellulose and hemi-
celluloses by joining with ester and ether bonds. LB pro-
duced from woodlands wastes or their debris contains 
a high amount of dampness, which may have complexed 
the handling of biomass, size decrease, and densification, 
just as expanding the susceptibility of biomass to spoilage 
and a subsequent quick decline in quality. Drying methods 
might be common (for example on account of grasses) or 
directed through traditional heating or microwaves [36, 37]. 
The principle objectives of pretreatment incorporate relax-
ing and expanding the surface region, structural adjustment 
and removal of lignin, incomplete hydrolysis and release of 
hemicelluloses, and primary structural alterations. Ligno-
cellulosic materials additionally have been broadly used as 
intermediate fluid fuel or chemical compounds like furfural, 
levulinic acid, and γ-valerolactone. Lignocellulose biomass 
materials are produced naturally from incorporation of  CO2 
and water through the photosynthetic process. Mostly, LB is 
considered as sustainable biomass on the planet earth [38].

The lignocellulose biomass composition of softwood 
and the hardwood are different. In softwood, it consists of 
40–44% of cellulose, 30–32% of hemicellulose, 25–32% of 
lignin, and 5% of extractives. It mainly contains the guaiacyl 
units (G) [39]. In hardwood, it consists of 40–44% of cel-
lulose, 15–35% of hemicellulose, 18–25% of lignin, and 2% 
of extractives. The hardwood contains a mixture of guaiacyl 
(G) and syringyl (S) units [40]. Different pretreatment meth-
ods were utilized for disintegration of LB in the softwood 
and hardwood such as ball milling, UV irradiation [41], 
alkali or dilute acid pretreatment [42], combined pretreat-
ment (organosolv and steam explosion) [43], among others.

Mattonai and co-workers pretreated the softwood and 
hardwood with ball milling and UV irradiation method. 
The cellulose crystallinity was disintegrated by the ball 
milling process not with UV irradiation. The UV irradiation 
increases the holocellulose content in woody species. The 
hardwoods are less affected than hardwood [41]. The LB of 
softwood and hardwood were treated with the peracetic acid 
at 95 ℃ for 5 h. After the treatment, around 23% of softwood 
and 32% of hardwood LB digestibility were determined [42].

3.1  Different pretreatment methods 
of lignocellulose biomass

There are a few techniques accessible for the pretreatment 
of lignocellulose biomass (Fig. 1) [33, 44–46]. Their advan-
tages and disadvantages are described in Table 3.

3.1.1  Physical pretreatment

These methods include mechanical operation and different 
types of irradiation and ultrasonic pretreatments [47, 48]. 
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Various physical pretreatment methods are described in the 
following:

3.1.1.1 Grinding The grinding of biomass feedstock is a sig-
nificant cycle to accomplish maximum yield of high valued 
pyrolysis products [49]. Reduction in size of raw material 
increases the warmth stream between the substrates. During 
pyrolysis, reduction in polymerization and crystallinity of 
biomass was noticed which further influenced production of 
bio-crude/bio-oil compounds [50]. Brandt and co-workers 
studied a three-stage processing strategy for pretreatment of 
residuals of softwood. The forest residues were converted 
into the fuel pellets and sugar molecules [51].

3.1.1.2 Soaking or pelleting It improves the biomass digest-
ibility that can reduce cellulose crystallinity [52]. Huo and 
co-workers pretreated the eucalyptus residues by utilizing 
the ammonia-based soaking method to upgrade the profi-
ciency of enzymatic hydrolysis, and 64.96% of sugar yield 
was obtained. The enzymatic digestibility and delignification 
rate were increased to 73.85% and 64.49%, respectively [53].

3.1.1.3 Mechanical extrusion In this method, the LB 
is warmed over 300 °C under the shear blending step. It 
requires high shearing power and energy which makes this 
process costly. The type of the screws, pressure proportion, 
and speed of the screw impacts the pretreatment process 
[54]. Gu and co-workers treated the forest waste residuals 

by extrusion process to enhance the yield of fermentable 
sugars. Enzymatic hydrolysis and sugar production were also 
enhanced via this process [55].

3.1.1.4 Microwave In this process, microwaves at low energy 
along with the irradiation gives the high warmth in long 
duration which disintegrates the structure of lignocellulose 
with minimum production of inhibitors. In this method, 
dielectric polarization is responsible for the atomic colli-
sion and thermal power production helps in the interruption 
of the lignocellulosic biomass [56]. Camani and co-workers 
treated the eucalyptus waste by microwave assisted method 
and the lignin content was reduced from 26.6 to 4.8% [57].

3.1.1.5 Ultrasound In this method, the ultrasound waves 
affect both physically as well as chemically. Formation of 
small bubble cavities bursts the hemicellulose and cellulose 
content present in the biomass. Researchers treated LB by 
the ultrasound waves in the range of 10–100 kHz [58]. The 
pine saw-dust was pretreated with ultrasonication, and it 
leads to 19% high yield of reducing sugars [59].

