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Abstract
Green-based materials represent a new promising class of ecofriendly and economic adsorbents. Herein, nano zero-valent 
iron supported-lemon derived biochar (NZVI-LBC) was prepared for the first time and examined in the adsorptive removal 
of methylene blue as a model pollutant. Different characterization tools were used to ensure the successful fabrication of 
the NZVI-LBC composite including FTIR, XRD, TEM, XPS, VSM, BET, and zeta potential analysis. It was found that 
the fabricated NZVI–supported biochar composite attained the propitious adsorbent criteria since it provided a supreme 
efficient adsorption process at short  time. The reckoned maximum adsorption capacity of MB onto NZVI-LBC reached 
1959.94 mg/g within merely 5 min. The obtained data clarified that the adsorption process of MB onto NZVI-LBC fitted 
pseudo 2nd order kinetic model and Freundlich isotherm model. Besides, the adsorption process of MB onto NZVI-LBC 
was found to be endothermic in nature. In addition, NZVI-LBC composite revealed an excellent adsorption behavior even 
after seven cycles. The concrete results reflect the potentiality of NZVI-LBC composite to be a superb candidate to remove 
cationic pollutants from their aqueous solutions.
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1  Introduction

Water pollution is the most enormous environmental 
dilemma that is rising swiftly day-by-day. As a result, myr-
iad diseases have aggravated such as typhoid, hepatitis, and 
cancer since the polluted water directly affects human health 
[1–3]. Thence, researchers have exerted arduous efforts, pur-
suing crucial solutions to get rid of these fatal pollutants and 
fulfill safe drinking water [4]. Among these troublesome 
contaminants, methylene blue (MB) is the most pervasive 

synthetic dyes in diversified potential industries such as 
food, paper, plastic, leather, and textile [5, 6]. Neverthe-
less, MB causes vast apprehensions on human health and 
our environment entirely. It was found that the existence of 
MB into water bodies even with minimal concentration has 
severe influences on human health including blood pressure, 
gastrointestinal pain, vomiting, headache, and irritation of 
throat [7, 8]. Hence, advanced techniques have evolved to  
face these catastrophic risks of MB such as electrolysis [9], 
catalytic reduction [10], photocatalysis [11–13], membrane 
separation [14], chemical oxidation [15], and particularly 
adsorption since  it is quite simple, highly efficient, and cost-
less techniques [16–18].

Biochar (BC) is a dusty carbonaceous compound that 
is produced via thermochemical decomposition of diverse 
and bountiful bio-wastes [19–23]. BC has received vast con-
sideration as a promising adsorbent owing to its appreciable 
characteristics including porous structure, huge specific sur-
face area, high mechanical strength, and plenty of oxygen-
ated functional groups (i.e., carboxylic and phenolic) [24, 
25]. Furthermore, recycling bio-wastes especially the agri-
culture crop residuals instead of burning them is considered 
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as the best of the best solution in terms of human health 
[26–28]. Several studies investigated that burning these crop 
residuals directly intensifies the suspended particulate mat-
ter, the main responsible for different respiratory diseases. 
Nonetheless, BC has a significant drawback which is a lim-
ited capacity to adsorb contaminants from aqueous media 
[29]. It was investigated that combining BC with magnetic 
nanomaterials is a feasible solution to overcome this flaw as 
well as  it provides easy separation and good recyclability 
for BC.

NZVI is one of the most popular magnetic nanoparticle 
for wastewater treatment due to its incomparable properties 
including high specific surface area, excellent adsorption 
property, high surface energy, and strong reducing ability 
[30, 31].  However, NZVI suffers many flaws including 
aggregation, poor transportability, and reduced electron 
transfer [32]. So, diversified approaches have been imple-
mented to get rid of these demerits such as using surfactants 
[33] and forming a composite to isolate the surface of NZVI 
particles, protecting them from exposure to air [34]. It was 
reported in related studies that NZVI-modified BC nanocom-
posite is a propitious candidate for the adsorptive removal 
of miscellaneous contaminants such as organic dye [35, 
36], nitroaromatic compound [37], and heavy metals [38]. 
Essentially, this combination has a dual benefit  since BC 
enhances the dispersion of the magnetic NZVI particles and 
inhibits their aggregation [39]. Thence, BC endows NZVI 
more stability in air with low aggregation, retaining its good 
adsorption and reduction properties [40]. On the other hand, 
NZVI ameliorates the adsorption capability of BC, as well 
as their magnetic behavior, and facilitates the separation by 
an external magnet rather than centrifugation and filtration 
techniques that are less  efficient and consume longer time 
[41].

