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Abstract
Catalytic pyrolysis of date palm seeds (DPS) has been carried out in a pyroprobe connected online with a GC/MS. The effect 
of a HZSM-5 zeolite on the product distribution has been studied at 450 and 500 °C by using different catalyst/biomass mass 
ratios (1, 2, 5) and that of a dolomite catalyst at 450 °C using a catalyst/biomass mass ratio of one. Product distributions 
have been monitored and their trends explained based on the properties of the catalysts used. The HZSM-5 promotes the 
formation of incondensable gases and aromatic hydrocarbons due to its high acidity and shape selectivity. The concentra-
tions of incondensable gases and hydrocarbons increase markedly with the catalyst/biomass mass ratio, with their peak area 
percentages ranging from 23.6 to 54.1% and from 7.1 to 24.5%, respectively. At the same time, a significative reduction 
in the amount of acids, ketones, phenols, furans, and anhydrosugars has been determined. The dolomite catalyst enhances 
ketonization reactions, which leads to a significant increase in the content of ketones, accounting for a value of around 27%.
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1  Introduction

Biomass is a renewable energy source, which may be used 
to replace fossil fuels, and so meet the increasing energy 
demand. Pyrolysis of biomass is an interesting option to 
manage forestry and agricultural wastes and, at the same 
time, obtain products with a high potential application for 
energy production or source of value-added chemicals con-
tained in the gaseous and/or liquid bio-oil fraction [1, 2].

The bio-oil or pyrolytic oil generated from the fast 
pyrolysis of biomass and wastes may have several potential 
applications, such as those related to the production of high 
value-added chemicals and substitutes of petroleum-based 
sources for a wide range of fuels [3]. Crude bio-oil derived 

from the conventional fast pyrolysis is a low-grade liquid 
fuel due to the high oxygen content, poor stability, high 
acidity, and low calorific value. Furthermore, recovery of 
valuable chemicals is a very difficult task due to their low 
contents in the bio-oil. Accordingly, the liquid product must 
be upgraded prior to use in relevant applications by means of 
suitable processes, such as catalytic cracking, which in turn 
must involve reasonable costs.

Catalytic fast pyrolysis is considered a promising 
approach to convert oxygenate compounds into a variety 
of hydrocarbons and therefore improve the bio-oil quality. 
The use of a catalyst generally enhances the targeted reac-
tions; reduces the reaction time and temperature; improves 
the liquid oil quality by removing oxygen via certain reac-
tions, such as dehydration (removing oxygen as H2O), decar-
boxylation (removing oxygen as CO2), and decarbonylation 
(removing oxygen as CO) [4, 5]; and increases the overall 
process efficiency [6]. The surface area, acidity, and pore 
size and volume are the key features of any catalyst affecting 
the pyrolysis process [7].

There are many studies in the literature dealing with 
the catalytic pyrolysis of biomass and wastes as a way to 
obtain upgraded pyrolytic products [8, 9]. Thus, acid cata-
lysts such as HZSM-5 zeolite-based ones have been reported 
to perform well in deoxygenation to obtain hydrocarbons. 
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This behavior has been attributed to their acidity and shape 
selectivity [5, 10], with the latter being a consequence of its 
small/medium-pore size coupled with its two-dimensional 
channel-like pore system [11]. In the pyrolysis of bio-
mass, deoxygenation of holocellulose and lignin fragments 
occurs via dehydration and decarbonylation/decarboxyla-
tion reactions [12, 13]. Subsequently, protolytic cracking or 
β-scission, alkylation, isomerization, cyclization, oligomeri-
zation, and aromatization reactions take place. Among the 
zeolites, the ZSM-5 has been widely used as a catalyst for 
biomass pyrolysis, as it dramatically changes the composi-
tion of the volatiles generated. One of the main purposes of 
using zeolitic catalysts lies in its capacity for deoxygenat-
ing phenolic and oxygenated compounds [14]. Other cata-
lysts, such as alkali salts [15] and metal oxides [16], have 
been used, but a much lower deoxygenating activity has 
been reported. Low-cost catalysts, either natural (olivine, 
alumina) or synthetic (spent FCC catalyst), have also been 
used in line with the pyrolysis reactor, and they led to a 
significant decrease in acid and phenolic compounds in the 
volatile stream, making it suitable for further catalytic val-
orization for the production of H2, fuels, and chemicals [17]. 
Other studies in which natural materials have been used as 
catalysts are those by Aljbour [18] and Aljeradat et al. [19].

Dolomite is a natural, inexpensive, and non-metallic 
catalyst, which has been widely used for tar conversion in 
biomass gasification [20, 21]. However, this natural catalyst 
has also been used successfully in the catalytic pyrolysis of 
biomass to improve the bio-oil quality by cracking heavy 
organic molecules to lighter ones or removing oxygen from 
the oxygenates [22]. Furthermore, this catalyst has also been 
used to upgrade the liquid bio-oil prior to feeding into the 
reforming reactor. Thus, Valle et al. [23] concluded that 
dolomite was effective for the deoxygenation of the bio-oil, 
as it reduces the O content, and so the O/C ratio, in the 
upgraded bio-oil. Ly et al. [22] used dolomite as a catalyst 
in a fluidized bed and proved that it leads to the formation 
of aromatic compounds (C5-C11), such as the derivatives of 
furfural, ketones, and phenolic compounds. Another posi-
tive benefit of dolomite lies in its capacity for CO2 capture, 
which allows obtaining a gaseous product with a low yield 
of CO2 [24]. Dolomite removes oxygen from the pyrolysis 
stream mostly through dehydration, instead of decarboxyla-
tion or decarbonylation [22].

In this work, date palm seeds have been used as the raw 
material. The date palm tree is a typical cultivated tree in the 
arid and semi-arid regions of the world. There are more than 
100–120 million date palm trees worldwide, with most of 
them (70–90%) being located in the Middle East and North 
Africa (MENA) countries [25]. It is especially abundant in 
several regions in the South of Tunisia [26].

Date seeds are low-cost agricultural by-products, which 
are traditionally used for animal feed. Their derived powder 

is used as a coffee substitute [27, 28]. They are also used as a 
source of oil in cosmetics due to their antioxidant properties, 
raw material for activated carbon, adsorbent for dye-contain-
ing waters, and CO2 capture material [29–31]. The annual 
world production of dates is of around 9 million tons [29]. 
Depending on the variety, date seeds account for 6.10–11.4% 
of the whole fruit weight [32].

This study analyzes the performance of a HZSM-5 zeolite 
catalyst by varying temperatures (450 and 500 °C) at the 
catalyst/biomass mass ratio of C/B=1 and catalyst/biomass 
mass ratio (C/B=1, 2, and 5) at the temperature of 450 °C. A 
detailed quantification and identification of the compounds 
formed have been carried out, with emphasis placing on the 
different trends observed in the product distribution and 
relating these trends to the properties of the catalysts used. 
Furthermore, a low-cost natural catalyst with very different 
properties, as is dolomite, has been used to analyze its effect 
on the product distribution and compare its performance 
with that of the HZSM-5. The aim of this study is to show 
that upgrading of the condensable fraction (bio-oil) allows 
improving the quality of the liquid and therefore increases 
its potential for use as fuel. In fact, the presence of aliphatic 
and aromatic hydrocarbons in the liquid is crucial for a high-
quality fuel. Furthermore, it is well-known that catalytic 
pyrolysis enhances the production of hydrocarbons. To our 
knowledge, there are no studies reported in the literature 
about the catalytic pyrolysis of date palm seeds. Therefore, 
this study contributes to promoting pyrolysis processes as 
an option to valorize these wastes.

2 � Experimental

2.1 � Preparation and characterization of date palm 
seed samples

Date palm seeds (DPS) were supplied by the National Insti-
tute of Arid Zone (IRA-Kebili, Tunisia). The sort of date 
used was Deglet Noor seeds (Phoenix Dactylifera L.). The 
DPS were harvested from the date fruit by hand and then 
cleaned with distilled water to eliminate all dust. They were 
then sundried for 3 days. Moreover, the sundried biomass 
was crushed into particle sizes ranging between 0.125 and 
0.25 mm and stored in airtight plastic bags to prevent mois-
ture absorption. This particle size range is the suitable one 
to carry out fast pyrolysis in a Py-GCMS, where very small 
quantities of sample are used, of around 1 mg.