3.1.1.6 Pulsed electric field In this method, the lignocel-
lulosic biomass is treated at high voltage in the range of 
5–20 kV/cm for a shorter time period [59]. During this pro-
cess, the pores present in the plasma membrane are opened 
which expose the cellulose and then the catalysts start hydro-
lyzing it [60]. Significant increases in sugar content in wood 

Fig. 1  Different pretreatment methods applied to the lignocellulose biomass
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chips and switchgrass were observed after the pretreatment 
process [61].

3.1.1.7 Freezing In this method, the LB was first merged 
in the water and then iced at − 18 °C for a certain period of 
time. After that, the treated biomass was deforested at room 
temperature [62, 63]. Zhu and co-workers investigated the 
freeze–thaw pretreatment strategy on poplar chips for the 
extraction of hemicellulose. The maximum production of 
hemicellulose content was reported as 85.87 mg/g [64].

3.1.1.8 Pyrolysis During this process, the LB converts into 
various gaseous products such as  H2, char, and CO. The 
char residues were formed which were further treated with 
dilute acid and filtered with water. The water filtrate contains 
the glucose molecules which is a major source of carbon 
utilized in the production of biofuels [65]. Dhanalakshmi 
and co-worker pretreated the wooden bark of Azadirachta 
indica and maximum 49.5 wt% production of bio-oil under 
450 °C temperature was observed [66].

3.2  Physicochemical pretreatment methods

It is found that physicochemical methods are effective for 
forest biomass pretreatment. For example, milling and 
grinding of biomass prior to treating with any chemicals, 
expulsion in combination with ammonium fiber explosion 
(AFEX) and under intense temperature and pressure of acid 
or alkali treatment or assisted with microwave [67]. There-
fore, main physicochemical methods used are AFEX, and 
carbon dioxide explosion [68].

3.2.1  Steam explosion

It is more economical than other methods such as grind-
ing and soaking [68]. This method incorporates the soaking 
of dried biomass with vapors at raised pressure and tem-
perature, continued by sudden discharge of pressure while 
compelling the lignocellulosic biomass via a little hole, 
during which the flash vaporizing water applies a ther-
mal–mechanical energy which destructs the biomass [69]. 
Dai and co-workers pretreated the bamboo wood (Bambusa 
stenostachya) by the combination of hydrothermal and steam 
explosion method and observed reduction in lignin content 
from 21.7 to 14.7% [70].

3.2.2  Liquid hot water

This method operates under elevated pressure and tem-
perature. The significant range of temperature and pressure, 
i.e., 125–320 °C and 5–200 bar, is respectively used for the 
pretreatment of LB [68]. Yang and co-workers pretreated 
the bamboo chips with liquid hot water for bioethanol Ta
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production. After the pretreatment, xylan and lignin con-
tent were reduced from 18.2%, 14.6% to 14.7% and 12.9%, 
respectively. The highest production yield of glucose, etha-
nol and xylose were recorded as 53.3%, 4.8 g/L, and 57.3%, 
respectively [70].

3.2.3  Ammonia pretreatment

Several pretreatment methods are utilized in which the 
ammonia is used as a major component such as the ammo-
nia fiber explosion method, aqueous ammonia soaking 
method, and the ammonia recycle percolation method [71]. 
The ammonia fiber explosion technique is a kind of alkaline 
thermal pretreatment which reduces the quantity of lignin 
but also removes the hemicellulose content and decreases 
the crystallinity of cellulose [71–73]. Their certain advan-
tages are minimum production of inhibitors, release of waste 
water, high storing of solid material about 18% or higher, 
and low alteration in the native structure of lignin [74]. In 
a study, Zhang and co-worker utilized the ammonia sulfate 
with enzymes by efficiently hydrolyzing the biomass of bam-
boo. The lignin content was reduced significantly from 22.94 
to 1.21% and obtained glucose with maximum yield of 100% 
in 48 h [75].

3.2.4  Carbon dioxide explosion pretreatment

This method is harmless, inexpensive, incombustible, and 
also requires a low temperature. The release of fully pres-
surized explosive  CO2 directly penetrates the substrate of 
LB which improves the hydrolysis process by enhancing the 
surface area [76]. The supercritical  CO2  (sCO2) acquires the 
liquid density and shows the gaseous attributes at absolute 
temperature (31 °C) and pressure (7.4 MPa) [68]. Sohni and 
co-workers pretreated the palm oil biomass by utilizing the 
 sCO2. The enzymatic hydrolysis reaction was employed to 
achieve a more cellulose content of 61% as compared to an 
untreated sample [77].

