Skip to main content
Log in

Recovery of bioactive molecules from Hypericum perforatum L. dust using microwave-assisted extraction

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Microwave-assisted extraction (MAE) conditions were optimized to improve extract quality of medicinal herb — Hypericum perforatum L. (St. John’s wort) dust. Response surface methodology was applied initially to obtain the highest concentration of total polyphenols in extract solids (MAE-e). St. John’s wort was mixed with 30% ethanol in 50 mL/g solvent to solid ratio, and treated with 170 W microwave power for 40 s to yield an extract with 411.26 ± 6.21 mg GAE/g of polyphenols. This extract contained a significantly higher content of polyphenols (42.50%) and had significantly higher antioxidant activity than the macerate obtained by using European Medicines Agency (EMA) recommended procedure. The advantage of the EMA procedure was the higher yield of extract per gram of plant material. Therefore, another set of MAE conditions was defined to maximize the yield of polyphenols per gram of plant material (MAE-p). The MAE-p extract was produced by using 30% ethanol, 10 mL/g solvent to solid ratio, and 170 W microwave power for 100 s, which was, again, a markedly shorter period than 72 h of maceration. The MAE-p extract had a slightly, but significantly higher yield (5.2%), more polyphenols (8.8%), and improved antioxidant activity compared to the EMA macerate. Antimicrobial activity against several pathogens was stronger for the MAE extracts. The chemical composition of extracts was slightly different and MAE favored extraction of glycosides, in particular, rutin (quercetin-3-O-rutinoside), while the EMA macerate contained quercetin aglycon in the highest concentration. Our study demonstrates that statistically planned experiments allow for significant improvement of the extraction process, which application could facilitate better use of natural resources and deliver more potent extracts than those obtained by currently recommended procedures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gu S, Pei J (2017) Innovating Chinese herbal medicine: from traditional health practice to scientific drug discovery. Front Pharmacol 8:381. https://doi.org/10.3389/fphar.2017.00381

    Article  PubMed  PubMed Central  Google Scholar 

  2. Welz AN, Emberger-Klein A, Menrad K (2019) The importance of herbal medicine use in the German health-care system: prevalence, usage pattern, and influencing factors. BMC Health Serv Res 19(1):952. https://doi.org/10.1186/s12913-019-4739-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stefanović R (2010) Paradigma održivog razvoja poljoprivrede - strateški koncept zaštite životne sredine. Ecologica 58:193–201

  4. Belwal T, Devkota HP, Singh MK, Sharma R, Upadhayay S, Joshi C, Bisht K, Gour JK, Bhatt ID, Rawal RS (2019) St. John’s wort (Hypericum perforatum). Nonvitamin and nonmineral nutritional supplements, Elsevier. pp 415–432

  5. Tusevski O, Krstikj M, PetreskaStanoeva J, Stefova M, GadzovskaSimic S (2019) Phenolic compounds composition of Hypericum perforatum L. wild-growing plants from the Republic of Macedonia. Agric Conspec Sci 84(1):67–75

    Google Scholar 

  6. Silva BA, Ferreres F, Malva JO, Dias AC (2005) Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem 90(1):157–167. https://doi.org/10.1016/j.foodchem.2004.03.049

    Article  CAS  Google Scholar 

  7. Božin B, Kladar N, Grujić N, Anačkov G, Samojlik I, Gavarić N, Čonić BS (2013) Impact of origin and biological source on chemical composition, anticholinesterase and antioxidant properties of some St. John’s wort species (Hypericum spp., Hypericaceae) from the Central Balkans. Molecules 18(10):11733–11750. https://doi.org/10.3390/molecules181011733

  8. Greeson JM, Sanford B, Monti DA (2001) St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 153(4):402–414. https://doi.org/10.1007/s002130000625

    Article  CAS  PubMed  Google Scholar 

  9. Sun C, Wu Z, Wang Z, Zhang H (2015) Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid Based Complement Alternat Med 2015.https://doi.org/10.1155/2015/595393

  10. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju Y-H (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22(3):296–302. https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  11. Albarri R, Şahin S (2022) Monitoring the recovery of bioactive molecules from Moringa oleifera leaves: microwave treatment vs ultrasound treatment. Biomass Convers Biorefin 1–13. https://doi.org/10.1007/s13399-021-02232-z

  12. Kırbaşlar Şİ, Şahin S (2021) Recovery of bioactive ingredients from biowaste of olive tree (Olea europaea) using microwave-assisted extraction: a comparative study. Biomass Convers Biorefin 1–13. https://doi.org/10.1007/s13399-020-01194-y