A thermogravimetric analyzer (TGA Q5000 IR) was used 
in this study to determine the proximate analysis of the DPS 
samples. The procedure was described elsewhere [33].

DPS ultimate analysis was performed using an elemental 
analyzer (LECO CHNS TRuSpec). The O content was deter-
mined by difference, according to the following expression:
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The higher heating value (HHV) of the raw material DPS 
was measured by means of a CAL-2 K Oxygen Bomb Calo-
rimeter according to the ASTM D5865-13 standard method.

The lignocellulosic components (cellulose, hemicellu-
lose, and lignin) of the DPS sample were determined accord-
ing to the method described elsewhere [34].

2.2 � Py‑GC/MS equipment

The pyrolysis of DPS has been carried out in a Pyroprobe 
5150 of CDS. One milligram of the sample was inserted in 
the pyrolysis tube, with quartz wool being placed above and 
below the sample. Pyrolysis runs were carried out at 450 
and 500 °C for 40 s. This time is sufficiently long to ensure 
all the volatile matter is pyrolized. The experiments were 
conducted in triplicate and the mean values and the standard 
deviations were determined. In the catalytic pyrolysis, the 
biomass sample was mixed with the catalyst at the catalyst/
biomass (C/B) mass ratios of 1, 2, and 5 for the HZSM-5 
zeolite and 1 for the dolomite catalyst. The heating rate was 
20 °C/ms. The volatiles generated were transferred through a 
hot line into a GC/MS (QP2010 Shimadzu), where they were 
analyzed. The chromatographic separation was performed 
using a BPX-5 capillary column (30 m × 0.22 mm ID, 0.25 
μm film thickness). The oven temperature was programmed 
from 45 °C (maintained for 3 min) to 295 °C (5 min) with a 
heating rate of 4 °C/min. The MS detector was a quadrupole 
type. The identification of the compounds was carried out 
using the NIST library.

2.3 � Catalysts

The catalysts used are a HZSM-5 zeolite and a dolomite. The 
HZSM-5 zeolite has been chosen because of its good deoxy-
genation capacity given by its specific properties (acidity 
and shape selectivity). The dolomite catalyst has been cho-
sen because of, on the one hand, low cost and, on the other 
hand, different properties to those of the zeolite, e.g., poor 
porous structure and basic nature.

The ZSM-5 zeolite has been supplied by Zeolyst Interna-
tional (USA) and the dolomite by Minerals Sibelco (Spain).

The ZSM-5 zeolite was supplied in ammoniac form and 
calcined at 575 °C for 2 h in order to obtain the acid form 
and so a suitable surface acidity. The dolomite has been cal-
cined at 900 °C for 4 h in order to attain full decarboxyla-
tion of calcium and magnesium carbonates and so obtain 
the active phases of CaO and MgO. XRD analysis has been 
carried out to determine the crystalline phases in the dolo-
mite. The crystalline structure of the dolomite was analyzed 
using X-ray powder diffraction (XRD) patterns. A Bruker 

O (wt.%) = 100–

[

C (wt.%) + H (wt.%) + N (wt.%)
D8 Advance diffractometer with Cu Kα1 radiation was used 
to conduct the analysis. XRF analysis has been carried out 
to measure the chemical composition of the catalyst. This 
analysis was carried out using a sequential wavelength dis-
persion X-ray fluorescence (WDXRF) spectrometer (Axios 
2005, PANalytical) under a vacuum atmosphere.

The textural properties of both catalysts have been deter-
mined from the N2 adsorption-desorption curves obtained 
in a Micromeritics ASAP-2100 equipment. The total acidity 
of the HZSM-5 zeolite has been determined in a calorim-
eter (Setaram TG-DSC 111) coupled to a mass spectrometer 
(Thermostar of Balzers Instruments).

3 � Results

3.1 � Biomass characterization

Table 1 shows the proximate and ultimate analyses of the 
studied DPS sample, as well as the percentages of their main 
constituents (cellulose, hemicellulose, and lignin).

Date seeds are characterized by their high content of vola-
tile matter and low one of ash components. High volatility 
makes these biomasses attractive for the pyrolysis process 
in order to obtain bio-oil and syngas [35].

3.2 � Catalyst characterization

Table 2 sets out the physicochemical properties of the 
HZSM-5 zeolite and dolomite catalysts. As observed, the 
zeolite has much higher surface area and pore volume than 
the dolomite, whereas the average pore size of the dolo-
mite is much higher than that of the zeolite. The latter 
is evidence of the microporous structure of the zeolite. 
Concerning acidity, the zeolite is an acid catalyst, whereas 

Table 1   Ultimate and proximate analyses and lignocellulosic compo-
nents of the studied DPS

*Calculated by difference

Proximate analysis
  Moisture content (wt.%) 1.73
  Volatile matter content (wt.%) 78.61
  Ash content (wt.%) 4.97
  Fixed carbon* (wt.%) 14.69

Ultimate analysis
  Carbon 48.05
  Hydrogen 7.67
  Nitrogen 0.70
  Oxygen* 43.57
  H/C atomic ratio 2.23
  O/C atomic ratio 0.13
  HHV (MJ/kg) 20.46
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the dolomite is a basic one. The HZSM-5 has a silica/
alumina ratio of 30, which confers high total acidity upon 
this catalyst.

The main mineral constituents of the calcined dolomite 
used have been determined by X-ray fluorescence (XRF) 
analysis. The chemical composition is as follows: MgO 
(wt. %) 43.61, SiO2 (wt. %) 0.12, Fe2O3 (wt. %) 0.02, CaO 
(wt. %) 56.07, Al2O3 (wt. %) 0.15, Na2O (wt. %) 0.01, and 
TiO2 (wt. %) 0.02.

Fig. 1 shows the XRD diagram of the calcined dolomite.
As observed, all the peaks correspond to MgO and CaO 

phases.
Both analyses show that the main components of the 

dolomite catalyst are CaO and MgO, which are oxides 
containing basic sites. Besides, its specific surface area 
(BET area) is very low and therefore has a small number 
of strong acid sites available. In addition, it has a slightly 
developed surface structure leading to low activity. Nev-
ertheless, the HZSM-5 zeolite has a high specific sur-
face area and strong acidity, leading to a great number of 
surface acid sites on its surface. Accordingly, the better 
properties of the HZSM-5 zeolite are responsible for its 
higher cracking capacity, as well as higher deoxygenation 
capacity.

3.3 � Py‑GC/MS results

In this section, the results obtained in the catalytic pyrolysis 
on the HZSM-5 zeolite and dolomite catalysts are shown and 
they are compared with those obtained in a previous study 
carried out without any catalyst [33].

3.3.1 � Thermal pyrolysis

In order to determine the effect of the catalysts on the vola-
tile product distribution, the results obtained without catalyst 
are firstly shown in this subsection.

The volatiles generated in the pyrolysis of biomass cover 
a wide range of compounds of different nature, which may 
be classified as acids, ketones, aldehydes, phenols, alcohols, 
furans, ethers, and anhydrosugars, as well as hydrocarbons, 
N compounds, and S compounds in a much lower amount. 
Those preferred for biofuel are aromatic hydrocarbons, ali-
phatic hydrocarbons, and alcohols, whereas phenols and 
furans are regarded as high added-value chemicals. Acids 
are responsible for the corrosiveness of the bio-oil, and they 
are therefore undesired compounds. The same stands for 
ketones and aldehydes, which are related to the instability 
of the bio-oil during transport and storage. Ethers, esters, 
and oxygenates in general are also undesired compounds, 
as they reduce the heating value of the bio-oil. Polyaromatic 
hydrocarbons and nitrogen and sulfur compounds are detri-
mental for the environment [12].

Figure 2 shows the total ion chromatogram corresponding 
to the fast pyrolysis of DPS performed at 450 °C

Table 3 shows the retention times, compound names, and 
peak area percentages of the main compounds obtained in 
the thermal pyrolysis at 450 °C.

As observed, ketones (acetone and 1-hydroxy-2-pro-
panone), acids (acetic, undecanoic, dodecanoic, and 
octadecanoic), and anhydrosugars (levoglucosan) are 
the prevailing compound families. In addition, the con-
tent of 5-(hydroxymethyl)-2-furancarboxaldehyde is also 
considerable.