3.2.5  Wet oxidation

It is a nonspecific process which is commonly carried out at 
elevated temperature and pressure, respectively [68]. During 
this process, various oxidation reactions exist which release 
the organic acids that solubilize, delignify, and hydrolyze 
the hemicellulose content [78]. Biswas and co-workers uti-
lized the wet oxidation method with enzymes for efficiently 
hydrolyzing the LB of poplar sawdust and the digestibility 
of hemicellulose (75%) and cellulose (83%) were enhanced 
[79].

3.3  Chemical pretreatment methods

The chemically based pretreatment techniques are more 
convenient to facilitate the degradation of complex biomass 
[80]. The various methods of chemical pretreatment were 
described as follows:

3.3.1  Dilute acid

Sulfuric acid is mostly utilized for the pretreatment of 
agricultural residues such as corn stover, poplar, tidy, and 
switchgrass [81, 82]. Slathia and co-workers utilized the 
dilute HCl for the enzymatic hydrolysis of pine needles 
(Pinus roxburghii) and maximum yield of sugars (0.43 g/g 
biomass) was observed [83].

3.3.2  Alkaline

This method utilizes alkalies such as potassium hydroxide, 
calcium hydroxide, ammonium salts, and sodium hydroxide 
for the pretreatment of LB [84, 85]. Bay and co-workers uti-
lized sodium hydroxide for the hydrolysis of softwood pine 
and hardwood poplar and obtained the enhanced bioethanol 
yield (109.83 g/kg initial pinewood and 101.44 g/kg initial 
poplar wood). [86].

3.3.3  Ozonolysis

The lignin content was significantly degraded when treated 
with this process [87]. The different forest residues such as 
softwood sawdust and hardwood sawdust were treated to 
reduce their lignin content. After the ozone pretreatment, 
the release of these monolignol compounds were enhanced 
which signifies the delignification of forest residues [88].

3.3.4  Ionic liquids

The solvents utilized in this method have significant proper-
ties such as low level of vapor pressure, low liquefying point, 
high level of heat energies which are stable and also high 
level of polarization [0]. It disrupts the complex structure 
of LB by competing with the hydrogen bonds which are 
existing in the complex. Ionic liquids separated the cellulose 
from lignocellulose present in forest waste: poplar, softwood 
pine, sawdust and also recycled the costly ionic liquids for 
further process [89].

3.3.5  Organosolv pretreatment

In this method, solvents are used for disintegrating the lignin 
or hemicellulose along with the use of acid catalysts such 
as hydrogen chloride or sulfuric acid [89, 90]. Different 
organic acids and solvents are utilized in this process such 
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as salicylic acid, oxalic acid, acetylsalicylic acid, acetone, 
ethanol, tetrahydrofurfuryl alcohol, ethylene glycol, trieth-
ylene glycol, and methanol [91, 92]. Alio and co-workers 
pretreated the softwood species such as pine, fir, spruce, 
douglas fir, and scots pine, and approximately 80% of cel-
lulose content was recovered with 70% of purity [93].

3.3.6  Deep eutectic solvents

This method employed a eutectic mixture which is com-
posed of two or three cost-effective components [94]. Cho-
line chloride is frequently utilized and shows significant 
advantages such as it acts as a receiver of hydrogen bond, 
biodegradable, easily recovered, and also has the ability to 
form the deep eutectic solvents (DESs) by associating with 
the hydrogen donors such as carboxylic acid, polyols, and 
urea [95]. Lin and co-workers observed maximum yield of 
glucose (76.9%) and xylose (81.3%) from the hydrolysis of 
bamboo residuals by using DESs [96].

3.4  Biological pretreatment

In contrast with traditional physical and chemical pretreat-
ment strategies, the biotic/biological pretreatment method is 
recognized as an effective, eco-friendly, and very low energy 
consumption process [97]. These treatments are accom-
plished by microbes like soft-rot fungi, earthy brown fungi, 
and white fungi which mostly disintegrates the hemicellu-
lose, lignin, and very little amount of cellulose [98, 130]. 
Suhara and co-workers pretreated the bundles of bamboo 
with fungi such as Punctularia sp. After pretreatment, the 
total sugar yield (60.3%) was enhanced and the lignin con-
tent was reduced [99].

3.5  Combined pretreatment

The combination of pretreatments shows significant advan-
tages such as enhancing the sugar production efficiency, 
limiting the production of inhibitors and reduction in pro-
cessing time. The combined process is easily scalable and 
highly efficient to recover the lignin and hemicellulose 
[100]. Mahajan and co-workers investigated the impact 
of consecutive physicochemical pretreatment viz. steam 
explosion, grinding, and acid base-acid pretreatment on 
the pine spikes. Approximately 65.92% of cellulose content 
and 21.34% reduction of total lignin content were observed 
[101]. The combination of alkali and ionic liquids increase 
the disintegration of sugarcane bagasse biomass. After 24 h, 
maximum production of xylanase (833 IU  L−1  h−1) and high 
content of cellulose were observed [102].