  13. Dahmoune F, Nayak B, Moussi K, Remini H, Madani K (2015) Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem 166:585–595. https://doi.org/10.1016/j.foodchem.2014.06.066

    Article  CAS  PubMed  Google Scholar 

  14. Milutinović M, Radovanović N, Ćorović M, Šiler-Marinković S, Rajilić-Stojanović M, Dimitrijević-Branković S (2015) Optimisation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Ind Crop Prod 77:333–341. https://doi.org/10.1016/j.indcrop.2015.09.007

    Article  CAS  Google Scholar 

  15. Milutinović M, Radovanović N, Rajilić-Stojanović M, Šiler-Marinković S, Dimitrijević S, Dimitrijević-Branković S (2014) Microwave-assisted extraction for the recovery of antioxidants from waste Equisetum arvense. Ind Crop Prod 61:388–397. https://doi.org/10.1016/j.indcrop.2014.07.039

    Article  CAS  Google Scholar 

  16. Ema/Hmpc (2009) Community herbal monograph on Hypericum perforatum L., Herba (traditional use). https://www.ema.europa.eu/en/documents/herbal-monograph/final-community-herbal-monograph-hypericum-perforatum-l-herba-traditional-use_en.pdf. Accessed 12 June 2020

  17. Gawlik-Dziki U (2012) Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. LWT-Food Sci Tech 47(1):138–146. https://doi.org/10.1016/j.lwt.2011.12.022

    Article  CAS  Google Scholar 

  18. Saad H, Charrier-El Bouhtoury F, Pizzi A, Rode K, Charrier B, Ayed N (2012) Characterization of pomegranate peels tannin extractives. Ind Crops Prod 40:239–246. https://doi.org/10.1016/j.indcrop.2012.02.038

    Article  CAS  Google Scholar 

  19. Mišić D, Šiler B, Gašić U, Avramov S, Živković S, Nestorović Živković J, Milutinović M, Tešić Ž (2015) Simultaneous UHPLC/DAD/(+/−) HESI–MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: a possible application in chemotaxonomic studies. Phytochem Anal 26(1):72–85. https://doi.org/10.1002/pca.2538

    Article  CAS  PubMed  Google Scholar 

  20. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  21. Zheng C-D, Li G, Li H-Q, Xu X-J, Gao J-M, Zhang A-L (2010) DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Nat Prod Commun 5(11):1934578X1000501112. https://doi.org/10.1177/1934578X1000501112

  22. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324. https://doi.org/10.1016/j.ymeth.2007.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaves JO, De Souza MC, Da Silva LC, Lachos-Perez D, Torres-Mayanga PC, Machado APDF, Forster-Carneiro T, Vázquez-Espinosa M, González-De-Peredo AV, Barbero GF (2020) Extraction of flavonoids from natural sources using modern techniques. Front Chem 8:507887. https://doi.org/10.3389/fchem.2020.507887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pavlić B, Kaplan M, Bera O, Olgun EO, Canli O, Milosavljević N, Antić B, Zeković Z (2019) Microwave-assisted extraction of peppermint polyphenols–artificial neural networks approach. Food Bioprod Process 118:258–269. https://doi.org/10.1016/j.fbp.2019.09.016

    Article  CAS  Google Scholar 

  25. Rezaei S, Rezaei K, Haghighi M, Labbafi M (2013) Solvent and solvent to sample ratio as main parameters in the microwave-assisted extraction of polyphenolic compounds from apple pomace. Food Sci Biotechnol 22(5):1–6. https://doi.org/10.1007/s10068-013-0212-8

    Article  CAS  Google Scholar 

  26. Hu B, Zhou K, Liu Y, Liu A, Zhang Q, Han G, Liu S, Yang Y, Zhu Y, Zhu D (2018) Optimization of microwave-assisted extraction of oil from tiger nut (Cyperus esculentus L.) and its quality evaluation. Ind Crops Prod 115:290–297. https://doi.org/10.1016/j.indcrop.2018.02.034

    Article  CAS  Google Scholar 

  27. Altun ML, Yılmaz BS, Orhan IE, Citoglu GS (2013) Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s wort). Ind Crop Prod 43:87–92. https://doi.org/10.1016/j.indcrop.2012.07.017

    Article  CAS  Google Scholar 

  28. Sagratini G, Ricciutelli M, Vittori S, Öztürk N, Öztürk Y, Maggi F (2008) Phytochemical and antioxidant analysis of eight Hypericum taxa from Central Italy. Fitoterapia 79(3):210–213