Table 4 shows the peak area percentages of the different 
compound families obtained by the chromatographic analy-
sis of the outlet stream of the pyrolysis of DPS samples at 
450 and 500 °C.

As observed, anhydrosugars, acids, ketones, and furans 
are the more abundant compound families in the conden-
sable fraction obtained. The content of acids and furans 
increases moderately with temperature, whereas that of 
anhydrosugars decreases. The sugar content decreases (from 
23.1% at 450 °C to 19.2% at 500 °C). Levoglucosan is the 
most abundant compound in the sugar family.

In the acid product-fraction, acetic acid, long-chain 
acids (fatty acids), and alkyl ester acids are the prevail-
ing ones. The main individual compounds identified are 

Table 2   Physicochemical properties of the HZSM-5 zeolite and dolo-
mite catalysts

Catalyst BET surface 
area (m2/g)

Micropore 
volume 
(cm3/g)

dp (Å) Acidity 
(mmol 
NH3/g cat.)

HZSM-5 zeolite 377 0.098 5.2–5.5 0.765
Dolomite 23 0.0026 173 -----

Fig. 1   The XRD diagram of the calcined dolomite
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acetic acid, decanoic acid, undecanoic acid, dodecanoic 
acid, and octadecanoic acid, with the concentration of 
each of them being of around 2% at 450 °C. Among the 
ketones, acetone prevails, with its concentration being 
in the 2.2–2.4% range. The remaining compounds in this 
ketones family (others) are mainly linear and cyclic C3-C8 
ketones.

Among the furan family, 5-hydroxymethyl-2-furancar-
boxaldehyde was the main compound identified with high 
concentration, followed by furfural and furan derivatives. 
Its total concentration increased moderately from 9.6% at 
450 °C to around 14% at 500 °C.

3.3.2 � Catalytic pyrolysis on the HZSM‑5 zeolite

As observed in the previous section, the oxygenated com-
pounds are the predominant ones in the volatile stream 
obtained. This high oxygenated compound content confers 
undesirable properties, such as high acidity, instability, and 
low heating value, upon the bio-oil for liquid fuel applica-
tions, as well as great difficulty for valuable chemical extrac-
tion [36]. Therefore, upgrading of crude bio-oil is necessary 
to improve fuel properties or increase the concentration of 
valuable chemicals. The addition of catalysts in the pyrolysis 
process is a good option to overcome this problem. Thus, 

Fig. 2   Chromatogram obtained 
in the pyrolysis of the DPS 
sample, T=450 °C
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Table 3   Retention times, 
compound names, and peak 
area percentages of the main 
compounds obtained in the 
thermal pyrolysis at 450 °C

Peak number Retention time 
(min)

Compound Peak area (%)

1 3.36 Acetone 2.51
2 4.31 Acetic acid 2.13
3 5.21 1-Hydroxy-2-propanone 3.27
4 8.64 Acetic anhydride 0.84
5 10.30 Furfural 1.51
6 11.05 2-Furanmethanol 1.30
7 14.14 Cyclohexanone 1.35
8 18.30 3-Methyl-1,2-cyclopentanedione 0.98
9 21.49 Cyclopropyl carbinol 0.86
10 25.41 1,4:3,2-Dianhydro-d-glucopyranose 2.07
11 26.63 5-(Hydroxymethyl)-2-furancarboxaldehyde 4.18
12 27.22 3,4-Anhydro-d-galactosan 1.28
13 35.87 Levoglucosan 20.89
14 37.20 Undecanoic acid 2.54
15 42.77 Dodecanoic acid 2.45
16 47.91 Octadecanoic acid 2.13
17 54.28 9-Octadecenal 0.70
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catalysts with suitable properties favor deoxygenation reac-
tions, and they therefore allow (i) obtaining bio-oils with 
low oxygen content for liquid fuel applications [37]; (ii) 
decreasing the content of the oxygenated compounds, and 
so reducing the acid content in the bio-oil; (iii) removing 
the unstable components, such as aldehydes and ketones; 
and (iv) increasing the content of phenols and hydrocar-
bons, especially those of monocyclic aromatic hydrocarbons 
(promising products for both liquid fuels and chemical raw 
materials). The last one not only improves the energy den-
sity of the bio-oil, but also makes it easier to blend it with 
crude oil [38].

Thus, Huynh et al. [39] used HZSM5, Zn/HZSM-5, and 
Fe/HZSM-5 catalysts for upgrading the pyrolysis oil. They 
observed that the quality of the oil was improved, as fuels 
with higher heating value and lower acidity and viscosity 
were obtained. They determined that the total combustion 
characteristic index of pyrolysis oils increased and that they 
were more flammable than fuel oil. These results prove 
that the upgraded oil might be used as fuel oil in industrial 
applications.

Concerning high-quality fuels, a high content of aliphatic 
hydrocarbons is essential, as well as the presence of aromatic 
hydrocarbons to improve the octane number of the fuel [40]. 
Besides, aliphatic and aromatic hydrocarbons increase the 
higher heating value of the bio-oil [41].

Product distribution at 450 °C  Figure 3 shows the total ion 
chromatogram corresponding to the catalytic pyrolysis of 
DPS on the HZSM-5 zeolite (C/B=1, 2, 5) performed at 
450 °C.

Table 5 shows the retention times, compound names, and 
peak area percentages of main compounds obtained in the 
catalytic pyrolysis on the HZSM-5 zeolite at 450 °C.

When a C/B=1 is used, the formation of aromatic com-
pounds is remarkable, i.e., toluene, p-xylene, 1,2,3-trime-
thyl-benzene, and 2,3-dimethyl-naphthalene. The most 
abundant compounds correspond to ketones, acids, and 
anhydrosugars. For C/B=2, the increase in the relative con-
tent of aromatic compounds is worth mentioning, which is 
not the case when a C/B ratio of 5 is used. Furthermore, the 
relative content of acetaldehyde increases and those of acids 
and anhydrosugars decrease when the C/B ratio is raised.

Table 6 shows the peak area percentages of the different 
compound families obtained by the chromatographic analy-
sis of the outlet stream in the catalytic pyrolysis of DPS 
samples at 450 °C on the HZSM-5 zeolite.

As observed in Table 6, the most abundant compound 
family is the one of incondensable gases. Its content 
increases significantly (from 23.6 to 54.1%) as catalyst/
biomass (C/B) ratio is increased from 1 to 5. Only certain 
compounds have been identified in this lump, with propene 
being the most significant one, especially when the highest 

Table 4   Mean peak area percentages (95% confidence interval) of the 
different compound families obtained in the thermal pyrolysis of DPS 
at 450 and 500 °C

The bold entries significance is to remake the different families cat-
egories

450 °C 500 °C

Incondensable gases 16.4±0.3 12.2±0.4
Acids 16.9±2.6 20.2±2.0
  Acetic anhydride 0.7±0.2 0.6±0.2
  Acetic acid 2.2±0.1 2.0±0.2
  Formic acid 0.3±0.1 0.2±0.01
  Fatty acids 11.5±2.5 12.1±4.0
  Esters (alkyl ester acids) 2.3±0.3 5.3±2.4

Ketones 15.7±0.5 16.4±2.3
  Acetone 2.4±0.1 2.2±1.0
  1-Hydroxy-propanone 3.3±0.1 1.4±1.6
  2,3-Butanedione 1.2±0.1 1.6±0.3
  Cyclohexanone 1.3±0.1 0.7±1.0
  Pyran derivatives 0.45±0.1 0.4±0.1
  Others 7.0±0.3 10.1±0.1

Aldehydes 2.7±0.1 2.7±0.1
Phenols 2.8±0.1 3.8±1.4
  1,2-Benzenediol - 1.0±0.3
  3-Methyl-1,2-benzenediol 0.8±0.4 0.6±0.3
  Phenol 0.4±0.1 0.6±0.02
  Phenol derivatives 1.4±0.2 1.4±0.7
  Others 0.1±0.02 0.2±0.04

Ethers 0.7±0.2 0.5±0.01
Alcohols 1.9±0.03 2.0±1.3
  Lineal 1.7±0.05 1.3±0.7
  Cyclic 0.2±0.02 0.8±0.5

Furans 9.6±0.9 14.4±0.5
  Furan derivatives 3.5±0.2 3.6±0.7
  Furan derivatives (ketones) 0.7±0.1 0.7±0.04
  Furan derivatives (aldehydes) 3.9±0.9 8.0±1.4
  Furfural 1.5±0.04 2.0±0.3