3.6  Nanoscale pretreatment methods

The conventional pretreatment methods have limitations 
to minimize the rate of polymerization and crystallinity of 
cellulose. The production of inhibitory compounds, incom-
plete digestibility of LB, and the production of monomer 
compounds of lignin remains the hurdles for enzymatic 
hydrolysis of LB. The main challenge is how to eliminate 
the lignin compounds completely, cost-effectively while 
maintaining the purity of sugars which are further utilized 
in the production of biofuels [103]. To overcome all these 
issues, the introduction of nanotechnology greatly impacts 
the biorefinery industries with their significant properties. 
Recently, pretreatment methods based on nanotechnology 
are being explored at broad level [21]. This technique basi-
cally depends upon the penetrating ability of nanoparticles 
which helps to penetrate the cell membrane of LB. The inter-
action of nanoparticles with the other chief components to 
release the targeted molecules like hemicellulose or lignin 
under the severe conditions. To enhance the functioning 
of the chemical catalyst, this technique produces a high 
level of shearing in the reactor which disintegrates the LB 
recalcitrance [104]. The use of magnetic nanoparticles is 
a favorable methodology for the pretreatment of LB and it 
also possibly gives us different benefits. Easy retrieval and 
reusability of the immobilized enzyme make this technique 
a cost-effective methodology. Nanoparticles have gained the 
attention of the researchers due to their significant properties 
such as nanoscale size, high surface area to volume ratio and 
forms a large number of active sites that participates in dif-
ferent reactions, high reactivity, thermal stability, chemically 
stability, high specificity, high catalytic efficiency, high rate 
of crystallinity, and high adsorption capacity. All these novel 
properties of the nanoparticles play a significant role in the 
production of biofuels [67].

3.6.1.1 Acid‑functionalized magnetic nanoparticle 
(AFMAN) Acid-functionalized magnetic nanoparticles are 
the strong acid nanocatalysts, for example nanoscale mag-
netic particles (NMN). Such nanoparticles act like acid 
(as in the event of acid pretreatment) in decomposing the 
LB during pretreatment (Fig. 2), yet their magnetic behav-
ior empowers their retrieval with the recycle of magnet to 
employ them [105]. Examples of the acid functionalized 
magnetic nanoparticles incorporate alkyl-sulfonic acid 
functionalized nanoparticles, silica-protected cobalt bear-
ing spinel ferrite nanoparticles, and silica-propyl sulphonic 
functionalized nanoparticles. Silica-covered nanoparticles 
that function with the carboxylic acid, and propyl-sulfonic 
acid, and perfluoropropyl-sulfonic acid to fully catalyze the 
decomposition of disaccharide sugar such as cellobiose and 
essentially solubilize wheat straw hemicelluloses brought 
about 58–90% dextrose yield of the hemicellulose. The 
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sulfonated magnetic carbonaceous nanoparticles utilized 
throughout the hydrolysis series of various LB showed a 
78% transformation of cellobiose with a better retrieval rate 
[106]. Researchers pretreated the sugarcane bagasse by uti-
lizing the two types of acid functionalized magnetic nano-
particles, i.e., alkylsulfonic acid and butylcarboxylic acid. 
About 500 mg/g of sugarcane bagasse biomass was treated 
with both the acids such as alkyl sulfonic acid and butyl 
carboxylic acid, and it released high amounts of sugar, i.e., 
18.83 g/L and 18.67 g/L, respectively. It was comparatively 
high as compared to the sugar yield of non-treated biomass. 
It is also cost-effective due to the magnetic nature of nano-
particles. By applying the magnetic field, the nanoparticles 
are recovered easily for further use [106]. Guo and co-work-
ers utilized the immobilized enzyme laccase for the hydroly-
sis of corn stover. They synthesized the magnetic nanopar-
ticles for the immobilization of laccase and utilized them in 
the pretreatment process. By using the immobilized laccase, 
the degradation rate of lignin was about 40.76% which was 
high as compared to control. After the pretreatment pro-
cess, this immobilized enzyme was recycled for further use. 
Approximately 50% of reutilization activity were retained 
after 6 cycles [107]. Khalid and co-workers combined two 
methods such as alkaline pretreatment method and magnetic 
nanoparticles for the pretreatment of rice straw. Alone each 
method gives minimum yield of biogas and methane but 
in the combination of 2% sodium hydroxide and 100 parts 
per million of magnetic nanoparticles enhance the yield of 

biogas and methane by 100 and 120% respectively as com-
pared to the control sample [108].