    Article  CAS  PubMed  Google Scholar 

  29. Silva BA, Malva JO, Dias AC (2008) St. John’s Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chem 110(3):611–619. https://doi.org/10.1016/j.foodchem.2008.02.047

    Article  CAS  Google Scholar 

  30. Pietta P, Gardana C, Pietta A (2001) Comparative evaluation of St. John’s wort from different Italian regions. Farmaco 56(5–7):491–496. https://doi.org/10.1016/s0014-827x(01)01068-0

    Article  CAS  PubMed  Google Scholar 

  31. Couceiro M, Afreen F, Zobayed S, Kozai T (2006) Variation in concentrations of major bioactive compounds of St. John’s wort: effects of harvesting time, temperature and germplasm. Plant Sci 170(1):128–134. https://doi.org/10.1016/j.plantsci.2005.08.011

    Article  CAS  Google Scholar 

  32. Shahidi F, Zhong Y (2015) Measurement of antioxidant activity. J Funct Foods 18:757–781. https://doi.org/10.1016/j.jff.2015.01.047

    Article  CAS  Google Scholar 

  33. Gioti EM, Fiamegos YC, Skalkos DC, Stalikas CD (2009) Antioxidant activity and bioactive components of the aerial parts of Hypericum perforatum L. from Epirus, Greece. Food Chem 117(3):398–404. https://doi.org/10.1016/j.foodchem.2009.04.016

  34. Aybastıer Ö, Şahin S, Demir C (2013) Response surface optimized ultrasonic-assisted extraction of quercetin and isolation of phenolic compounds from Hypericum perforatum L. by column chromatography. Sep Sci Technol 48(11):1665–1674. https://doi.org/10.1080/01496395.2012.760603

  35. Orčić DZ, Mimica-Dukić NM, Francišković MM, Petrović SS, Jovin EĐ (2011) Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L. Chem Cen J 5(1):34. https://doi.org/10.1186/1752-153X-5-34

    Article  Google Scholar 

  36. Borchardt JR, Wyse DL, Sheaffer CC, Kauppi KL, Ehlke RGFNJ, Biesboer DD, Bey RF (2008) Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J Med Plant Res 2(5):098–110. https://doi.org/10.5897/JMPR.9000165

    Article  Google Scholar 

  37. Zou Y, Lu Y, Wei D (2004) Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 52(16):5032–5039. https://doi.org/10.1021/jf049571r

  38. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

    Article  CAS  Google Scholar 

  39. Mazandarani M, Yassaghi S, Rezaei M, Mansourian A, Ghaemi E (2007) Ethnobotany and antibacterial activities of two endemic species of Hypericum in North-East of Iran. Asian J Plant Sci 6:354–358. https://doi.org/10.3923/ajps.2007.354.358

    Article  Google Scholar 

  40. Meral GE, Karabay N (2002) In vitro antibacterial activities of three Hypericum species from West Anatolia. Turk Electron J Biotechnol (Special Issue) 6–10

  41. Radulović N, Stankov-Jovanović V, Stojanović G, Šmelcerović A, Spiteller M, Asakawa Y (2007) Screening of in vitro antimicrobial and antioxidant activity of nine Hypericum species from the Balkans. Food Chem 103(1):15–21. https://doi.org/10.1016/j.foodchem.2006.05.062

    Article  CAS  Google Scholar 

  42. Reichling J, Weseler A, Saller R (2001) A current review of the antimicrobial activity of Hypericum perforatum L. Pharmacopsychiatry 34(Sup. 1):116–118. https://doi.org/10.1055/s-2001-15514

Download references

Acknowledgements

Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2022-14/200135) supported this work.

Funding

The Ministry of Education, Science, and Technological Development of the Republic of Serbia (Contract Nos. 451–03-68/2022–14/200135 and 451–03-9/2021–14/200007) provided funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

Milica Milutinović – Conceptualization, Methodology, Investigation, Formal analysis, and Writing—Original Draft, Marija Miladinović – Investigation, Uroš Gašić – Investigation and Writing—review and Editing, Suzana Dimitrijević-Branković – Visualization, Supervision, Writing—review and Editing, Mirjana Rajilić-Stojanović – Conceptualization, Supervision, Writing—review and Editing.

Corresponding author

Correspondence to Milica Milutinović.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milutinović, M., Miladinović, M., Gašić, U. et al. Recovery of bioactive molecules from Hypericum perforatum L. dust using microwave-assisted extraction. Biomass Conv. Bioref. 14, 7111–7123 (2024). https://doi.org/10.1007/s13399-022-02717-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02717-5

Keywords

Navigation