Anhydrosugars 23.1±4.7 19.2±1.0
  Levoglucosan 18.3±3.7 13.1±1.0
  d-Allose 0.9±1.2 1.6±0.7
  2,3-Anhydro-d-mannosan 0.4±0.1 0.5±0.1
  3,4-Anhydro-d-galactosan 1.3±0.1 2.3±0.02
  Dianhydro glucopyranose 2.2±0.2 1.8±0.6

HC 0.3±0.1 0.3±0.1
  Aliphatics 0.01±0.01 0.1±0.1
  Aromatics 0.3±0.1 0.1±0.2

N compounds 0.3±0.02 0.3±0.1
  Pyrrole 0.2±0.03 0.3±0.1

S compounds 0.6±0.1 0.4±0.01
  Methanethiol 0.6±0.1 0.2±0.3

Pyrans 0.004±0.01 0.03±0.04
Non-identified compounds 9.1±3.7 7.3±5.5
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Fig. 3   Chromatogram obtained 
in the catalytic pyrolysis of DPS 
on the HZSM-5 zeolite at (a) 
C/B=1, (b) C/B=2, and (c) C/
B=5, at T=450 °C
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C/B ratio of 5 is used. This is a consequence of cracking, 
decarbonylation, and decarboxylation reactions promoted by 
the HZSM-5 zeolite due to its acidity (Si/Al=30).

The second most abundant compound family is the one of 
hydrocarbons. This lump accounts for aromatic and non-aro-
matic compounds. The content of non-aromatic compounds 
decreases slightly from 1.2 to 0.7% when the B/C ratio is 
increased, whereas that of aromatic compounds (prevailing 
fraction in this lump) increases markedly from 5.9% when 
the C/B ratio is 1 to 23.8% when the C/B is 5. Toluene, 
xylenes, naphthalene derivatives, and benzene derivatives 
are the most abundant compounds identified. Other com-
pounds identified are indane, indene, fluorene, anthracene 
and their derivatives, and biphenyl.

Figure 4 shows the peak area evolution of the whole aro-
matic family, and of benzene, toluene, xylenes, and polyaro-
matic hydrocarbons (PAH), when different catalyst/biomass 
(C/B) mass ratios are used. As observed, the area increases 
when the C/B ratio is increased, and especially when C/B=5 
is used. This is the consequence of the reactions favoring 
the formation of aromatic compounds, which are enhanced 
when a higher amount of zeolite is used.

Regarding the PAH fraction, the compounds identified 
are naphthalene, fluorene, anthracene, and their derivatives, 
with naphthalene and its derivatives being the most abun-
dant ones.

This high concentration of hydrocarbon compounds is a 
consequence of the deoxygenation caused by the HZSM-5 

Table 5   Retention times, 
compound names, and peak 
area percentages of the main 
compounds obtained in the 
catalytic pyrolysis on the 
HZSM-5 zeolite (C/B=1, 2, 5) 
at 450 °C

Peak area (%)

Peak number Retention 
time (min)

Compound C/B=1 C/B=2 C/B=5

1 3.39 Acetaldehyde 0.76 1.17 3.14
2 4.0 Acetone 1.99 2.64 1.94
3 5.28 2,3-Butanedione 0.84 0.81 0.32
4 5.65 Acetic acid 0.83 0.6 0.04
5 6.74 1-Hydroxy-2-propanone 4.10 1.87 1.04
6 10.15 Acetic acid, propyl ester 0.65 - 0.12
7 10.72 Propanoic acid, 2-oxo, methyl ester 0.46 0.18 0.08
8 11.18 Toluene 0.70 3.18 3.73
9 11.25 Carbonocyanidic acid, ethyl ester 0.73 0.52 -
10 13.02 Furfural 1.59 0.84 0.46
11 14.25 1-Acetyloxy-2-propanone 1.73 0.23 0.12
a 15.21 Ethylbenzene 0.19 0.67 0.72
12 15.66 p-Xylene 0.73 1.84 2.72
b 16.6 m-Xylene 0.09 0.24 0.40
13 16.93 2-Methylcyclopentanone 1.09 0.54 0.30
14 18.73 5-Methyl-2-furancarboxaldehyde 0.96 0.61 0.31
c 19.76 1,2,3-Trimethyl-benzene 0.66 1.01 0.91
d 21.1 1,2,4-Trimethyl-benzene 0.10 0.61 0.67
15 21.53 3-Methyl-1,2-cyclopentanedione 1.30 0.60 0.32
16 28.46 1,2-Benzenediol 1.91 0.43 0.25
e 28.72 Naphthalene 0.07 0.46 0.79
f 28.83 1-Methyl-4-(1-methyl-2-propenyl)-benzene - 1.93 -
17 28.92 5-(Hydroxymethyl)-2-furancarboxaldehyde 3.31 - 0.84
18 29.61 2,3-Anhydro-d-mannosan 1.11 0.33 0.12
g 32.93 1-Methyl-naphthalene 0.24 1.49 1.28
19 37.49 Levoglucosan 13.51 8.73 2.55
h 36.85 2,3-Dimethyl-naphthalene 0.61 0.79 0.70
20 38.59 d-Allose 1.86 0.88 0.15
21 41.51 Dodecanoic acid 6.05 7.91 1.53
22 47.28 Tetradecanoic acid 2.88 0.78 0.08
23 48.39 Anthracene - 0.53 0.43
24 51.6 9-Methyl-anthracene 0.29 0.57 0.77
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zeolite. Many authors have determined that HZSM-5 zeo-
lites change the composition of the bio-oils by both reduc-
ing the amount of oxygenate compounds via deoxygenation 
reactions and increasing the aromatic species, which leads to 
an organic fraction (bio-oil) that can be upgraded to gasoline 
and diesel fuels [10, 42, 43].

Carlson et al. [44] determined that the first stage in cel-
lulose degradation involves dehydration reactions to form 
anhydrosugars, and they subsequently undergo acid-cata-
lyzed dehydration on the active sites of the catalyst, lead-
ing to the formation of dehydrated products. These prod-
ucts undergo further oligomerization, decarboxylation, and 
decarbonylation, or cracking reactions, to form C2-C6 ole-
fins, which then combine to yield aromatics. The deoxygena-
tion leads to the production of CO, CO2, and H2O.

Figure 5 shows the evolution of the content of C3-C7 ole-
fins in the catalytic pyrolysis carried out at 450 °C when the 
C/B ratios of 1, 2, and 5 are used. As observed, the content 
of the lighter C3-C4 olefins (propene, 2-methyl-propene, 
2-butene) increases markedly as the C/B ratio is increased, 
whereas that of C5-C7 ones (2-pentene, 2-methyl-1-butene, 
3-hexene, 3-methyl-1,3,5-hexatriene) goes through a slight 

Table 6   Mean peak area percentages (95% confidence interval) of 
the different compound families obtained in the catalytic pyrolysis of 
DPS at 450 °C when the C/B mass ratios of 1, 2, and 5 are used

The bold entries significance is to remake the different families cat-
egories

Biomass/catalyst (B/C) mass ratio

1/1 1/2 1/5

Incondensable gases 23.6±5.5 32.5±2.3 54.1±4.1
  Propene 1.7±0.3 5.3±0.5 11.4±1.1
  2-Methyl-1-propene 2.0±2.3 2.8±1.2 3.6±0.9
  1-Butene - 1.6±0.6 1.3±0.3

Acids 11.7±2.3 11.4±3.3 2.4±0.2
  Acetic acid 1.1±0.2 1.0±0.5 0.2±0.2
  Fatty acids 7.6±2.3 9.5±2.3 1.8±0.2
  Esters (alkyl ester acids) 2.6±0.02 1.0±0.1 0.4±0.2

Ketones 14.8±3.2 8.6±1.1 5.4±0.8
  Acetone 2.0±0.01 2.7±0.4 1.7±0.4
  1-Hydroxy-propanone 3.6±0.7 1.9±0.3 0.8±0.3
  2,3-Butanodione 0.9±0.1 0.7±0.01 0.3±0.04
  2-Butanone 0.8±0.1 0.8±0.4 0.4±0.1
  Others 7.5±2.6 2.9±0.5 2.3±0.02

