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Abstract
In this sequence of work we investigate polynomial equations of additive functions. This is
the continuation of the paper [5] entitled Polynomial equations for additive functions I. We
consider here the solutions of the equation

n∑

i=1

fi (x
pi )gi (x)

qi = 0 (x ∈ F) ,

where n is a positive integer, F ⊂ C is a field, fi , gi : F → C are additive functions and pi , qi
are positive integers for all i = 1, . . . , n. Using the theory of decomposable functions we
describe the solutions as compositions of higher-order derivations and field homomorphisms.
In many cases, we also give a tight upper bound for the order of the involved derivations.
Moreover, we present the full description of the solutions in some important special cases,
too.

Keywords Homomorphism · Derivation · Higher-order derivation · Exponential
polynomial · Decomposable function

Mathematics Subject Classification 43A45 · 13N15 · 16W20 · 39B32 · 39B72

1 Introduction

As a continuation of our former work [5], in this paper, the additive solutions of a class of
functional equations are studied. According to the results, this class of equations turns out
to be appropriate for characterizing homomorphisms and derivations, resp. acting between
fields. The question of how special morphisms (such as homomorphisms and derivations)
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can be characterized among additive mappings in general are important from algebraic point
of view, but also from the perspective of functional equations.

Concerning all the cases we consider here, the involved additive functions are defined on
a field F ⊂ C and have values in the complex field, therefore we introduce the preliminaries
only in this setting.

In what follows, we adopt the standard notations, that is,N andC denote the set of positive
integers and the set of complex numbers, respectively.

Henceforth assume F ⊂ C to be a field.

Definition 1 We say that a function f : F → C is additive if it fulfills

f (x + y) = f (x) + f (y) (x, y ∈ F) .

An additive function d : F → C is termed to be a derivation if it also fulfills

d(xy) = d(x)y + xd(y) (x, y ∈ F) .

An additive function ϕ : F → C is said to be a homomorphism if it is multiplicative as well,
in other words, besides additivity we also have

ϕ(xy) = ϕ(x)ϕ(y) (x, y ∈ F) .

If F = C and ϕ is an isomorphism, then ϕ is called a complex automorphism.

In this paper we investigate the solutions of

n∑

i=1

fi (x
pi )gi (x)

qi = 0, (x ∈ F) . (1)

where n is a positive integer, F ⊂ C is a field, fi , gi : F → C are additive functions and pi , qi
are positive integers for all i = 1, . . . , n. Our primary aim is to show that the solutions can be
represented with the aid of compositions of homomorphisms and (higher-order) derivations.
Using that we describe the solutions in many cases.

Observe that the above equation contains as a special case several well-known equations
that characterize (higher-order) derivations. For instance, in [1, 2, 6] the additive solutions
of the equation

n∑

i=0

xi fn+1−i (x
n+1−i ) = 0 (x ∈ R)

and also that of
n∑

i=0

f (x pi )xqi = 0 (x ∈ R)

were described on rings.
The core of the paper starts from the second section, where the results concerning (1) can

be found. Firstly we prove some elementary yet important statements. The purpose of these
lemmata is to figure out under what reasonable conditions we should make, while studying
these equations. For instance, the so-called Homogenization Lemma (see Lemma 1) enables
us to restrict ourselves to the case when for the parameters

pi + qi = N (i = 1, . . . , n)
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hold.
Based on the remarks and examples that can be found at the beginning of Sect. 2, we will

provide characterization theorems for equation (1) under the following conditions

C(i) the positive integers p1, . . . , pn are arranged in a strictly increasing order, i.e.,
p1 < · · · < pn ;

C(ii) for all i = 1, . . . , n we have pi + qi = N ;
C(iii) for all i, j ∈ {1, . . . , n}, i �= j we have pi �= q j .

Further, according to Lemma 2 below, the solutions of the above functional equations
are sufficient to determine ‘up to equivalence’. This is because of the observation that if
the functions f1, . . . , fn and g1, . . . , gn fulfill equation (1), then for any automorphism
ϕ : C → C, the functions ϕ ◦ f1, . . . , ϕ ◦ fn and ϕ ◦ g1, . . . , ϕ ◦ gn also fulfill (1).

Although Eq. (1) contains only one independent variable, we seek the solutions in the class
of additive functions. This property (i.e., additivity) will enable us to enlarge the number of
independent variables in Eq. (1) from one to N . Briefly, this is the so-called Symmetrization
method. After that, it is possible to prove that the functions f1, . . . , fn and g1, . . . , gn are
decomposable functions on the multiplicative group F×. From this, we deduce that they are
generalized exponential polynomials on the group F×. Further, Theorem 14 says that for all
i = 1, . . . , n, in the variety of the functions fi and gi there is exactly one exponential, namely

mi , provided that for the parameters q1, . . . , qn we assume qi <
N

2
for all i = 1, . . . , n.