Nanoscale shear hybrid alkaline (NSHA) method In this 
method, the combination of chemical catalyst like an acid, 
volatile solvent, or alkali and the high-speed shear force 
degrades the recalcitrance of LB [67]. A specific reactor, 
i.e., Taylor-Couette, is utilized to give the shearing force of 
around 10,000  s−1 LB for a few minutes in the occurrence 
of a chemical catalyst. The high production of cellulose is 
recovered in a simpler edible form. NSHA permits effective 
lignin disposal with cellulose and hemicellulose work in a 
brief timeframe [109]. Wang and his co-workers used the 
NSHA method for pretreatment of corn stover biomass for 
the production of biofuel. Around 12,500  s−1 shear rate and 
sodium hydroxide in 1:1 proportion were used on biomass 
for one minute at room temperature. After the pretreatment, 
about 70% of cellulose was converted which impacts posi-
tively on the production of biofuel [110]. Various studies 
on the NSHA pretreatment method indicate that lignin and 
hemicellulose content were eliminated from the original 
sample and left approximately 80% of the cellulose content 
[34]. Researchers used the cellulase enzyme which performs 
synergistic action like degradation of biomass and formed 
minute size polysaccharides agglomeration. These mol-
ecules are further converted into simple sugar molecules by 
the NSHA pretreatment method. In fact, the combination 
of immobilized cellulase and NSHA pretreatment method 

Fig. 2  Hydrolysis of lignocellulosic biomass using cellulase immobilized on magnetic nanoparticles (MNPs)
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improves the enzymatic degradation of biomass by 4- to 
fivefold and converts into the simple forms of sugars which 
are further utilized in the production of biofuels [109].

3.6.1  Synthesis of nanoparticles

A wide range of methods are available for the synthesis of 
nanoparticles. It includes the physical, chemical, and biolog-
ical techniques. All these techniques are broadly categorized 
into bottom-up and top-up approaches. Each method has its 
own advantages and disadvantages [110]. Though biologi-
cal methods are mostly recommended for the nanoparticles 
synthesis as they are toxic free, eco-friendly, and release a 
minimum number of inhibitory compounds which affects 
the functioning of biocatalyst during biofuel production. 
Biological methods are more favored because they are less 
expensive and also require a minimum amount of energy 
for the production of biofuel [111–113]. Different synthesis 
methods of nanoparticles are described in Table 4.

4  Nanomaterials in the immobilization 
of enzyme and their role 
in the pretreatment of LB

The different concerns are related with the conventional pre-
treatment techniques. Thus, it is necessary to utilize novel, 
environment-friendly, and cost-effective pretreatment meth-
odologies. It is demonstrated that nanotechnology-based 
methods can play a significant role to overcome the issues 
of other methods. The high usage of nanotechnology in vari-
ous regions, including the production of biofuels, has drawn 
the attention of various researchers. The forming units of 

LB are nanometric in dimensions, so the nanotechnological 
technique can be utilized to improve the characteristics of 
lignocellulosic material [109]. The nanoscale instrumenta-
tion and enzymatic reactions are utilized for analyzing the 
structure of lignocellulose biomass which helps to improve 
the conversion process (fermentation, gasification, etc.) of 
biomass for the production of biofuels. Nanoparticles play 
an important role in the production of biohydrogen which 
occurs in the dark fermentation conditions. Specifically, the 
inorganic nanoparticles like iron, silver, nickel, and titanium 
oxide have expanded the production efficiency of biohydro-
gen [114].

Nanomaterials are the smaller size entities that help to 
penetrate smoothly into the cell membrane of LB to deliver 
monomeric and oligomeric sugars. It is used in the pretreat-
ment process and also hydrolyzes the LB by using enzymes 
for the conversion of biomass. The pretreatment of lignocel-
lulose biomass by utilizing the nanomaterial is proven as a 
cost effective and environment friendly process. Nanotech-
nology has the capability to enhance the structure of biomass 
at atomic level. Nanomaterial with magnetic characters are 
ideally utilized as it helps in their retrieval from reaction 
mixture and reutilize; in this manner, it makes the procedure 
economical [115]. Recently, nanomaterials have been used 
for the immobilization of enzymes that enhance their reus-
ability [116]. Various nanomaterials used for immobilization 
of enzymes are discussed in Table 5. Cellulase, hemicellu-
lase, and other lignolytic enzymes are immobilized on dif-
ferent nanomaterials. In hydrolysis, various nanomaterials 
are utilized as a pillar for immobilizing the enzymes which 
mostly incorporate the different nanomaterials such as mag-
netic, silica, nickel, and oxide nanoparticles. Nanomaterials 
can mainly enhance the productivity of immobilized proteins 

Table 4  Various methods for synthesis of nanomaterials

Synthesis approach Advantages Disadvantages Techniques for synthesis References

Bottom-up Cost-effective, uniform-
ity and large scal-
ability

Limited defects in the 
structure of nanopar-
ticles

Require compatible molecules and 
surface

Has limitation in changing the struc-
ture of atoms and molecules

Electrochemical oxidation or reduc-
tion, Chemical reduction, sono-
chemical synthesis, solvothermal 
synthesis, photochemical synthe-
sis, thermolysis, co-precipitation, 
microemulsion, sol gel fabrication, 
microwave-assisted synthesis, 
atomic layer deposition, arrested 
precipitation, vapor phase chemical 
deposition, biological methods which 
includes bacteria, fungi, yeast and 
plant extracts

[172–176]

Top-down Simple method Requires costly and heavy instruments
Defects in surface structure creates hin-

derance in fabrication of nanoparti-
cles and this applicable for large-
scale production not for small scale

Ball milling, micromachining, arc 
discharge, ion-sputtering, laser 
excision, inert-gas condensation, 
lithography which includes electron 
beam, nanoimprint, scanning probe, 
block copolymer

[172, 177–180]
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since it expands the surface region for the enzyme connec-
tion, which improves the loading efficiency of enzymes 
[117].