Aldehydes 1.5±0.5 1.7±0.2 3.2±0.4
Acetaldehyde 0.6±0.2 1.1±0.1 2.9±0.3
Phenols 3.3±1.2 1.2±0.5 0.7±0.04
  1,2-Benzenediol 1.5±0.6 0.5±0.2 0.2±0.07
  1,2-Benzenediol derivatives 1.0±0.4 - 0.04±0.005
  1,4-Benzenediol (hydroquinone) - 0.2±0.01 0.06±0.08
  1,4-Benzenediol derivatives 0.2±0.03 0.1±0.1 0.02±0.03
  Phenol 0.1±0.02 - 0.01±0.01
  Phenol derivatives 0.5±0.2 0.3±0.1 0.4±0.2

Ethers 0.4±0.0 - 0.3±0.2
Alcohols 2.2±0.2 0.5±0.3 0.5±0.04
  Lineals 1.9±0.2 0.5±0.3 0.4±0.07
  Cyclics 0.2±0.1 - 0.02±0.02

Furans 7.4±1.4 3.6±0.8 1.9±1.3
  Furane 0.4±0.1 0.7±0.1 0.3±0.1
  Furane derivatives 1.2±0.1 0.8±0.1 0.4±0.2
  Furane derivatives (ketones) 0.7±0.2 0.4±0.05 0.2±0.2
  Furane derivatives (aldehydes) 3.7±0.8 0.7±0.2 0.7±0.6
  Furfural 1.4±0.3 1.0±0.3 0.3±0.2

Anhydrosugars 18.0±1.9 8.7±7.1 2.5±0.6
  Levoglucosane 15.1±2.3 7.8±6.7 2.2±0.5
  d-Allose 1.9±0.004 0.5±0.4 0.2±0.03
  2,3-Anhydro-d-mannosan 0.9±0.3 0.4±0.1 0.1±0.04
  2,3-Anhydro-d-galactosan - - 0.03±0.04
  Dianhydro glucopyranose 0.2±0.1 0.1±0.03 0.06±0.002

Hydrocarbons 7.1±1.1 19.9±0.3 24.5±6.1
  Aliphatics 1.2±0.5 1.5±0.4 0.7±0.3
  Aromatics 5.9±0.6 18.3±0.7 23.8±6.4

N compounds 1.9±0.7 1.3±0.01 0.6±0.5
  Acetonitrile 0.3±0.2 0.8±0.002 0.3±0.3

S compounds 0.1±0.2 2.1±0.01 2.0±0.1
  Methanethiol 0.1±0.2 2.1±0.01 2.0±0.1

Non-identified compounds 8.1±0.2 8.2±1.0 1.7±1.6
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Fig. 4   Evolution of the total aromatic content and those of benzene, 
toluene, and xylenes for different catalyst/biomass ratios

0E+00

2E+07

4E+07

6E+07

C/B=1 C/B=2 C/B=5

Pe
ak

 a
re

a C3-C4 C5-C7 total (C3-C7)

Fig. 5   Distribution of C3-C7 olefins in the catalytic pyrolysis at 450 
°C for different catalyst/biomass ratios



2808	 Biomass Conversion and Biorefinery (2024) 14:2799–2818

1 3

peak for the C/B of 2. These results are evidence that the 
HZSM-5 zeolite favors the reactions leading to olefin for-
mation. The increase in light olefin content by an increase 
in the catalyst amount was also observed by Shahsavari and 
Sadrameli [45] in their study of biomass catalytic pyrolysis 
on Sn and Re doped HZSM-5 zeolite catalysts in a fixed 
bed tubular reactor. They obtained lower ethene and pro-
pene yields when the catalyst amount was lower due to the 
reduction in the dehydrogenation rate of paraffins and their 
conversion into olefins. Adjaye and Bakhshi [46] proposed 
that the light oxygenated organic compounds are converted 
into olefins, and they then go on to aromatize.

Anhydrosugar prevails for the C/B ratio of 1 (18.0%), 
but their content decreases markedly when the C/B ratio is 
increased to 2 and 5 (8.7% and 2.5%, respectively) (Table 6). 
The prevailing compound in this family is levoglucosan, and 
its relative content decreases as the C/B ratio is increased, 
from 13.1% for the C/B ratio of 1 to 2.2% for the C/B ratio of 
5. It should be noted that levoglucosan is the main degrada-
tion compound of cellulose. The decrease in its concentra-
tion by increasing the C/B ratio may be explained by the 
cracking reactions promoted by the HZSM-5 zeolite [47, 
48].

Mihalcik et al. [10] reported that deoxygenation of levo-
glucosan is another reaction leading to aromatic compound 
formation, following 2 steps, as are (i) dehydration to form 
furans and similar compounds and (ii) conversion of the 
furans into aromatics via further dehydration and decarbox-
ylation. Foster et al. [49] also reported that anhydrosugars 
are aromatic compound precursors in the glucose catalytic 
pyrolysis carried out in a semi-batch Pyroprobe. They deter-
mined that the anhydrosugars stem from glucose dehydra-
tion reactions and undergo further dehydration to form 
furan compounds and water. These furans follow a route 
involving the formation of a carbocation hydrocarbon pool 
and carbon monoxide by decarbonylation and oligomeriza-
tion reactions on the zeolite. This hydrocarbon pool is then 
transformed into non-oxygenated olefins, as well as single-
ring and polycyclic aromatic compounds. Liu et al. [50] 
also reported that the partial cracking of β-1,4-glycosidic 
bonds in the cellulose generates BTX and phenol through 
the reactions of dehydration, decarbonylation, decarboxyla-
tion, and oligomerization. Lazaridis et al. [51] established 
that phenolic compounds are converted into aromatics by 
oligomerization, as well as cracking and dehydration, on 
zeolite catalysts. Deoxygenation of ketones is another route 
leading to the formation of aromatic compounds. Adjaye 
and Bakhshi [52] established that this process takes place 
through decarbonylation.

Table 6 shows that the ketones family is also an abundant 
one, as its relative content ranges from around 15 to 5% for 
C/B ratios ranging from 1 to 5. Acetone is the most signifi-
cant compound identified, with its content ranging from 2.7 

to 1.7% for C/B ratios from 1 to 5. Other compounds identi-
fied are ketones with 5 to 7 carbon atoms, and aliphatic and 
cyclic compounds, whose relative content decreases as the 
C/B ratio is increased. Concerning the acid family, its con-
tent also decreases by increasing the C/B ratio, from 11.7% 
for the C/B ratio of 1 to 2.4% for the C/B ratio of 5. The 
main N compounds identified have been acetonitrile, indole, 
dodecanenitrile, pentadecanenitrile, and nonadecanenitrile. 
Methanethiol has been the only sulfur compound identified. 
These compounds are derived from the nitrogen and sulfur 
the date palm seed contains.

Effect of the HZSM‑5 catalyst at 450 °C  Figure 6 shows the 
percentages of the peak areas obtained for the components 
in the pyrolysis stream without catalyst and with different 
amounts of HZSM-5 zeolite catalysts at 450 °C. Thermal 
pyrolysis of DPS was conducted in a previous study in the 
same reactor [33].

As observed, the lump of incondensable gases is the most 
abundant one, with a relative content increasing greatly in 
the catalytic pyrolysis (from C/B=2 to 5). This is a conse-
quence of the cracking reactions favored by the HZSM-5 
zeolite, which lead to a high concentration of incondensable 
gases. Mihalcik et al. [10] conducted pyrolysis in an Auto-
Shot Sample at 550 °C on different zeolites and determined 
a significant increase in the non-condensable gases with 
respect to the non-catalytic pyrolysis (from 15 wt.% in the 
thermal pyrolysis to 30.9 wt.% on the HZSM-5 zeolite cata-
lyst (Si/Al=23) at the mass ratio of B/C=1/5).

The relative content of anhydrosugars decreases in the 
presence of the catalyst, with the lowering being more pro-
nounced as the catalyst quantity is higher. The most abun-
dant compound identified is levoglucosan. The acid family 
decreases also markedly in the presence of the catalyst. This 
decrease is the result of the reduction in the concentration of 
long-chain acids, such as decanoic, dodecanoic, and octade-
canoic acids. Furthermore, the concentration of acetic acid 
is insignificant in the presence of the zeolite. Jeon et al. [53] 
reported that a microporous zeolite like the HZSM-5 reduces 
the acid yield due to their decomposition to give smaller 
molecules.