Herein, we adopted the concept of fabricating  a low-cost 
and ecofriendly adsorbent possessing extraordinary fast and 
super-adsorption capability. To the best of our knowledge, 
this is the first time to fabricate NZVI-supported lemon-
derived biochar  composite. A complete characterization 
of the fabricated NZVI-LBC magnetic nanocomposite was 
performed. Moreover, the fabricated NZVI-LBC nanocom-
posite was tested for the selective removal of MB.

2 � Experimental section

2.1 � Materials

Lemon residues were collected from a juice shop in Alex-
andria, Egypt. Ferric chloride hexahydrate (FeCl3.6H2O, 
99%) was supplied from Alpha Chemika (India). Sodium 
borohydride (NaBH4, 98.7%) and ethanol (C2H5OH, 99%) 

were bought from Rankem (India). MB was obtained from 
MP Biomedicals, LLC (France).

2.2 � Preparation of NZVI‑LBC nanocomposite

Firstly, lemon residues were well washed with distilled 
water, then dried in an oven at 100 °C for 12 h. The formed 
crunchy lemon residues were grinded by a blender; after-
wards, the obtained fine powder was carbonized in a muffle 
furnace at 500 °C for 5 h under oxygen-limited conditions 
since the crucible was put into a stainless steel cylinder. 
The air in the cylinder was removed by N2 gas to infer an 
oxygen-free atmosphere. Then, the cylinder was put into 
the furnace. Secondly, 0.1 g LBC and 0.35 g FeCl3.6H2O 
were dispersed in 20 ml ethanol for 15 min. Then after, 
freshly prepared NaBH4 solution (33 ml, 0.1 M) was added 
to the reaction mixture drop by drop under robust stirring. 
Ultimately, the black powder was separated by an external 
magnet, washed with ethanol, and dried under vacuum at 
50 °C for 3 h.

2.3 � Characterization tools

For in-depth study of the as-fabricated NZVI-LBC nano-
composite,  various characterization tools were utilized 
including transmission electron microscope (TEM, 
JEOL-2100 plus) to investigate the surface morphology. 
The TEM sample was prepared by sonicating 5 mg of 
the NZVI-LBC composite  into 10 ml of ethanol for 3 h. 
Then after, a few drops of the resulting suspension were 
put onto a grid coated with copper. Moreover, N2 adsorp-
tion–desorption isotherm was performed to estimate the 
BET adsorption isotherm (BET, Beckman coulter) after 
the sample was degassed for 1 h at 250 °C, and the spe-
cific surface area was determined by plotting BET equa-
tion at P/P0 in the range from 0.01 to 0.35. The chemical 
composition was inspected by Fourier transform infrared 
spectra (FTIR, Tensor II, Bruker) at a wavenumber range 
4000–400 cm−1. The elemental analysis was determined 
by X-ray photoelectron spectroscopy (XPS, Thermo Fisher 
Scientific). Besides, the magnetic property was measured 
by vibrating sample magnetometer (VSM, Lake shore). In 
addition, the surface charge was detected by zeta potential 
(ZP, Malvern). The ZP sample was prepared by dispersing 
1 mg of the NZVI-LBC composite  into 10 ml of distilled 
water, then pH was adjusted by 0.01 M HCL and/or NaOH. 
Then, the suspension was sonicated for 1 h and injected 
into the cell of the instrument. Crystallite phase was scru-
tinized by X-ray diffraction (XRD, BRUKER D8 Advance 
Cu target) with wavelength λ = 1.54 A° (CuKα), at a tube 
voltage of 35 kV and tube current of 30 mA.
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2.4 � Batch adsorption