In various hydrolytic responses, the nanobiocatalysts are 
retrieved and reutilized frequently. Lignocellulose material 
can be hydrolyzed using nanomaterials and can be attained 
by two main approaches such as covalent cross-linking or 
physical adsorption and utilizing the functionalized nano-
material [34]. Recovering and reutilization of the pretreated 
nanocatalysts will be useful in limiting the cycle value 
because of the least demand of downstream handling. The 
acid functionalized magnetic nanoparticles also play a sig-
nificant part in cost reduction. They are also considered as 
solid acid nanocatalysts having solid potential to catalyze 
hydrolysis response. These nanoparticles have the advantage 
that they can be recycled due to their magnetic nature [118]. 
It can also increase the production of sugars. At 175 °C, by 
using the 0.8% of sulfuric acid, the LB of yellow poplar saw 
changed into the 96% of hemicellulose. At 160 °C, sulfuric 
acid along with nanoparticles changed hemicellulose content 
to 66% and 61% with 50- and 400-fold, respectively [119].

Different techniques and nanomaterials were used such 
as magnetic nanocatalyst, nanofibers, nanofiltration, nano-
tubes, nanosensors, and nanoshear hybrid alkaline proce-
dure (NSHA). Different nanomaterials in pretreatment of LB 
are depicted in Table 6. Nanoreactor empowered with high 
speed shear is used for removal of lignin in NSHA at mild 
temperature [120]. Nanocatalysts, i.e., particles of very small 
size, are undergoing an explosive development to enhance 
the hydrolysis of LB. Nanocatalyst designs the catalyst with 
high performance, great sensibility, and high steadiness, and 
all these properties can be effortlessly acquired by shorten-
ing the dimensions, heat or chemical steadiness, and mor-
phological and electronic structures of specific nanomaterial 
[121]. At 95 °C, around 6.18-fold of amino acid creation and 
about 18-fold deletion of lignin content was done by utiliz-
ing the nanoparticles of magnesium oxide with functional 
protease as compared with unprocessed enzymes. By con-
trasting with the samples of preprocessed cellulase, it was 
observed that about 30-fold of reducing sugars are produced, 
when the preprocessed samples of MgN-pro were exposed to 
xylanase-initiated magnesium oxide nanoparticles at 8 °C. 
Sugarcane bagasse were treated with xylanase along with 
magnesium oxide nanoparticles that produced 1.82-fold 
reducing sugars at 8 °C as contrast with the unprocessed 
samples [122].

Magnetic nanocatalysts, i.e., magnetically recovered 
gold nanocatalysis, was assessed in various responses, for 
example, manufacturing of propargylamines and couplet 
response [123]. Nanoimmobilization of hydrolytic com-
pounds, for example, cellulase, xylanase, and laccase, that 
react on lignocellulose compounds is reported to enhance 
long-run steadiness of catalysts under severe conditions Ta
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[124]. Shaheen and his co-workers used nanomaterials to 
produce useful materials from futile squanders, predomi-
nantly sawdust. Researchers utilized the wood sawdust for 
extracting the cellulose nanocrystal by utilizing the tech-
nique of acid hydrolysis through execution of ultrasonica-
tion strategy. The magnetic nanoparticles are utilized for 
the breakdown of cellulose and their production is done 
by chemical precipitation technique [125]. These nanopar-
ticles were utilized for immobilizing the cellulase which 
improved the hydrolytic viability of biomass than the free 
form of cellulose. The researchers observed the activity of 
immobilized cellulase, and it showed that after 48 h, the 
initial run of hydrolysis response released more amount of 
glucose (20 g/L) than the free form of cellulose (14 g/L). 
After the pretreatment of 48 h, the immobilized catalyst 
maintained its steadiness in the second and third cycles 
and released glucose of about 6.15  g/L and 3.03  g/L, 
respectively [126–131].