Our next aim is to get an upper bound for the degree of the involved higher-order derivations
that appear in the solutions. In connection to this, firstly we prove an alternative theorem, see
Theorem 18. After proving Theorem 18 for equation (1), we focus on some special cases.
Here we consider equation (1) under the condition that all functions fi , gi , i = 1, . . . , n are
derivations or the linear functions and assume that

• the order of the higher-order derivations in the representations of the functions f1, . . . , fn
is the same and we conclude that for all i = 1, . . . , n we have gi (x) = λi x (x ∈ F), see
Corollary 19;

• the order of the higher-order derivations in the representations of the functions g1, . . . , gn
is the same and we conclude that for all i = 1, . . . , n we have gi (x) = λi x (x ∈ F), see
Corollary 19;

• for all i = 1, . . . , n we have fi (x) = ci gi (x) (x ∈ F) and we deduce that fi (x) =
λi x (x ∈ F, i = 1, . . . , n), see Corollary 20.

These results motivate Conjecture 21, where we formulate that we conjecture that the order of
the higher-order derivations in the representations of the functions f1, . . . , fn and g1, . . . , gn
is at most n − 1. In a separate subsection, we close the last section with some special cases
of equation (1).

As we wrote above, this paper can be considered a natural continuation or completion of
our former one [5]. In that paper, we considered the same situation a rather similar equation,
namely

n∑

i=1

fi (x
pi )gi (x

qi ) = 0 (x ∈ F) , (∗)

where n is a positive integer, F ⊂ C is a field and fi , gi : F → C are additive functions for
all i = 1, . . . , n.
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Besides equations (1) and (∗), the equation

n∑

i=1

fi (x)
pi gqii = 0 (x ∈ F) (�)

can also be considered. Unfortunately, the similar statements as for equations (1) and (∗), are
not satisfied for equation (�), even though with assumptions C(i)–C(iii). After symmetriza-
tion, we can deduce that the involved additive functions are linearly dependent. At the same
time, in the case of equation (�), arbitrary additive functions can appear in the solution
space. More precisely, let f : F → C be an arbitrary additive function and suppose that the
complex constants λ1, . . . , λn and μ1, . . . , μn fulfill

n∑

i=1

λ
pi
i μ

qi
i = 0,

then the functions

fi (x) = λi f (x) and gi (x) = μi f (x) (x ∈ F)

fulfill equation (�).
Obviously, not only the structure of these equations but also the setup is rather similar. This

is mainly because these problems are special cases of a much more general problem. More
concretely, the problem-raising, the solutionmethodsof this paper and also that of the previous
ones in [1–3, 5–7] can be regarded as initial steps for the general problem below. Let n be
a positive integer, P be a given multivariate complex polynomial and Q1, . . . , Qn : F → C

be polynomials. What can be said about the additive functions f1, . . . , fn : F → C if they
fulfill equation

P( f1(Q1(x)), . . . , fn(Qn(x))) = 0 (•)
for all x ∈ F. In connection with equation (•), it is necessary to first clarify under what
additional conditions it is expected that we can state something more about the unknown
functions involved (obviously beyond additivity). Further, one of the heaviest difficulties
with this equation is that it contains only one independent variable (this typically carries
little information), but the number of unknown functions can be large. However, additivity
provides the opportunity to increase the number of independent variables. These are done
typically by proving Symmetrization lemmata. After that, our goal is usually to show that
the involved additive functions have a ‘good connection’ with the multiplicative structure, as
well.More concretely, our objective is to show that these additive functions are decomposable
functions on the multiplicative group F

×. This is the first point where (at least at the level
of the proofs) it becomes clear that equations (∗) and (1) cannot be handled with the same
method. Observe that compared to equation (∗), in equation (1) the role of the parameters is
not equal. It is clear from the comparison of the methods of [5] and this paper that this fact
(the role of the parameters) has both advantages and disadvantages.

