Skip to main content
Log in

Enhancement of collection efficiency for capturing submicron particles emitted from biomass burning: a novel design of semi-circular corrugated plate electrostatic precipitator

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This paper presents the study of a novel semi-circular corrugated wire-plate electrostatic precipitator (ESP) for capturing submicron particles emitted from the burning of biomass residue. The discharge of residual gases from biomass combustion is widely acknowledged to be hazardous to human health. The main objective of ESP is to control the release of residual gases. The numerical simulation was performed to evaluate the collection efficiency, space charge density, electric field, gas dynamics, and flow behaviour in the ESP with flat and semi-circular corrugated plates. The influence of electrohydrodynamic (EHD) flow and flow velocity on collection efficiency and particle trajectory had also been investigated at different applied voltages with various gas velocities. The results showed that the flow velocity had a significant influence on ESP performance and vortices formed in the flat plate ESP could be suppressed using a semi-circular corrugated plate ESP, which would be beneficial for collecting particles efficiently. The numerical results showed that the collection efficiency of semi-circular corrugated plate ESP compared to flat plate ESP is 33.33% higher for 2 µm and 25% for 5 µm particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

C C :

Cunningham correction factor

C D :

Drag coefficient

d p :

Particle diameter (µm)

D i :

Ion diffusion coefficient (m2/s)

e :

Elementary charge (C)

E :

Electric field (V/m)

f :

Fractional surface covered

E t :

Electric field strength in \(i\)-direction

Fe :

Electric force (N)

F D :

Drag force (N)

J :

Current density (A/m)

k B :

Boltzmann constant (J/K)

Kn :

Knudsen number

m :

Particle mass (kg)

p :

Pressure (Pa)

P :

Absolute pressure (kPa)

r e :

Electrode radius (m)

R e :

Reynolds number

R f :

Charging rates

R d :

Diffusion transport

t :

Time (s)

T i :

Temperature (K)

u :

Gas velocity (m/s)

V :

Electric potential (V)

v :

Particle velocity (m/s)

v s :

Dimensionless charge

v e :

Dimensionless particle charge

w :

Dimensionless electric field strength

x p :

Particle position (m)

Z :

Accumulated charge number

z q :

Charge number

ε:

Vacuum permittivity

ε r ,p :

Relative permittivity

ρ q :

Space charge density (C/m3)

ρ :

Mass density (kg/m3)

δ :

Gas relative density

μ :

Dynamic viscosity (Pa-s)

μ ion :

Ion mobility (m2/V.s)

τ c :

Characteristic of charging time (s

References

  1. Trane RR, Jensen AD (2015) Steam reforming of cyclic model compounds of bio-oil over Ni-based catalysts: product distribution and carbon formation. Appl Catal B 165:117–127

    Article  Google Scholar 

  2. https://farmech.dac.gov.in

  3. https://www.who.int/docstore/peh/Vegetation_fires/Backgroundpapers/BackgrPap7.pdf

  4. Chen J, Li C, Ristovski Z, Milic A, Gu Y (2017) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034

    Article  Google Scholar 

  5. Ni HY, Han YM, Cao JJ, Chen L-WA, Tian J, Wang XL, Chow JC, Watson JG, Wang QY, Wang P (2015) Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos Environ 123:399–406

    Article  Google Scholar 

  6. Ni HY, Tian J, Wang XL, Wang QY, Han YM, Cao JJ, Long X, Chen LWA, Chow JC, Watson JG, Huang RJ, Dusek U (2017) PM2.5 emissions and source profiles from open burning of crop residues. Atmos Environ 169:229–237

    Article  Google Scholar 

  7. Carroll J, Finnan J (2017) Use of electrostatic precipitators in small-scale biomass furnaces to reduce particulate emissions from a range of feedstocks. Biosys Eng 163:94–102

    Article  Google Scholar 

  8. Mo J, Tian E, Pan J (2020) New electrostatic precipitator with dielectric coatings to efficiently and safely remove sub-micro particles in the building environment. Sustainable Cities and Society 55:102063