On the other hand, the carbon nanotubes (CNTs) have 
drawn much consideration for biomass pretreatment 
because of their outstanding design and high ability to 
offer significant properties like high tensile durability, high 
thermal characters, and the electrical strength [131, 132]. 
They are formed of graphite sheets which are organized 
in a round and hollow shape and depending on the num-
ber of layers such as single-walled CNTs or multi-walled 
CNTs. Multi-walled CNTs seem to be more favorable 
for immobilizing the cellulase as they enhance the elec-
tronic characters, high physical and chemical steadiness, 
economic, easily prepared, and safe as contrast with the 
single-walled CNTs [133]. The immobilization of enzymes 
on carbon nanotubes shows consistent and dynamic nature 
at elevated temperature, high surface region, high protein 
value, and prevalent distribution in combination with the 
other supportive qualities, for example, reciprocal of the 
mass transfer coefficient also reutilizing the enzyme.

The utilization of carbon-based nanomaterials for 
immobilizing the cellulase was studied by different 
researchers. Ahmad and co-worker immobilized cellulase 
on multi-walled CNTs through carbodiimide mixing which 
were isolated from Aspergillus niger. At significant pH and 
stable temperature, the immobilized cellulase maintained 
85% of enzyme activity and also reused multiple times 
for hydrolyzing the cellulose [132]. Azahari and his co-
workers isolated the cellulase from Trichoderma reesei 
was additionally immobilized onto multi-walled CNTs by 
using the physical adsorption strategy. Despite its usage 
for 3 cycles, it maintained its enzymatic activity up to 
60% [134]. Consequently, the utilization of nanoparticles 
enhanced the catalytic proficiency of enzymes which plays 
a significant part in enhancement of pretreatment of lig-
nocellulosic biomass.

5  Role of nanotechnology in the production 
of bio‑renewables and energy

The nanotechnology field is emerging very rapidly. Their 
significant applications are widely spread all over the 
world. Nanotechnology shows high potential in various 
sectors such as healthcare, food, agriculture, and biofuels 
[34, 135]. The demand for fossil fuels is increasing day 
by day. These non-renewable energies are very harmful 
for the environment, so there is a need for an alternative 
source of energy, i.e., renewable energy. Renewable and 
sustainable energy has limited the environment pollution 
and also meets the demand of energy globally. The utiliza-
tion of LB feedstocks make this process more economical, 
sustainable, and eco-friendly [136]. Different conventional 
pretreatment methods were used for the production of bio-
fuels but they showed certain disadvantages such as envi-
ronmental pollution, time consumption, and high cost of 
chemical substance/catalysts. To overcome all these draw-
backs, the utilization of nanomaterials in the pretreatment 
of LB makes this process cost-effective, sustainable and 
environment friendly [113]. Various nanomaterial such 
as nanoparticle, nanobiocatalyst, magnetic based nano-
material has been utilized in the production of different 
renewable bioenergy (biogas, bioethanol, biodiesel, bio-
oil, biohydrogen) with utilizing the lignocellulosic raw 
material. The production of various renewable energy by 
utilizing the nanotechniques are discussed in Table 7. The 
nanoscale dimensions of nanoparticles play a major role in 
the disintegration of LB. As they easily penetrate the cell 
wall of LB and interact with the constituents of LB, they 
release a high amount of sugars. These released constitu-
ents are further treated with the nanomaterial immobilized 
enzyme for the enzymatic hydrolysis process and improves 
the production of renewable energy [137]. Utilization of 
immobilized enzymes in the hydrolysis makes this process 
economical by recovery and reutilization of highly costly 
enzymes.

Acid-functionalized magnetic nanoparticles are used 
for immobilizing the enzyme for the hydrolysis of lig-
nocellulose biomass. Magnetic nanoparticles have cer-
tain important characteristics such as high surface area, 
thermal stability, and high specificity. Their magnetic 
nature shows high potential in recovering the enzyme by 
applying the magnetic field [138]. Ali and his co-workers 
utilized the nickel and cobalt nanoparticles as a nanocata-
lyst for the production of biodiesel, biogas, and bio-oil 
by hydrolyzing the mixed weed lignocellulose biomass 
through gasification process. This whole reaction was car-
ried out at 400 °C temperature. These bioproducts were 
analyzed by GC–MS technique, and it was observed that 
about 65.47% of esters were present in biodiesel, and it 
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is higher than the routinely produced biodiesel. The ester 
concentration shows that its quality is higher than the nor-
mally produced biodiesel. The GC–MS analysis showed 
that the biogas consists of various components such as 
methanol (34.64%), propane (8.32%), methane (3.76%), 
ethene (50.16%), and propylene (3.12%). The utilization 
of nanocatalyst makes this process economically feasible 
[121].

For the production of clean and sustainable bioenergy, 
different types of nanomaterials were used. The zero valent 
iron nanomaterial is one of them which shows significant 
properties for the production of biohydrogen via dark fer-
mentation of grass. It removes the undesirable amount of 
oxygen from the system which improves the activity of 
oxygen sensitive hydrogenase and also decreases the oxida-
tion–reduction potential that favors the growth of fermen-
tative microbes. The zero valent iron nanoparticles also 
enhance the microbial communities which directly enhance 
the metabolic reaction for the hyper production of biohydro-
gen. Maximum production of biohydrogen was observed as 
64.7 ml per gram of dry grass [139]. Ashok and co-workers 
utilized the magnetic oxide nanoparticles for the produc-
tion of biodiesel. The magnetic oxide nanoparticles were 
synthesized by co-precipitation method which was further 
used for the transesterification of cooking oil for the produc-
tion of biodiesel. The transesterification reaction was carried 
out at a temperature range of between 25 and 75 °C for 1 h 
with continuous stirring. The maximal yield of biodiesel 
was about 93.3% with 2 weight% of magnetic oxide nano-
particles [140].