The adsorption capacity of the as-synthesized NZVI-LBC 
nanocomposite towards MB was scrutinized in a sim-
ple batch adsorption mode as follows: 10 mg NZVI-LBC 
nanocomposite was soaked in 20 ml MB with an initial 
concentration range 500–2000 mg/L. The impact of pH on 
the adsorption efficiency of  MB was assessed in pH range 
3–11, where pH of the contaminant solutions was adjusted 
by 0.1 M NaOH and/or HCl. For inspecting the impact of 
NZVI-LBC nanocomposite dose, the adsorption of MB 
was studied  using various composite dosages ranging from 
0.005 to 0.025 g. In addition, the impact of temperature 
on the adsorption process of MB was evaluated at a tem-
perature range 25–55 °C. Finally, the contaminant residual 
concentration was tested by utilizing spectrophotometer at 
λmax = 664 nm. Finally, the removal efficiency (R%) and the 
adsorption capacity (q) were calculated by Eqs. 1 and 2:

where Co and Ct are the initial concentration and the con-
centration of MB at certain time, respectively. m is the mass 
of NZVI-LBC nanocomposite and V is the volume of MB 
solution, respectively.

2.5 � Selectivity study

The selectivity of NZVI-LBC nanocomposite was exam-
ined in the presence of the cationic crystal violet (CV) and 
the anionic Congo red (CR) in a dye mixture binary sys-
tem (MB-CV) and (MB-CR) and ternary system (MB-CR-
CV). The test is carried out as follows: 0.01 g NZVI-LBC 
nanocomposite was added to 20 ml multi-dye solution, then 
NZVI-LBC was collected by an external magnet, and the 
concentration of residual dyes was measured via spectro-
photometer (λmax (CR) = 500 nm and λmax (CV) = 598 nm).

(1)R% =
C0 − Ct

C0

× 100

(2)q =
(C0 − Ct) × V

m

2.6 � Desorption study

The significant merit of any adsorbent such as low cost, 
ecofriendly, or even excellent adsorption property is use-
less if the adsorbent has poor reusability. Accordingly, it 
was a pivotal issue to attest the reusability of the as-synthe-
sized NZVI-LBC nanocomposite. The reusability test was 
executed as follows: the magnetic NZVI-LBC nanocompos-
ite was collected by an external magnet after each adsorp-
tion cycle (V = 20 mL, C0 = 500 mg/L and adsorbent dose 
0.01 g), washed with ethanol, and reused in the next cycle.

3 � Results and discussion

3.1 � Investigation of the properties 
of the as‑fabricated NZVI‑LBC nanocomposite

3.1.1 � XRD

Figure 1A clarifies the crystal phase of LBC, NZVI, and 
NZVI-LBC nanocomposite. For LBC, XRD spectrum sig-
nifies the amorphous phase of the as-synthesized LBC. 
Moreover, XRD of NZVI points out its characteristic peak 
at 2θ = 44.8° which is the fingerprint of body-centered cubic 
NZVI [42], whereas XRD spectrum of NZVI-LBC nano-
composite elucidates the distinguishing peak of NZVI with 
lower intensity than the pristine NZVI, reflecting the suc-
cessful incorporation of NZVI into LBC [40].

3.1.2 � FTIR

FTIR spectra of LBC, NZVI, and NZVI-LBC nanocom-
posite exhibit (Fig.  1B) broad band around 3300  cm−1 
which is ascribed to OH vibration stretching. FTIR spec-
trum of LBC displays the two peaks at 795 and 1592 cm−1 
which are attributed to C-H and C = C of the aromatic ring, 
respectively [43]. Besides, the peak at 457 cm−1 belongs 
to Si–O and the peak at 1086 cm−1 relates to C-O of ester 
[44]. Moreover, FTIR of NZVI reveals the belonging 
peak to NZVI at 680  cm−1, while the two peaks at 995 

Fig. 1   XRD of LBC, NZVI, and  
NZVI-LBC nanocomposite (A), 
and FTIR of LBC, NZVI, and  
NZVI-LBC nanocomposite (B)
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and 1320 cm−1 are corresponded to FeOOH, evincing the 
core–shell structure of NZVI [45]. In addition, the peak at 
1600 cm−1 is ascribed to OH binding and the peaks at 459 
and 685 cm−1 are assigned to Fe–O stretching vibration [30, 
46]. FTIR spectrum of NZVI-LBC nanocomposite clarifies 
the discriminative peaks of both LBC and NZVI but with 
low peak intensities.

