Skip to main content
Log in

Removal of toxic heavy metal Cd(II) and Cu(II) ions using glutaraldehyde-cross-linked KFC/CNT/PVA ternary blend

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biopolymer blends using kenaf fiber cellulose (KFC), carbon nanotubes (CNT), and polyvinyl alcohol (PVA) with and without glutaraldehyde cross-linker were amined to prepare in the present study for the removal of toxic heavy metals copper and cadmium. The prepared ternary blends were then characterized using FTIR, XRD, SEM, and BET analysis. KFC/CNT/PVA + Glu ternary blend has a specific surface area of 148.33 m2 g−1, a pore volume of 0.68 cm3 g−1, and a pore size of 5.17 nm. The amorphous form of the KFC/CNT/PVA + Glu ternary blend demonstrated its appropriateness for the removal of Cd(II) and Cu(II) ions based on XRD and SEM measurements. Batch adsorption studies are used to determine the material’s adsorption efficiency by altering factors, including adsorbent dose, contact time, pH, and initial metal ion concentration. The data was examined using pseudo-first-order and pseudo-second-order models and fitted to Langmuir and Freundlich isotherms. The results reveal that the Freundlich equation and pseudo-second-order kinetics models can better describe our adsorption equilibrium data. Overall, the KFC/CNT/PVA + Glu ternary blend was found to remove Cu(II) ions more effectively than Cd(II) ions under ideal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data is contained within the article.

Code availability

Not applicable.

References

  1. Alalwan HA, Kadhom MA, Alminshid AH (2020) Removal of heavy metals from wastewater using agricultural byproducts. J Water Supply Res Technol 69:99–112. https://doi.org/10.2166/aqua.2020.133

    Article  Google Scholar 

  2. Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35:1125–1134. https://doi.org/10.1016/S0043-1354(00)00389-4

    Article  Google Scholar 

  3. Hao Y, Liu Y-M (2016) The influential factors of urban PM2.5 concentrations in China: a spatial econometric analysis. J Clean Prod 112:1443–1453. https://doi.org/10.1016/j.jclepro.2015.05.005

    Article  Google Scholar 

  4. Alalwan HA, Abbas MN, Abudi ZN, Alminshid AH (2018) Adsorption of thallium ion (Tl+3) from aqueous solutions by rice husk in a fixed-bed column: experiment and prediction of breakthrough curves. Environ Technol Innov 12:1–13. https://doi.org/10.1016/j.eti.2018.07.001

    Article  Google Scholar 

  5. Liang J, Li X, Yu Z et al (2017) Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II). ACS Sustain Chem Eng 5:5049–5058. https://doi.org/10.1021/acssuschemeng.7b00434

    Article  Google Scholar 

  6. Ma L, Wang Q, Islam SM et al (2016) Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42– Ion. J Am Chem Soc 138:2858–2866. https://doi.org/10.1021/jacs.6b00110

    Article  Google Scholar 

  7. Feng L, Zhang Y, Wen L et al (2011) Colorimetric determination of copper(II) ions by filtration on sol–gel membrane doped with diphenylcarbazide. Talanta 84:913–917. https://doi.org/10.1016/j.talanta.2011.02.033

    Article  Google Scholar 

  8. Kazantzis G (1987) The mutagenic and carcinogenic effects of cadmium: an update. Toxicol Environ Chem 15:83–100. https://doi.org/10.1080/02772248709357224

    Article  Google Scholar 

  9. Taşar Ş, Kaya F, Özer A (2014) Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2:1018–1026. https://doi.org/10.1016/j.jece.2014.03.015

    Article  Google Scholar 

  10. Bilal M, Shah JA, Ashfaq T et al (2013) Waste biomass adsorbents for copper removal from industrial wastewater–a review. J Hazard Mater 263(Pt 2):322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071

    Article  Google Scholar 

  11. Abdolali A, Guo WS, Ngo HH et al (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66. https://doi.org/10.1016/j.biortech.2013.12.037

    Article  Google Scholar 

  12. Ahmedna M, Johns MM, Clarke SJ et al (1997) Potential of agricultural by-product-based activated carbons for use in raw sugar decolourisation. J Sci Food Agric 75:117–124. https://doi.org/10.1002/(SICI)1097-0010(199709)75:1%3c117::AID-JSFA850%3e3.0.CO;2-M

    Article  Google Scholar 

  13. Agiri GO, Akaranta O (2009) Adsorption of metal ions by dye treated cassava mesocarp. Sci Res Essays 4:526–530

    Google Scholar 

  14. El GA, Hassen BM, Sadok RM (2015) Surface functionalization of cellulose fibers extracted from Juncus acutus L plant: application for the adsorption of anionic dyes from wastewaters. J Eng Fiber Fabr 10:155892501501000100. https://doi.org/10.1177/155892501501000106

    Article  Google Scholar 

  15. Makeswari M, Santhi T, Ezhilarasi MR (2016) Adsorption of methylene blue dye by citric acid modified leaves of Ricinus communis from aqueous solutions Available online www.jocpr.com. J Chem Pharm Res 8:452–462

    Google Scholar 

  16. Yue X, Huang J, Jiang F, et al (2019) Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. J Eng Fiber Fabr 14:. https://doi.org/10.1177/1558925019828194

  17. Idan IJ (2017) Adsorption of anionic dye using cationic surfactant-modified kenaf core fibers. OALib 04:1–18. https://doi.org/10.4236/oalib.1103747

    Article  Google Scholar 

  18. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036

    Article  Google Scholar 

  19. Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37:476–483. https://doi.org/10.1002/pen.11691