Attia and co-workers utilized the graphitic carbon 
nitride nanosheets and nickel nanoparticles for enhancing 

the production of biohydrogen from biomass. The laser-
photoactivated nanomaterials biostimulates the purple non-
sulfur bacteria growth and activity which directly increases 
the yield of biohydrogen. The graphitic carbon nitride 
nanosheets show maximum production of biohydrogen than 
nickel nanoparticles [141]. For the sustainable production 
of biofuels, researchers utilized bio-iron nanoparticles for 
the production of biodiesel in which micro-algal biomass 
has been used. Bio-nanocatalyst (bio-iron nanoparticles) 
enhances the transesterification reaction due to its high 
catalytic activity, high surface area, and small size of parti-
cles. Bio-nanocatalyst converts the lipid extraction into the 
fatty-acid methyl esters which was a very suitable choice for 
enhancing the biodiesel production [142]. Hassaan and his 
co-workers used zinc oxide nanoparticles for the production 
of biogas. Five different crops such as barley, abyssinian 
cabbage, rapeseed, durum wheat, and triticale have been 
used as a biomass for biogas production. These nanoparti-
cles improve the conversion efficiency in anaerobic digestion 
process. Out of five biomasses, durum wheat treated with 
zinc oxide nanoparticles shows the maximum production of 
biogas such as 457 mL/g volatile solids which was higher 
than the control [143].

6  Conclusion

The utilization of lignocellulose biomass for the production 
of cost-effective bioenergy and mitigation of environmental 
pollution is the need of the moment. Different conventional 
pretreatment methods such as physical, chemical, and bio-
logical have certain disadvantages which makes the process 

Table 7  Various nanotechnological approaches used in the production of biorenewable energy

Nanomaterial Bioenergy production Application Reference

Magnetic nanoparticles Biogas Enhance the lignocellulosic biomass degradation, increase surface-
volume ration and adsorption rate for the rapid production of biogas

[19]

Nanomaterials Biohydrogen Increase the catalytic efficiency, improves stability, reusability and 
proficiency of enzyme

[190]

Nanocoating on microbial fuel cells Bioelectricity Shows high electrical conductivity and voltage stability [191]
Magnesium oxide nanocatalyst Biodiesel Widely used base catalyst, high rate of esterification [140]
Graphite carbon nitride nanosheets Bioethanol Improves the laser irradiation which directly increases the yield of 

bioethanol
[192]

Iron nanoparticles (zero valent) Biohydrogen Increases the transfer of electrons between hydrogenase and ferredoxin 
which directly enhance the enzymatic activity

[139]

Nickel nanoparticles and graphitic 
carbon nitride nanosheets

Biohydrogen Increases the biostimulation of purple non-sulfur bacteria that enhance 
the yield of biohydrogen

[141]

Bio-iron nanoparticles Biodiesel Improves the transesterification reaction due to its high catalytic activ-
ity, high surface area and small size of particles

[142]

Graphene oxide and platinum-
ruthenium nanocomposites

Bioethanol Enhances the chlorophyll content in biomass of C. minutum and also 
improves the production of bioethanol

[193]

Zinc oxide nanoparticles Biogas Improves the anaerobic digestion process that directly improves the 
production of biogas

[143]
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inconvenient, costly, and also cause environmental pollu-
tion. Therefore, there is an urgent need for an economically 
feasible and eco-friendly method for the pretreatment of LB. 
Currently, the various applications of nanotechnology make 
this process convenient, cost-effective, and eco-friendly. On 
the other side, it is responsible for the minimum production 
of toxic inhibitors as compared to the conventional pretreat-
ment methods. Hence, the use of magnetic nanoparticles in 
biomass pretreatment or immobilizing the enzyme used in 
the saccharolytic process is considered as the most favora-
ble process. It shows the high reusability and recovery of 
immobilized enzymes due to their magnetic nature. The 
small size of nanomaterials easily penetrates into the cell 
wall of lignocellulosic biomass matrix (cellulose, hemicel-
lulose, and lignin). These components of biomass will be 
further utilized for the cellulose conversion via enzymatic 
hydrolysis. Nevertheless, the detailed mechanism of the pre-
treatment process by using nanotechnological routes is not 
well understood. In the future, the detailed study of their 
mechanism should be done to enhance the potential of nano-
technology approaches for large-scale production of biofuels 
or biochemicals.
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