3.1.3 � XPS

XPS spectra signalize the successful fabrication of NZVI-
LBC nanocomposite since the survey spectrum (Fig. 2A) 
illustrates the main elements of the nanocomposite: Fe2p, 
C1s, and O1s. For Fe2p spectrum (Fig. 2B), Fe2+ appeared 
at BE of 710.85 eV, while the two peaks emerged at BE 
of 713.97 and 716.74 eV correspond to Fe3+ [47]. Essen-
tially, the presence of Fe0 indicated by the peak at BE of 
720.81 and the existence of FeOOH at BE of 724.66 and 
728.34 eV infers the suggested core–shell structure of NZVI 
[48]. Moreover, C1s spectrum (Fig. 2C) points out the peaks 
at BE of 288.35, 285.96, and 284.19 eV which are ascribed 
to C = O, C-O, and C = C, respectively [49]. Furthermore, 
O1s spectrum (Fig. 2D) clarifies the corresponding peaks 
to FeOOH, Fe–O, and C-O at BE of 529.99, 530.96, and 
533.25 eV, respectively [42].

3.1.4 � TEM

TEM image of NZVI (Fig. 3A) points out a great aggre-
gation of the particles owing to their high magnetism. 

Furthermore, Fig. 3B infers the distinctive core–shell struc-
ture of NZVI that is ascribed to the oxidation or corrosion 
of Fe0 due to the existence of water and oxygen during the 
fabrication process, resulting in the formation of iron oxide 
shell surrounding the surface of Fe0 [50]. On the other hand, 
TEM images of NZVI-LBC nanocomposite (Fig. 3C, D) 
clarify the well-dispersion of the particles since the pres-
ence of LBC dwindles the magnetism of NZVI, resulting in 
diminishes the aggregation of the particles [42].

3.1.5 � VSM

To assert the TEM observation, the magnetism of pure 
NZVI and NZVI-LBC nanocomposite was inspected by 
VSM. Figure 4A points out that the saturation magnetiza-
tion of NZVI decreased almost to its half (from 72.50 to 
39.36 emu/g) after the combination with the non-magnetic 
LBC. Furthermore, it was found that the coercivity values 
of NZVI and NZVI-LBC is larger than 20 G, indicating the 
soft ferromagnetic behavior of both samples.

3.1.6 � Zeta potential

In general, electrostatic interaction is almost the domi-
nant mechanism of the adsorption of most contami-
nants. Therefore, it is crucial to determine the surface 
charge of NZVI-LBC nanocomposite. Figure 4B shows 
the point of zero charges (PZC) of NZVI-LBC at pH 
3.5, reflecting a favorability of NZVI-LBC to adsorb the 
cationic contaminants such as MB at pH > 3.5 owing to 

Fig.2   XPS of NZVI-LBC nano-
composite; spectrum survey 
(A), Fe2p (B), C1s (C), and 
O1s (D)
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the abundance of negative charges onto its surface that 
spontaneously attract the positive MB molecules. Contra-
riwise, at pH < 3.5, the surface of NZVI-LBC is loaded 
with positive charges, resulting in electrostatic repulsion 
between the positive MB molecules and the positively 
charged NZVI-LBC.

3.1.7 � Textural properties

Figure 4C represents the N2 adsorption/desorption isotherms 
of NZVI and NZVI-LBC nanocomposite. It is apparent 
from the isotherms that both NZVI and NZVI-LBC exhibit 
type II. Furthermore, the specific surface area (SBET) of 

Fig. 3   TEM images of NZVI 
(A, B) and NZVI-LBC nano-
composite (C, D)

Fig. 4   VSM of NZVI and 
NZNI-LBC (A), ZP of NZNI-
LBC (B), and BET of NZVI, 
LBC, and NZNI-LBC (C)



1702	 Biomass Conversion and Biorefinery (2024) 14:1697–1709

1 3

NZVI increases around two-fold after the incorporation 
into LBC since the SBET of NZVI, LBC, and NZVI-LBC 
are 79.51, 217.58, and 163.45 m2/g, respectively. In addi-
tion to an enhancement in the pore volume of NZVI-LBC 
(6.79 nm) compared with the pure NZVI (1.26 nm) and LBC 
(4.38 nm).