    Article  Google Scholar 

  9. Jaworek A, Sobczyk AT, Krupa A, Marchewicz A, Czech T, Sliwinski L (2019) Hybrid electrostatic filtration systems for fly ash particles emission control, a review. Sep Purif Technol 213:283–302

    Article  Google Scholar 

  10. Zhang X, Bo T (2021) The effectiveness of electrostatic haze removal scheme and the optimization of electrostatic precipitator based on the charged properties of airborne haze particles: experiment and simulation. Journal of Cleaner Production 288:125096

    Article  Google Scholar 

  11. Lami E, Mattachini F, Sala R, Vigl H (1997) A mathematical model of electrostatic field in wires-plate electrostatic precipitators. J Electrostat 39:1–21

    Article  Google Scholar 

  12. Yamamoto T, Morita Y, Fujishima H, Okubo M (2006) Three-dimensional EHD simulation for point corona electrostatic precipitator based on laminar and turbulent models. J Electrostat 64:628–633

    Article  Google Scholar 

  13. Yamamoto T, Velkoff HR (1981) Electrohydrodynamics in an electrostatic precipitator. Journal of Fluid Mechanical 108:1–18

    Article  Google Scholar 

  14. McDonald JR, Smith WS, Spencer HS (1977) A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices. J Appl Phys 48:2231–2241

    Article  Google Scholar 

  15. Brocilo D, Podlinski J, Chang JS, Mizeraczyk J, Findlay RD (2008) Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators. Journal of Physics: Conference Series 142:012032

    Google Scholar 

  16. Alt B, Kluh D, Gaderer M (2019) Development of an online monitoring method for electrostatic precipitators on commercial biomass combustion plants. Biomass Conversion and Biorefinery 11:1965–1975

    Article  Google Scholar 

  17. Alt, B., Kluh, D., Koch, K., Huber, B., Gaderer, M., 2020, “Using threshold values to continuously evaluate how effectively electrostatic precipitators operate,” Biomass Conversion and Biorefinery.

  18. Cao R, Tan H, Xiong Y, Mikulčić H, Vujanović M, Wang X, Duić N (2017) Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator. J Clean Prod 161:1459–1465

    Article  Google Scholar 

  19. Schulze AL, Büchner D, Klix V, Lenz V, Kaltschmitt M (2019) Biological effects of particulate matter emissions from residential pellet boilers in bacterial assays: influence of an electrostatic precipitation. Biomass Conversion and Biorefinery 9:227–239

    Article  Google Scholar 

  20. Wang G, Ma Z, Deng J (2019) Characteristics of particulate matter from four coal-fired power plants with low–low-temperature electrostatic precipitator in China. Sci Total Environ 662:455–461

    Article  Google Scholar 

  21. Crespo B, Pati D, Regueiro A, Granada E (2016) Performance of a lab-scale tubular-type electrostatic precipitator using a diesel engine particle emission source. Energy 116:1444–1453

    Article  Google Scholar 

  22. Zhang H, Wang Y, Gao W, Wu Z, Yang Z, Yang Y, Wu W, Zheng C, Gao X (2013) Minimizing the adverse effects of dust layer on the particle migration in electrostatic precipitator under various temperature. Fuel Processing Technology 213:106659

    Article  Google Scholar 

  23. Feng Z, Long Z, Cao S, Adamiak K (2018) Characterization of electrohydrodynamic (EHD) flow in electrostatic precipitator (ESP) by numerical simulation and quantitative vortex analysis. J Electrostat 91:70–80

    Article  Google Scholar 

  24. Feng J, Long Z, Adamiak K (2018) Numerical simulation of Electrohydrodynamic flow and vortex analysis in electrostatic precipitators. IEEE Trans Dielectr Electr Insul 25:404–412