The concentration of ketones and furans also decreases in 
the presence of the catalyst, especially at the C/B ratios of 
2 and 5. In the case of ketones, all the compounds undergo 
reduction (acetone, 1-hydroxy-2-propanone, 2,3-butan-
edione, 2-butanone, and so on). In the case of furans, the 
decrease is due to the reduction in furane derivatives, i.e., 
aldehyde type furane derivatives, ketone type furane deriva-
tives, and furfural. Cheng and Huber [54] and Nikbin et al. 
[55] reported that furanic compounds react with olefins to 
form intermediate compounds, which by means of dehydra-
tion produce toluene and p-xylene. This may explain the 
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reduction observed in furans in the presence of the HZSM-5 
zeolite.

Another remarkable difference is the great increase 
observed in the content of hydrocarbons (from 0.35% in the 
thermal pyrolysis to around 25% in the catalytic one at C/
B=5). This result is a consequence of the deoxygenation 
promoted by the HZSM-5 zeolite. As observed in Fig. 5, 
the yield of aromatic compounds is higher as the C/B ratio 
is higher. Benzene derivatives, toluene, xylenes, and naph-
thalene derivatives are the prevailing compounds identified.

This effect was also observed by Vichaphund et al. [56], 
but at a higher temperature (500 °C). They observed a 
marked effect of the B/C ratio on the formation of aromatic 
compounds when they carried out biomass pyrolysis on a 
HZSM-5 catalyst with C/B ratios in the 1 to 10 range in a 
Pyroprobe. Thus, they reported the highest yield of aromatic 
compounds for the highest C/B ratio.

Another significant difference between thermal and cata-
lytic pyrolysis is the formation of nitriles, with acetonitrile 
being the most abundant one with a relative content of 0.8% 
at C/B=2, followed by dodecanenitrile, pentadecanenitrile, 
and nonadecanenitrile, with values in the 0.1–0.2% range. 
In the thermal pyrolysis, pyrrole and pyridine were the sole 
compounds identified, with their contents being of around 
0.24% and 0.06%, respectively. Anand et al. [57] conducted 
catalytic pyrolysis of algae on zeolites and reported that 
the main species of nitrogen-containing compounds were 
nitriles. They attributed their formation at high temperatures 
to the dehydration of amides. Setter et al. [58] also found an 
increase in nitriles in the catalytic pyrolysis oil, probably 
due to the increased rate of decomposition of proteins and 
carbohydrates due to their transformation by deamination 
reactions.

Overall, the use of the HZSM-5 zeolite involves benefi-
cial effects, since its activity reduces markedly the concen-
tration of oxygenated compounds, such as acids, ketones, 
furans, and anhydrosugars. Acids are responsible for the 
acidity of the bio-oil fraction, which causes corrosiveness. 
Furthermore, ketones are related to the instability of the bio-
oil fraction during transport and storage. This reduction of 
oxygenated compounds leads to a dramatic increase in the 
content of aromatic hydrocarbons.

Product distribution at 500 °C  Table 7 shows the mean peak 
area percentages of the compound families identified in the 
catalytic pyrolysis of DPS at 500 °C using a C/B mass ratio 
of 1. As observed, the relative content of acids, anhydrosug-
ars, and ketones is high, as well as those of hydrocarbons 
and incondensable gases, as they are promoted by the joint 
effect of both the zeolite catalyst and the temperature.

Influence of temperature on the catalytic pyrolysis on the 
HZSM‑5 catalyst  Figure 7 shows the peak area percentages 
obtained at 450 and 500 °C with a C/B mass ratio of 1 in 
both thermal pyrolysis and catalytic pyrolysis on the HZSM-
5. As observed, the content of incondensable gases is high, 
especially for the higher temperature of 500 °C. The content 
of acids is slightly higher at 500 °C due to the increase in the 
long-chain acids, such as octanoic, dodecanoic, tetradeca-
noic, and octadecanoic ones. The relative content of hydro-
carbons at 500 °C is double that at 450 °C, with both linear 
and aromatic compounds being responsible for this trend.

Figure 8 shows the peak areas of the aromatic compounds 
at both temperatures. As observed, temperature plays a cru-
cial role in the increase of aromatic compounds in the cata-
lytic pyrolysis on the HZSM-5.

Fig. 6   Peak area percentages 
of the products obtained in the 
thermal pyrolysis and catalytic 
pyrolysis of DPS with different 
biomass/catalyst mass ratios at 
450 °C
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In general, the formation of aromatic hydrocarbons starts 
with the donation of a proton to substrates, such as hydro-
carbons, on the acid sites of the catalyst. This protonation 
leads to the formation of a carbocation within the hydrocar-
bon, which gives olefins by β-hydrogen elimination reac-
tion. These olefins are transformed into aromatics through 
oligomerization, cyclization, and hydrogen transfer reactions 
performed on the catalyst acid sites [59, 60].

The high content of BTX compounds determined is a 
consequence of the shape selectivity of the HZSM-5 zeo-
lite, which has an average pore width in the 0.52–0.55 nm 
range. This pore size is suitable for the formation and diffu-
sion of compounds like BTX within the pore system. Foster 
et al. [49] used a semi-batch Pyroprobe with microporous 
and mesoporous HZSM-5 catalysts and concluded that pure 
microporous HZSM-5 catalysts favor the production of small 
monoaromatic compounds (benzene, toluene, and xylene) in 
the pyrolysis of glucose and maple wood at a final reaction 
temperature of 600 °C.

According to these authors, micropore size is not the only 
factor to be considered, but internal pore spaces and steric 
hindrance play also a determining role in the formation of 
aromatics. They concluded that medium-pore zeolites with 
moderate internal pore spaces and steric hindrance (ZSM-5) 
contribute to increasing the aromatic yield and decreasing 
coke formation.

Another feature that affects the formation of aromatic 
compounds is acidity, which is related to the silica/alumina 
ratio. Foster et al. [49] also studied the effect of this param-
eter. They used silica/alumina ratio values of 23, 30, 50, 
and 80 and concluded that the maximum aromatic yield was 
obtained for SiO2/Al2O3=30. A silica/alumina ratio of 30 
leads to the highest availability of Brønsted sites. As the sil-
ica/alumina ratio is decreased, the concentration of acid sites 
increases. This increment in acid sites may favor secondary 
reactions leading to coke formation within the micropores by 
promoting the conversion of aromatic compounds.

Kim et al. [61] conducted the catalytic upgrading of the 
volatile stream generated in the pyrolysis (500 °C) of 2 bio-
masses and determined that their HZSM-5 zeolite with a 
silica/alumina ratio of 23 led to the highest BTX formation 
due to its high acidity and suitable pore size. They also stud-
ied the effect of the acid site concentration in the catalyst on 
the aromatic formation and reported that a HZSM-5 with a 
silica/alumina ratio of 23 produced a larger amount of aro-
matic compounds than a HZSM-5 with a silica/alumina ratio 
of 50, which is explained by the higher number of acid sites 
in the former.

Effect of the HZSM‑5 catalyst at 500 °C  Figure 9 shows the 
mean peak area percentages obtained in the thermal pyroly-
sis and catalytic pyrolysis on the HZSM-5 with a C/B ratio 
of 1 at 500 °C. As observed, there is a significant increase in 

Table 7   Mean peak area percentages (95% confidence interval) of 
the different compound families obtained in the catalytic pyrolysis of 
DPS at 500 °C with the C/B mass ratio of 1

The bold entries significance is to remake the different families cat-
egories

Incondensable gases 27.7±3.2
  Propene 2.1±0.3

2-methyl-1-propene 3.2±0.4
  1-butene 0.6±0.1

Acids 13.1±0.03
  Acetic acid 0.9±0.1
  Fatty acids 9.6±0.2
  Esters (alkyl esters acids) 2.3±0.02

Ketones 11.8±0.004
  Acetone 2.4±0.2

1-hydroxy-propanone 2.1±0.1
2,3-butanedione 0.8±0.15
2-butanone 5.7±0.5
  Others 0.7±0.4

Aldehydes 1.2±0.1
  Acetaldehyde 0.7±0.1

Phenols 2.1±0.15
1,2-benzenediol 0.8±0.1
1,2-benzenediol derivatives 0.2±0.03
1,4-benzenediol (hydroquinone) 0.3±0.05
1,4-benzenediol derivatives 0.3±0.01
  Phenol 0.1±0.004
  Phenol derivatives 0.5±0.05