3.2 � Investigation of the optimum conditions 
for the adsorption of MB onto NZVI‑LBC 
nanocomposite

A comparative study between the adsorption efficacy of 
LBC, NZVI, and NZVI-LBC was executed as follows: 
10 mg of each adsorbent was separately added to MB (20 ml, 
500 mg/L) at pH 9 and 25 °C. It was found that the adsorp-
tion capacity of MB onto LBC, NZVI, and NZVI-LBC were 
49.36, 198.62, and 957.70 mg/g, respectively. This finding 
clarified the fascinating impact of the mixing between NZVI 
and LBC to obtain an adsorbent with a propitious adsorb-
ability toward such noxious dye.

3.2.1 � The influence of solution pH

The leverage of pH on the uptake efficacy of MB onto NZVI-
LBC nanocomposite was thoroughly scrutinized over a wide 
pH range (3–11). Figure 5A depicts that the raising in pH 
from 3 to 11 dramatically enhances the adsorption capacity 
from 791.64 to 963.30 mg/g and the removal (%) from 78.25 

to 96.17%. This finding may be anticipated by the significant 
competition between H+ ions and the positive MB molecules 
towards NZVI-LBC at low pH that hinders the uptake of 
MB [51]. In addition, the NZVI-LBC surface is positively 
charged (ZP = 7.4 mV) at low pH, resulting in electrostatic 
repulsion forces between the cationic MB molecules and 
NZVI-LBC. Conversely, the raising in pH decreases the 
concentration of H+ ions, as well as increases the negative 
charges on the surface of NZVI-LBC (ZP =  − 91.6 mV at pH 
11). Thence, the enhancement in the adsorption efficacy at 
high pH may be attributed to the strong electrostatic interac-
tion between the positive MB molecules and the negatively 
charged NZVI-LBC nanocomposite [52, 53].

3.2.2 � The influence of dosage of NZVI‑LBC nanocomposite

Figure 5B outlines the influence of the augmentation 
of the dosage of NZVI-LBC on the adsorption capacity 
and removal (%) of MB. It was noticed the increase in 
NZVI-LBC from 0.005 to 0.025 g declines the adsorption 
capacity of MB from 1057.09 to 398.76 mg/g, respec-
tively, which may be attributed to the aggregation of the 
particles. On the contrary, the increase in the dosage of 
NZVI-LBC uplifted the removal (%) reached 99.68%, 
resulting from the availability of severe binding sites 
[54]. However, the further rising in NZVI-LBC dose over 
0.01 g has a slight effect on the removal (%). There-
fore, 0.01 g was picked out as the apt dose taking into 

Fig. 5    Effect of pH (A), adsor-
bent dose (B), initial concentra-
tion of MB (C), and tempera-
ture (D) on the MB uptake onto 
NZVI-LBC
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consideration adsorbent cost, removal rate, and adsorp-
tion amount.

3.2.3 � The influence of initial concentration of MB

Figure 5C exhibits the leverage of the increase in the initial 
concentration of MB on the adsorption capacity of MB. It is 
obvious that NZVI-LBC nanocomposite provides extra-fast 
adsorption for MB at which the process reached equilibrium 
within 5 min. Furthermore, there was a huge increase in the 
adsorption capacity of MB onto NZVI-LBC from 495.65 to 
1864.41 mg/g with rising the initial concentration of MB 
from 250 to 1000 mg/L, respectively. This behavior may be 
ascribed to the increment of the initial concentration of MB 
enhances its driving forces for surpassing the mass transfer 
resistance of MB molecules to reach NZVI-LBC surface 
[55, 56].