    Article  Google Scholar 

  25. Chun Y, Chang J, Berezin A, Mizeraczyk J (2007) Numerical modeling of near corona wire electrohydrodynamic flow in a wire-plate electrostatic precipitator. IEEE Trans Dielectr Electr Insul 14:119–124

    Article  Google Scholar 

  26. Skodras G, Kaldis SP, Sofialidis D, Faltsi O, Grammelis P, Sakellaropoulos GP (2006) Particulate removal via electrostatic precipitators-CFD simulation. Fuel Process Technol 87:623–631

    Article  Google Scholar 

  27. Molchanov O, Krpec K, Horák J (2020) Electrostatic precipitation as a method to control the emissions of particulate matter from small-scale combustion units. Journal of Cleaner Production 246:119022

    Article  Google Scholar 

  28. Park SJ, Kim SS (2000) Electrohydrodynamic flow and particle transport mechanism in electrostatic precipitators with cavity walls. Aerosol Science Technology 33:205–221

    Article  Google Scholar 

  29. Park SJ, Kim SS (2003) Effects of electrohydrodynamic flow and turbulent diffusion on collection efficiency of an electrostatic precipitator with cavity walls. Aerosol Science Technology 37:574–586

    Article  Google Scholar 

  30. Dong M, Zhou F, Shang Y, Li S (2019) Numerical study on electrohydrodynamic flow and fine-particle collection efficiency in a spike electrode-plate electrostatic precipitator. Powder Technol 351:71–83

    Article  Google Scholar 

  31. Fujishimaa H, Uedab Y, Tomimatsua K, Yamamoto T (2004) Electrohydrodynamics of spiked electrode electrostatic precipitators. J Electrostat 62:291–308

    Article  Google Scholar 

  32. Farnoosh N, Adamiak K, Castle GSP (2011) Numerical calculations of submicron particle removal in a spike-plate electrostatic precipitator. IEEE Trans Dielectr Electr Insul 18:1439–1452

    Article  Google Scholar 

  33. Farnoosh N, Adamiak K, Castle GSP (2010) 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. J Electrostat 68:513–522

    Article  Google Scholar 

  34. Khare M, Sinha M (1996) Computer-aided simulation of efficiency of an electrostatic precipitator. Environ Int 22:451–462

    Article  Google Scholar 

  35. Shen H, Yu W, Jia H, Kang Y (2018) Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes. J Electrostat 95:61–70

    Article  Google Scholar 

  36. Penney GW, Matick RE (1960) Potentials in D-C corona fields. Trans Am Inst Electr Eng 79:91–99

    Google Scholar 

  37. Medlin AJ, Fletcher CAJ, Morrow R (1998) A pseudotransient approach to steady-state solution of electric field-space charge-coupled problems. J Electrostat 43:39–60

    Article  Google Scholar 

  38. Lei H, Wang LZ, Wu ZN (2008) EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator. J Electrostat 66:130–141

    Article  Google Scholar 

  39. Lawless PA (1996) Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime. J Aerosol Sci 27:191–215

    Article  Google Scholar 

  40. Yang D, Guo B, Ye X, Yu A, Guo J (2019) Numerical simulation of electrostatic precipitator considering the dust particle space charge. Powder Technol 354:552–560

    Article  Google Scholar 

  41. Zheng C, Zhang X, Yang Z, Liang C, Guo Y, Wang Y, Gao X (2018) Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect. J Aerosol Sci 118:22–33

    Article  Google Scholar 

  42. Yang Z, Zheng C, Liu S, Guo Y, Liang C, Zhang X, Gao X (2018) Insights into the role of particle space charge effects in particle precipitation processes in electrostatic precipitator. Powder Technol 339:606–614

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, A., Mishra, N.K. & Das, R. Enhancement of collection efficiency for capturing submicron particles emitted from biomass burning: a novel design of semi-circular corrugated plate electrostatic precipitator. Biomass Conv. Bioref. 13, 17059–17074 (2023). https://doi.org/10.1007/s13399-022-02358-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02358-8

Keywords

Navigation