The asymmetry in the parameters makes it possible for the statement of Lemma 8 to hold
under more general conditions (during the proof it is enough only to use that the parameters
p1, . . . , pn are different.) At the same time, in the case of equation (∗) it is possible to
verify in one step that the functions f1, . . . , fn and g1, . . . , gn are decomposable functions
on F

×. In the case of equation (1) first we can only show that the functions f1, . . . , fn are
decomposable (cf. Lemma 8). Based on this, finally the decomposability of the functions
g1, . . . , gn can also be deduced, see Theorem 13. This and also the subsequent results show
that in the case of equation (1), new solution methods were necessary to develop.
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2 Reduction of the problem

This part begins with some elementary, yet fundamental observations. Our aim here is to
show that in any case the original problem can be reduced to a simpler equation. Concerning
the notations, the terminology, and the most basic results about polynomials and exponential
polynomials, herewe follow themonograph [12, Chapter 1]. Although the proofs of Lemmata
1 and 6 are analogous to that of Lemmata 4 and 6 of [5], for the sake of completeness, we
present their proofs in the Appendix located at the end of this work.

In the table below, we briefly summarize the three most important results of this section.

Homogenization Lemma 1 We can assume that pi + qi = N holds for all i = 1, . . . , n

Equivalence Lemma 2 Solutions are enough to determine up to the equivalence relation ∼.

Symmetrization Lemma 6 Equation (1) implies 1
N !

∑
σ∈SN

∑n
i=1 fi (xσ(1) · · · xσ(pi ))

·gi (xσ(pi+1)) · · · gi (xσ(N )) = 0.

2.1 Multi-additive functions and the Homogenization lemma

Definition 2 Let G, S be commutative semigroups (written additively), n ∈ N and let
A : Gn → S be a function. We say that A is n-additive if it is a homomorphism of G
into S in each variable. If n = 1 or n = 2 then the function A is simply termed to be additive
or biadditive, respectively.

The diagonalization or trace of an n-additive function A : Gn → S is defined as

A∗(x) = A (x, . . . , x) (x ∈ G) .

As a direct consequence of the definition each n-additive function A : Gn → S satisfies

A(x1, . . . , xi−1, kxi , xi+1, . . . , xn) = k A(x1, . . . , xi−1, xi , xi+1, . . . , xn)

(x1, . . . , xn ∈ G)

for all i = 1, . . . , n, where k ∈ N is arbitrary. The same identity holds for any k ∈ Z provided
that G and S are groups, and for k ∈ Q, provided that G and S are linear spaces over the
rationals. This immediately implies that for the diagonalization of A we have

A∗(kx) = kn A∗(x) (x ∈ G) .

The above notion can also be extended for the case n = 0 by letting G0 = G and by
calling 0-additive any constant function from G to S.

Based on the above notions and results our first lemma can be proved.

Lemma 1 [Homogenization] Let n be a positive integer,F ⊂ C be a field and p1, . . . , pn, q1,
. . . , qn be fixed positive integers. Assume that the additive functions f1, . . . , fn, g1, . . . , gn :
F → C satisfy functional equation (1), i.e.,

n∑

i=1

fi (x
pi )gi (x)

qi = 0
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for each x ∈ F. If the set {p1, . . . , pn} has a partition P1, . . . ,Pk with the property

if pα, pβ ∈ P j for a certain index j, then pα + qα = pβ + qβ,

then the system of equations
∑

pα∈P j

fα(x pα )gα(x))qα = 0 (x ∈ F, j = 1, . . . , k)

is satisfied.

Remark 1 The above lemma guarantees that ab initio

pi + qi = N (i = 1, . . . , n)

can be assumed. Otherwise, after using the above homogenization, we get a system of func-
tional equations in which this condition is already fulfilled. For instance, due to the above
lemma, if the additive functions f1, . . . , f5 : F → C and g1, . . . , g5 : F → C satisfy equa-
tion

f1(x
16)g1(x)

5 + f2(x
12)g2(x)

9 + f3(x
11)g3(x)

10 + f4(x
3)g4(x)

7 + f5(x
2)g4(x)

8 = 0

(x ∈ F)

then the equations

f1(x
16)g1(x)

5 + f2(x
12)g2(x)

9 + f3(x
11)g3(x)

10 = 0 (x ∈ F)

and

f4(x
3)g4(x)

7 + f5(x
2)g4(x)

8 = 0 (x ∈ F)

are also fulfilled (separately).

Remark 2 At first glance, the assumption that p1, . . . , pn are different seems a reasonable
and sufficient supposition. If the parameters pi are not necessarily different, then we cannot
expect anything special for the form of the involved additive functions. To see this, let p
and q be positive integers and f : F → C be an arbitrary additive function, λ be a complex
number such that 1 + λq = 0 and define the complex-valued functions f1, g1, f2, g2 on F

by

f1(x) = f (x) g1(x) = f (x) f2(x) = f (x) g2(x) = λ · f (x) (x ∈ F) .

An immediate computation shows that we have

f1(x
p)g1(x)

q + f2(x
p)g2(x)

q = 0 (x ∈ F) .