3.2.4 � The influence of temperature

Figure 5D displays the process temperature effectiveness on 
the MB adsorption competence onto NZVI-LBC nanocom-
posite. It was monitored that the rising in temperature from 
25 to 55 °C slightly ameliorated the adsorption capacity and 
removal (%) from 957.71 mg/g and 95.58% to 997.51 mg/g 
and 99.74%, respectively. This result could be assigned to 
the increase in the system temperature leading to an increase 
in the motion of MB molecules towards the surface of the 
nanocomposite.

3.3 � Kinetic study

To fully comprehend the MB uptake mechanism onto NZVI-
LBC nanocomposite, the kinetic data were investigated by 
pseudo 1st order and pseudo 2nd order. The non-linear expres-
sions of these used kinetic models are represented in Eqs. 3 
and 4 [57]. Moreover, root mean square error (RMSE) test 
and chi-square (χ2) test are calculated from Eqs. 5 and 6 
[58, 59].

where k1 (min−1) and k2 (g.mg−1.min−1) denote the rate 
constant of pseudo 1st order and pseudo 2nd order, respec-
tively. qt and qe are the adsorption capacity of MB at time 
t and equilibrium, respectively. qtm and qt are the obtained 
adsorption capacity by using the model and the experimental 
data, respectively. N is the number of experimental data and 

(3)qt = qe
(

1 − e−k1t
)

(4)qt =
tk2q

2

e

1 + tk2qe

(5)�
2 =

∑ (qt − qtm)
2

qtm

(6)RMSE =
√

(
1

N

N
�

i=1

(qtm.i − qt.i)
2

Fig. 6   Kinetics models (A) 
and adsorption isotherms (B) 
of the MB uptake process onto 
NZVI-LBC

Table 1   Kinetic parameters of the MB uptake onto NZVI-LBC nano-
composite

Kinetic models Concentration (mg/L)

250 500 750 1000

qe, exp(mg/g) 495.7 983.8 1437.2 1864.4
Pseudo 1st order
qe,cal(mg/g) 459.4 961.7 1414.2 2030.9
k1(min−1) 0.129 0.066 0.059 0.053
R2 0.635 0.896 0.900 0.857
χ2 2.866 0.507 0.374 14.869
RMSE 36.3 22.1 23.0 166.9
Pseudo 2nd order
qe,cal(mg/g) 503.9 989.3 1452.8 1826.3
k2(g.mg−1.min−1) 0.0004 0.00008 0.00005 0.00004
R2 0.870 0.960 0.945 0.940
χ2 0.135 0.030 0.167 0.778
RMSE 8.2 5.5 15.6 38.1



1704	 Biomass Conversion and Biorefinery (2024) 14:1697–1709

1 3

qtm and qt are the obtained adsorption capacity by using the 
model and the experimental data respectively.

The non-linear curves (Fig. 6A) and the reckoned kinetic 
parameters (Table1) clearly assert that the MB uptake pro-
cess onto NZVI-LBC nanocomposite is well represented by 
pseudo 2nd order at which its R2 values are greater than those 
obtained from pseudo  1st order. In addition, χ2 and RMSE 
values of pseudo 2nd order are less than pseudo 1st order 
as well as the convergence between qexp and qcal from 
pseudo 2nd order, asserting the suitability of pseudo 2nd order 
to represent the MB adsorption process [60, 61].

3.4 � Isotherm study

To describe the kind of interaction between MB and NZVI-
LBC nanocomposite, the equilibrium data were thoroughly 
fitted utilizing non-linear Langmuir, Freundlich, Temkin, 
and D-R Eqs. (7–11) [57].

where qmax denotes the maximum monolayer uptake and kL 
(L/mg) refers to Langmuir constant. n and kF (L/mg) sym-
bolize Freundlich constants. R (8.314 J/mol k) is the gas con-
stant and kT (L/g) and bT (KJ/mol) represent the equilibrium 
binding constant and Temkin constant, reprehensively. qs 
and ε refer to the saturation capacity and the Polanyi poten-
tial, representatively. KDR (mol2/K2J2) expresses the average 
adsorption free energy of the adsorbate.