Ethers 0.3±0.06
Alcohols 1.6±0.2
  Lineal 1.3±0.2
  Cyclic 0.3±0.001

Furans 7.4±0.9
  Furan 0.7±0.035
  Furan derivatives 1.6±0.3
  Furan derivatives (ketones) 0.9±0.1

Furan derivatives (aldehydes) 3.0±0.4
  Furfural 1.1±0.06

Anhydrosugars 14.0±0.5
  Levoglucosan 12.9±0.35

D-allose 0.6±0.2
2,3-anhydro-d-mannosan 0.3±0.02
Dianhydro glucopyranose 0.1±0.003
  Others 0.1±0.0015

Hydrocarbons 15.3±3.8
  Aliphatics 2.2±0.5
  Aromatics 13.1±3.3

N compounds 1.9±0.3
  Acetonitrile 1.0±0.2

S compounds 1.6±0.15
  Methanethiol 1.6±0.15

Non identified compounds 2.0±0.96
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Fig. 7   Peak area percentages 
obtained at 450 and 500 °C with 
a C/B mass ratio of 1
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Fig. 8   Peak area of the total 
content of aromatic com-
pounds and those of individual 
compounds for the catalytic 
pyrolysis on HZSM-5 at 450 
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the content of incondensable gases in the catalytic pyrolysis 
due to the cracking reactions promoted by the HZSM-5 zeo-
lite. Vichaphund et al. [56] pyrolyzed biomass on a HZSM-5 
catalyst in a Pyroprobe at 500 °C and determined that the 
presence of HZSM-5 catalyst increased the gas formation. 
They reported that large amounts of catalyst led to severe 
secondary cracking and decomposition reactions of the 
liquid product, resulting in higher gas yields under those 
conditions.

The hydrocarbon family also shows a dramatic increase in 
the catalytic pyrolysis, which is explained by the increase in 
the content of aromatic compounds favored by the HZSM-5 
zeolite due to its deoxygenating effect. Nevertheless, acids, 
ketones, aldehydes, phenols, alcohols, furans, and sugars 
are hindered in the catalytic pyrolysis. Iliopoulou et al. [12] 
also observed a reduction in the yields of acids and ketones 
in the volatiles obtained in the pyrolysis carried out in a 
fixed bed tubular reactor at 500 °C on a HZSM-5 zeolite 
and modified zeolites.

Nguyen et al. [62] performed biomass catalytic pyrolysis 
on a faujasite catalyst in a fixed bed reactor at 500 °C and 
they observed a moderate reduction in the content of acids, a 
very pronounced one in those of aldehydes and ketones, and 
an increase in those of phenols and hydrocarbons in the bio-
oil obtained. These trends involve a reduction in the acidity 
and instability, as aldehydes and ketones are responsible for 
condensation reactions causing viscosity increase. Further-
more, the increase in phenols and hydrocarbons improves 
the energy density of the bio-oil and also makes it easier to 
blend it with certain fractions of fossil crude oil [38].

Stephanidis et al. [63] approached the degradation of lig-
nocellulosic biomass on different types of catalysts at 500 °C 
in a bench-scale unit equipped with a fixed bed. According 
to their studies, a strongly acid HZSM-5 zeolite promotes 
oxygen content reduction in the organic fraction, thereby 
decreasing the concentration of acids, ketones, and phenols 
in the biomass pyrolysis oil. These trends are evidence of the 
cracking and deoxygenating effect of the HZSM-5 zeolite, 
which contribute to increasing the formation of inconden-
sable gases and aromatic hydrocarbons. Thus, according to 
Carlson et al. [44], zeolite catalysts selectively deoxygenate 
the pyrolytic vapors, leading to the formation of aromatic 
compounds.

Zhang et al. [64] also concluded that ZSM-5 catalysts 
give the highest yields of aromatics and olefins, when they 
treated straw biomass in a fluidized bed reactor at 550 °C on 
different types of catalysts.

Deoxygenating activity of the HZSM‑5 catalyst  As men-
tioned above, the deoxygenating capacity of the HZSM-5 
zeolite is a well-known fact. The content of oxygenate com-
pounds is an index of this capacity and the results corre-
sponding to DPS samples are shown in Table 8, in which 
the mean peak area percentages of oxygenated compounds 
are displayed for thermal pyrolysis at 450 and 500 °C and 
catalytic pyrolysis at 450 °C.

As observed, the HZSM-5 zeolite reduces the content 
of oxygenated compounds, with both temperature and C/B 
ratio having a great influence. Thus, thermal pyrolysis at 
450 °C leads to 98% oxygenates, whereas catalytic pyrolysis 
at this temperature decreases this content to 26% for a C/B 
ratio of 5. Concerning the effect of temperature, thermal 
pyrolysis at 500 °C allows obtaining an almost fully oxygen-
ated stream (99% oxygenates), whereas catalytic pyrolysis 
at this temperature with a C/B ratio of 1 provides a stream 
with 70% oxygenates. A comparison of this value with the 
one obtained for the same C/B ratio at 450 °C shows that 
catalytic pyrolysis at a higher temperature lowers consid-
erably the content of oxygenates, from 83 to 70%. This is 
explained by the enhancement of deoxygenation reactions 
as temperature is increased.

3.3.3 � Catalytic pyrolysis on the dolomite catalyst

Figure 10 shows the total ion chromatogram corresponding 
to the catalytic pyrolysis of DPS on the dolomite catalyst 
(C/B=1) at 450 °C.

Table 9 shows the retention times, compound names, 
and peak area percentages of the most abundant com-
pounds obtained in catalytic pyrolysis on the dolomite 
catalyst at 450 °C. As observed, long carbon chain ketones 
prevail (undecanone, tridecanone, heptadecanone, nonade-
canone). Although levoglucosan is the more outstanding 
compound identified, others within the acid family are also 
abundant. Furthermore, contrary to what happened when 
the HZSM-5 zeolite was used, aromatic compounds are not 

Table 8   Mean peak area percentages of oxygenated compounds in the thermal pyrolysis at 450 and 500 °C and catalytic pyrolysis of DPS at 450 
°C

Thermal Catalytic Catalytic Catalytic Thermal Cata-
lytic

450 °C C/B=1 C/B=2 C/B=5 500 °C C/B=1

Oxygenates 98±0.3 83±6.1 48±3.8 26±8.9 99±0.5 70±3.0
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the main ones. In this case, aliphatic compounds (linear 
hydrocarbons containing 5 to 18 carbon atoms) prevail.

Table 10 shows the peak are percentages of the com-
pound families identified in the catalytic pyrolysis of DPS 
at 450 °C using a C/B mass ratio of 1. As observed, the 

ketones family is the most abundant one (26.9 peak area 
percentage), which contains long-chain compounds, such 
as undecanone, tridecanone, nonadecanone (approximately 
1%), and 2-heptadecanone (approximately 5%). The high 
relative content of ketones is explained by the role played 

Fig. 10   Chromatogram obtained 
in the catalytic pyrolysis of DPS 
on the dolomite catalyst (C/
B=1) at T=450 °C
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Table 9   Retention times, 
compound names, and peak 
area percentages of the most 
abundant compounds obtained 
in the catalytic pyrolysis on the 
dolomite catalyst at 450 °C

Peak number Retention time 
(min)

Compound Peak area (%)

1 3.83 2,3-Butanedione 1.42
2 4.94 1-Hydroxy-2-propanone 2.05
3 9.95 2-Cyclopenten-1-one 0.44
4 10.65 Propanoic acid, 2-methyl, 2-propenyl ester 0.88
5 11.76 1-Nonene 0.30
6 15.85 1-Decene 0.45
7 19.9 3-Undecene 0.38
8 20.2 Undecane 0.37
9 23.79 1-Dodecene 0.23
10 25.91 5-(Hydroxymethyl)-2-furancarboxaldehyde 1.18
11 30.9 4-Tetradecene 0.21
12 34.50 2-Undecanone 1.24
13 34.50 Levoglucosan 17.66
14 35.17 d-allose 0.37
15 36.17 1,6-Anhydro-.beta.-talopyranose 0.70
16 36.71 Undecanoic acid 0.37
17 40.51 2-Tridecanone 1.03
18 42.32 Dodecanoic acid 1.43
19 45.96 2-Heptadecanone 4.66
20 47.55 Tetradecanoic acid 2.94
21 48.31 3-Octadecanone 0.72
22 50.33 1-Methoxy-9-octadecene 4.36
23 50.86 2-Nonadecanone 1.07
24 51.77 9-Octadecenoic acid 1.29
25 52.28 Octadecanoic acid 0.97
26 54.1 9-Octadecenal 0.74
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by CaO as reactant; that is, the reaction of CaO with acids 
or other carboxyl groups yields calcium carboxylates, which 
are subsequently decomposed into CaCO3 and ketones [65, 
66]. Consequently, the relative content of acids decreases. 
This can also explain the high acetone, 2,3-butanedione, and 
2-butanone peak areas obtained.