    Article  Google Scholar 

  20. Mohanty AK, Khan MA, Sahoo S, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites. J Mater Sci 35:2589–2595. https://doi.org/10.1023/A:1004723330799

    Article  Google Scholar 

  21. Ouni L, Ramazani A, Taghavi Fardood S (2019) An overview of carbon nanotubes role in heavy metals removal from wastewater. Front Chem Sci Eng 13:274–295. https://doi.org/10.1007/s11705-018-1765-0

    Article  Google Scholar 

  22. Jamnongkan T, Sukumaran SK, Sugimoto M et al (2015) Towards novel wound dressings: antibacterial properties of zinc oxide nanoparticles and electrospun fiber mats of zinc oxide nanoparticle/poly(vinyl alcohol) hybrids. J Polym Eng 35:575–586. https://doi.org/10.1515/polyeng-2014-0319

    Article  Google Scholar 

  23. Street KW, Hill CM, Philipp WH et al (2004) Properties of a novel ion-exchange film. Ind Eng Chem Res 43:7600–7607. https://doi.org/10.1021/ie0307535

    Article  Google Scholar 

  24. Jamnongkan T, Kantarot K, Niemtang K et al (2014) Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly(vinyl alcohol) hydrogel. Trans Nonferrous Met Soc China 24:3386–3393. https://doi.org/10.1016/S1003-6326(14)63481-6

    Article  Google Scholar 

  25. Jamnongkan T, Singcharoen K (2016) Towards novel adsorbents: the ratio of PVA/chitosan blended hydrogels on the copper (II) ion adsorption. Energy Procedia 89:299–306. https://doi.org/10.1016/j.egypro.2016.05.038

    Article  Google Scholar 

  26. Cherian BM, Pothan LA, Nguyen-Chung T et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627. https://doi.org/10.1021/jf8003674

    Article  Google Scholar 

  27. Kalia S, Avérous L, Njuguna J et al (2011) Natural fibers, bio- and nanocomposites. Int J Polym Sci 2011:735932. https://doi.org/10.1155/2011/735932

    Article  Google Scholar 

  28. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  Google Scholar 

  29. Oh SY, Il YD, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  Google Scholar 

  30. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  Google Scholar 

  31. Mansur HS, Oréfice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer (Guildf) 45:7193–7202. https://doi.org/10.1016/j.polymer.2004.08.036

    Article  Google Scholar 

  32. Mohkami M, Talaeipour M (2011) Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via XRD and FTIR Analysis. BioResources 6:1988–2003. https://doi.org/10.15376/biores.6.2.1988-2003

    Article  Google Scholar 

  33. Jaworska M, Kula K, Chassary P, Guibal E (2003) Influence of chitosan characteristics on polymer properties: II. Platinum sorption properties Polym Int 52:206–212. https://doi.org/10.1002/pi.1160

    Article  Google Scholar 

  34. Zhang Y, Liu Y, Wang X et al (2014) Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydr Polym 101:392–400. https://doi.org/10.1016/j.carbpol.2013.09.066

    Article  Google Scholar 

  35. Popuri SR, Frederick R, Chang CY et al (2014) Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin Water Treat 52:691–701. https://doi.org/10.1080/19443994.2013.826779

    Article  Google Scholar 

  36. Sitko R, Musielak M, Zawisza B et al (2016) Graphene oxide/cellulose membranes in adsorption of divalent metal ions. RSC Adv 6:96595–96605. https://doi.org/10.1039/c6ra21432k

    Article  Google Scholar 

  37. Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Technol 4:67–73. https://doi.org/10.1007/BF03325963

    Article  Google Scholar 

  38. Zhao Y, Zhan L, Xue Z et al (2020) Adsorption of Cu (II) and Cd (II) from wastewater by sodium alginate modified materials. J Chem 2020:5496712. https://doi.org/10.1155/2020/5496712

    Article  Google Scholar 

  39. Zubair A, Bhatti HN, Hanif MA, Shafqat F (2008) Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by Citrus reticulata waste biomass. Water Air Soil Pollut 191:305–318. https://doi.org/10.1007/s11270-008-9626-y

    Article  Google Scholar 

  40. Torres E (2020) Biosorption: a review of the latest advances. Processes 8:1–23. https://doi.org/10.3390/pr8121584

    Article  Google Scholar 

  41. Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840. https://doi.org/10.1007/BF01935534

    Article  Google Scholar 

  42. Song D, Pan K, Tariq A et al (2016) Adsorptive removal of toxic chromium from waste-water using wheat straw and Eupatorium adenophorum. PLoS ONE 11:e0167037–e0167037. https://doi.org/10.1371/journal.pone.0167037

    Article  Google Scholar 

  43. Volesky B (2003) Sorption and biosorption. BV Sorbex, St. Lambert, Quebec

Download references

Acknowledgements

The authors acknowledge the support of the management of C. Abdul Hakeem College, Melvisharam, and the management of D.K.M. College for Women, Vellore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gomathi Thandapani or Ibrahim Sheriff Ameer Khader Sheriff.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed Masood Ameenur, R., Thimmarajampet Neerazhagan, B., Thandapani, G. et al. Removal of toxic heavy metal Cd(II) and Cu(II) ions using glutaraldehyde-cross-linked KFC/CNT/PVA ternary blend. Biomass Conv. Bioref. 13, 13381–13391 (2023). https://doi.org/10.1007/s13399-021-02075-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02075-8

Keywords

Navigation