Figure 6B exhibits the non-linear curves of Langmuir, 
Freundlich, Temkin, and D-R models. It is evident from R2 
values (Table 2) that the MB uptake onto NZVI-LBC nano-
composite obeys Freundlich model. Besides, the reckoned 
qmax under Langmuir model was 1959.94 mg/g. Moreover, 
the preference of the MB uptake process was proved via 
n value since it was greater than 2 [62]. Furthermore, the 
computed bonding energy (E = 1/(2KDR)1/2) was 15.81 kJ/
mol, suggesting that the adsorption of MB onto NZVI-LBC 
occurred via chemical bonds [63]. Importantly, NZVI-LBC 
nanocomposite possesses an extremely high adsorption 

(7)Langmuir;qe =
qmaxKLCe

1 + KLCe

(8)Freundlich;qe = kFC
1∕n
e

(9)Temkin;qe =
RT

bT
lnkTCe

(10)D − R;qe = qse
−kDR�

2

(11)� = RTln(1 +
1

Ce

)

capacity compared to other reported adsorbents in previous 
studies (Table 3).

3.5 � Selectivity study

Actually, the real wastewater contains a plethora of dyes that 
violently vie for the active sites of the adsorbent and they 
might interact with each other as well. Consequently, it was 
crucial to assess the adsorption performance of the as-fabri-
cated  NZVI-LBC nanocomposite towards MB in the pres-
ence of interfering anionic dye (CR) and cationic dye (CV) 
in binary and ternary dye systems (Fig. 7A). It was recorded 
that the removal efficiency of MB in a MB single system, 

Table 2   Isotherms parameters  for  the MB uptake onto NZVI-LBC 
nanocomposite

Isotherm model Parameter Value

Langmuir qmax (mg/g) 1959.9
kL (L/mg) 0.049
R2 0.813
χ2 4.65
RMSE 95.5

Freundlich n 3.03
kF (L/mg) 385.8

Temkin R2 0.985
kT (L/g) 1.83
bT (KJ/mol) 0.082
R2 0.907

D-R qs 1500.4
KDR (mol2/K2J2) 0.002
R2 0.635

Table 3   Comparison between the adsorption capacity of MB onto 
diversified reported adsorbents

Adsorbent qmax (mg/g) Reference

MnO2-lignin BC composite 248.96 [64]
Wettorrefied microalgal BC 129.57 [65]
UiO-66/MIL-101(Fe)-GOCOOH com-

posite
448.70  [80]

Fe-AC composite 357.10 [66]
Persimmon fruit peel BC 303.00 [67]
Banana peel BC/iron oxide composite 862.00 [68]
NaOH/bamboo HC 665.75 [69]
Straw BC 62.5 [70]
NZVI 208.33 [71]
CNT-TA 105 [72]
MWCNT-SH 10 [73]
NZVI-BC N/A [74]
NZVI-LBC nanocomposite 1959.94 This study
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MB-CR and MB-CV binary systems, and MB-CR-CV ter-
nary system were 95.58%, 91.91%, 71.73%, and 87.72%, 
respectively. There is a slight diminution in the removal (%) 
of MB in the presence of CR, reflecting the selectivity of 
NZVI-LBC towards MB. However, the removal (%) of CR 
increased in a binary system (54.64%) and ternary system 
(49.95%) compared to a single one (21.02%) which is most 
likely due to the interaction of CR with MB, agreeing with 
the previous study by Bentahar and his coworker [75]. In 
the case of the MB-CV binary system, it was monitored a 
significant decline in the removal (%) of both MB and CV 
from 95.58 and 54.95% to 71.73 and 38.93%, respectively, 
which may be attributed to the fierce competition occurs 
between the two cationic dyes for the active sites of NZVI-
LBC nanocomposite.

3.6 � Reusability

Undoubtedly the high magnetic property of NZVI-LBC 
nanocomposite provides easy and perfect separation, so the 
recyclability test was executed on NZVI-LBC for  seven 
adsorption/desorption cycles of MB to confirm the impor-
tance of its magnetic property (Fig. 7B). An insignificant 
diminution was recorded after the 7th cycle in the adsorption 
capacity and removal (%) from 957.71 mg/g and 95.58% to 
755.52 mg/g to 75.01%, respectively. This finding infers the 
great renewability of NZVI-LBC nanocomposite that renders 
it a viable candidate for the diverse potential applications.