Other compounds identified in high percentages are 
2-cyclopenten-1-one and derivatives, cyclopentanone and 
derivatives, 1-(acetyloxy)-2-propanone, and 2,3-pentanedi-
one. Zhou et al. [67] reported that the significant formation 
of cyclic ketones can be explained by the transformation 
of anhydrosugars (mainly levoglucosan) via rearrangement 
reactions of furfuryl type compounds, such as furfural. Other 
authors explained this phenomenon as ketonization of car-
bolic acids to form acetone, which can couple with furans or 
acetone itself via aldol condensation to elongate the carbon 
chain length by numerous base catalysts [68, 69]. The results 
obtained in this study show that ketones have a markedly 
higher relative content and furans a significant decrease 
with respect to the values obtained in the thermal pyrolysis. 
Besides, the content of acids is lower, especially of short 
carbon chained ones, such as formic and acetic acids.

Valle et al. [23] upgraded the bio-oil on dolomite and obtained 
a high amount of acetone. They state that this result is evidence 
of the dolomite activity for acetic acid ketonization and, further-
more, other ketonization reactions involving carboxylic acids 
may also occur, which lead to the formation of linear ketones.

Anhydrosugar compounds are the next most abundant 
ones, with their content being 16.6%. Levoglucosan is the 
prevailing compound in this family with a content of 14.8%. 
Incondensable gases account for a relative content of 13.2% 
and acids for 16.5%. In the acid family, the long-chain acids 
are the main compounds identified, e.g., undecanoic, hexa-
decanoic, and octadecanoic acids, with their contents being 
3.9, 3.5, and 2.0%, respectively.

The families made up of ethers and hydrocarbon com-
pounds are also produced in a significant amount (contents 
of 5.4% and 4.8%, respectively). Within ethers, 1-methoxy-
9-octadecene and 1,1′-dimethoxy-9-octadecene have been 
identified and account for 3.9 and 1.4%, respectively. The 
hydrocarbon compounds are C9-C18 aliphatic hydrocarbons 
(paraffins and olefins). The aromatic hydrocarbons identi-
fied have been toluene, ethylbenzene, and 1,2,3-trimethyl-
benzene, with the first one being the prevailing one with a 
content of 0.2%.

Concerning the deoxygenating activity of the dolomite, 
this catalyst lowers the content of oxygenated compounds 
from 98% (corresponding to thermal pyrolysis) to 93%, 
under the conditions tested (450 °C and a C/B ratio of 1). 
Therefore, it has a much lower deoxygenating capacity than 
the HZSM-5 zeolite (83% of oxygenate compounds), which 
is explained by the better features of the latter (acidity and 
porous structure) for this process.

Table 10   Peak area percentages of the different compound families 
obtained in the catalytic pyrolysis of DPS on dolomite at 450 °C with 
a C/B mass ratio of 1

The bold entries significance is to remake the different families cat-
egories

Peak area %

Incondensable gases 13.2±3.7
Acids 16.5±3.9
  Acetic acid 0.2±0.06
  Fatty acids 12.9±3.7
  Esters (alkyl ester acids) 3.4±0.4

Ketones 26.9±2.3
  Acetone 2.7±0.8
  1-Hydroxy-propanone 2.3±0.25
  2,3-Butanedione 1.5±0.1
  2-Butanone 1.3±0.6
  Others 19.0±1.5

Aldehydes 2.7±0.5
  Acetaldehyde 1.3±0.4

Phenols 2.4±0.5
  1,2-Benzenediol 0.6±0.3
  1,2-Benzenediol derivatives 0.1±0.08
  Phenol 0.3±0.03
  Phenol derivatives 1.4±0.25

Ethers 5.4±1.0
Esters 0.8±0.1
Alcohols 1.7±0.1
  Lineal 1.7±0.1
  Cyclic 0.08±0.01

Furan 3.2±1.2
  Furan derivatives 0.3±0.03
  Furan derivatives (ketones) 0.4±0.1
  Furan derivatives (aldehydes) 2.3±1.1
  Furfural 0.09±0.04

Anhydrosugars 16.6±5.8
  Levoglucosan 14.8±5.4
  d-allose 0.25±0.2
  2,3-Anhydro-d-mannosan 0.2±0.05
  3,4-Anhydro-d-galactosan 0.6±0.15
  Glucopyranose 0.1±0.02
  Others 0.6±0.5

HC 4.8±0.4
  Aliphatics 4.5±0.4
  Aromatics 0.25±0.03

N compounds 0.8±0.2
S compounds 0.7±0.2
  Methanethiol 0.7±0.2

Pyrans 0.08±0.01
Non-identified compounds 4.5±2.2
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Comparison of thermal and catalytic pyrolysis on HZSM‑5 
and dolomite  Given that the product distribution obtained 
is very different depending on whether a catalyst is used or 
not and on the type of catalyst used, Fig. 11 compares the 
product distributions obtained in the three situations (with-
out catalyst and on HZSM-5 and dolomite catalyst) at a C/B 
ratio of 1 and 450 °C.

As observed, there are significant differences in the peak 
area percentages of the product families. Thus, a comparison 
of the results obtained in the thermal pyrolysis and those 
obtained on the dolomite shows that there is a large increase 
in the contents of ketones (from 15.7 to 26.9%), ethers (from 
0.7 to 5.4%), and hydrocarbons (from 0.4 to 4.8%) when 
this catalyst is used, but a significant decrease in those of 
sugars (from 23.1 to 16.6%), with levoglucosan being the 
main compound, and specially furans (from 9.6 to 3.2%). 
The lower content of levoglucosan on dolomite or CaO has 
also been detected by other authors [22, 70].

A comparison of the results obtained in the catalytic 
pyrolysis on the dolomite and HZSM-5 zeolite shows that 
the major differences are the higher peak area percentages 
of incondensable gases, furans, and hydrocarbons obtained 
on the HZSM-5 zeolite. Aromatic hydrocarbons are the 
most abundant ones on the HZSM-5 zeolite, whereas non-
aromatic hydrocarbons are the most abundant ones on the 
dolomite. It is noteworthy that the dolomite enhances the 
formation of ethers and especially of ketones.

4 � Conclusions

The HZSM-5 zeolite is a suitable zeolite for the deoxygena-
tion of the volatiles (bio-oil) generated in the pyrolysis of 
DPS biomass. This effect has been observed especially at 
450 °C with a high C/B mass ratio (C/B =5) and leads to a 

significant increase in the content of incondensable gases 
(especially C3-C4 olefins) and a large increase in that of aro-
matic hydrocarbons. The most abundant compounds identi-
fied are benzene, toluene, xylenes, and polyaromatic hydro-
carbons, such as naphthalene, fluorene, anthracene, and their 
derivatives. Simultaneously, a significant reduction in the 
content of acids, ketones, furans, and sugars has been deter-
mined, which is higher as the C/B ratio is higher. The acids 
and ketones are related to the acidity and instability of the 
bio-oil, and therefore, the decrease in their content improves 
the quality of the bio-oil. This deoxygenating activity of the 
HZSM-5 zeolite is due to its properties, such as acidity and 
porous structure (shape selectivity), which promote crack-
ing and deoxygenation reactions, and so the formation of 
aromatic compounds.

In the case of the dolomite catalyst, a low deoxygenat-
ing activity has been determined due to its basic nature and 
low specific surface area. The most remarkable effect of this 
catalyst is the high content of ketones it allows obtaining. 
This is the consequence of ketonization reactions involving 
carboxylic acids, which are promoted by the dolomite cata-
lyst to give linear ketones.
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