3.7 � The postulated adsorption mechanism

XPS spectrum of NZVI-LBC nanocomposite after the MB 
adsorption (Fig. 7C) elucidates the distinguishing peaks 
to N and S of MB, asserting the successful uptake of MB 
onto NZVI-LBC. Furthermore, FTIR spectrum of NZVI-
LBC after the adsorption process signifies the character-
istic peaks of MB at 1124, 1227 and 3436 cm−1 which are 
assigned to C-H, C-N and N–H, respectively [76]. Owing to 
the ultra-high adsorption capacity of NZVI-LBC nanocom-
posite towards MB, it was a pivotal issue to speculate how 
NZVI-LBC grasps the MB molecules from their solution. 
The results ZP and the experimental study of the impact 
of pH on the adsorption process attest that the electrostatic 
interaction mechanism dominants the adsorption process of 
the cationic MB onto the negatively charged NZVI-LBC. 
Furthermore, the possibility to reduce MB to its colorless 
form (leucomethylene blue; LMB) via the transferred elec-
trons from Fe0 is one more hypothesis mechanism that was 
suggested in previous studies involving the adsorption of 
cationic dyes onto NZVI-LBC composites [77, 78]. The 
reduction of MB is clarified in the following equations:

Besides, the complexation and flocculation may contrib-
ute to the adsorption of MB on NZVI-LBC  since iron oxide/

(12)Fe0 → Fe2+ + 2e−

(13)MB + ne− → LMB

Fig. 7   Impact of interfering 
dyes on the removal (%) of MB 
(A), recyclability of NZVI-LBC 
(B), XPS spectra of NZVI-LBC 
before and after the MB adsorp-
tion (C) and FTIR spectra of 
NZVI-LBC before and after  
seven adsorption/desorption 
cycles of MB (D)
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hydroxide might form a complex with MB and then may 
occur flocculation in the reaction solution as given in the 
following equation:

On the other hand, the structure nature of  LBC vastly 
controls the MB uptake mechanism since the distributed H 
atoms on its surface may form H-bonds with N atoms of 
MB. In addition, n-π interaction via transfer the lone pairs of 
O atoms of LBC into π-orbital of MB aromatic ring [51, 79]. 
Figure 8 represents the possible mechanisms for the removal 
of MB onto  NZVI-LBC.

4 � Conclusion

This work reported a successful synthesis of magnetic 
lemon-derived biochar (NZVI-LBC) for the adsorptive 
removal of MB. Results clarified the superior efficacy of 
the magnetic synthesized NZVI-LBC as a low-cost adsor-
bent that was examined for the first time as an adsorbent 
for the adsorptive removal of MB. The adsorption process 
follows pseudo 2nd order kinetic model with a good fit-
ting to both Freundlich and Temkin isotherm models. The 
obtained NZVI-LBC is a highly effective adsorbent, much 
better than most reported biochars since the computed qmax 
from Langmuir model was 1959.94 mg/g within incredibly 
short equilibrium time (5 min). Additionally, the reusability 
tests confirmed NZVI-LBC is magnetically separable and 
has good reusability. The results of this work indicate that 
green synthesis of biochar with magnetic property is an 
effective and economical route for the production of highly 
efficient, low-cost, and reusable adsorbents for the treatment 

(14)MB + nFex(OH)
(3x−y)
y

→ [MB[Fex(OH)
(3x−y)
y

]n]

of dye-pollutant water to minimize their environmental 
risks. This propitious adsorption behavior of NZVI-LBC 
nanocomposite towards MB may be due to the possibility to 
occur several adsorption mechanisms including electrostatic 
interaction, complexation, and flocculation, H-bonds, and 
n-π interaction. In addition to the de-colorization mechanism 
via reducing MB to the colorless LMB, inspiring us with a 
new study involving determine the extent to which the de-
colorization mechanism affects the removal process.
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