Note however, that pi = q j for some i, j ∈ {1, . . . , n} can be handled, which we emphasis
at some points of this paper. On the other hand, to avoid further difficulties throughout the
work we simply assume that p1, . . . pn, q1, . . . , qn are distinct positive integers.

2.2 The Equivalence lemma

Given the above remarks, from now on, the following assumptions are adopted.

C(i) the positive integers p1, . . . , pn are arranged in a strictly increasing order, i.e.,
p1 < · · · < pn ;
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C(ii) for all i = 1, . . . , n we have pi + qi = N ;
C(iii) for all i, j ∈ {1, . . . , n}, i �= j we have pi �= q j .

Remark 3 Define the relation ∼ on F
C by

f ∼ g if and only if there exists an automorphism ϕ : C → C such that ϕ ◦ f = g.

Obviously ∼ is an equivalence relation on FC that induces a partition on FC.

Lemma 2 [Equivalence] Let n be a positive integer,F ⊂ C be a field and p1, . . . , pn, q1, . . . ,
qn be fixed positive integers fulfilling the conditions C(i)-C(iii) of Remark 2. Assume that the
additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1), that is,
we have

n∑

i=1

fi (x
pi )g(x)qi = 0

for all x ∈ F. Then for an arbitrary automorphism ϕ : C → C the functions ϕ ◦ f1, . . . , ϕ ◦
fn, ϕ ◦ g1, . . . , ϕ ◦ gn also fulfill equation (1).

Remark 4 We can always restrict ourselves to the case when all the involved functions are
non-identically zero. Otherwise, the number of the terms appearing in equation (1) can be
reduced.

2.3 The Polarization lemma and the Symmetrizationmethod

One of the most important theoretical results concerning multi-additive functions is the so-
called Polarization formula, that briefly expresses that every n-additive symmetric function
is uniquely determined by its diagonalization under some conditions on the domain as well
as on the range. Suppose that G is a commutative semigroup and S is a commutative group.
The action of the difference operator � on a function f : G → S is defined by the formula

�y f (x) = f (x + y) − f (x) (x, y ∈ G) .

Note that the addition in the argument of the function is the operation of the semigroup G
and the subtraction means the inverse of the operation of the group S. The superposition of
several difference operators will be denoted shortly

�y1...yn f = �y1�y2 . . . �yn f (n ∈ N) .

Theorem 3 [Polarization formula] Suppose that G is a commutative semigroup, S is a com-
mutative group, n ∈ N. If A : Gn → S is a symmetric, n-additive function, then for all
x, y1, . . . , ym ∈ G we have

�y1,...,ym A
∗(x) =

{
0 if m > n

n!A(y1, . . . , ym) if m = n.

Lemma 4 Let n ∈ N and suppose that themultiplication by n! is surjective in the commutative
semigroup G or injective in the commutative group S. Then for any symmetric, n-additive
function A : Gn → S, A∗ ≡ 0 implies that A is identically zero, as well.

Definition 3 Let G and S be commutative semigroups, a function p : G → S is called a
generalized polynomial from G to S, if it has a representation as the sum of diagonalization
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of symmetric multi-additive functions from G to S. In other words, a function p : G → S is
a generalized polynomial if and only if, it has a representation

p =
n∑

k=0

A∗
n,

where n is a nonnegative integer and Ak : Gk → S is a symmetric, k-additive function for
each k = 0, 1, . . . , n. In this case, we also say that p is a generalized polynomial of degree
at most n.

Let n be a nonnegative integer, functions pn : G → S of the form

pn = A∗
n,

where An : Gn → S are the so-called generalized monomials of degree n.

During the proof of Lemma 6 we use the following lemma from [5].

Lemma 5 Let k and n be positive integers, F ⊂ C be a field and m1, . . . ,mn : F → C be
generalized monomials of degree k. If

n∑

i=1

mi (x) = 0

holds for all x ∈ F, then

n∑

i=1

Mi (x1, . . . , xk) = 0

is fulfilled for all x1, . . . , xk , where for all i = 1, . . . , n, the mapping Mi : Fk → C is the
uniquely determined symmetric, k-additive function such that

Mi (x, . . . , x) = mi (x) (x ∈ F) .

Lemma 6 [Symmetrization] Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1,
. . . , qn be fixed positive integers fulfilling conditions C(ii). Assume that the additive functions
f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1), i.e.,

n∑

i=1

fi (x
pi )g(x)qi = 0

holds for each x ∈ F. Then

1

N !
∑

σ∈SN

n∑

i=1

fi (xσ(1) · · · xσ(pi )) · gi (xσ(pi+1)) · · · gi (xσ(N )) = 0

holds for all x1, . . . , xN ∈ F.

3 Preliminary results

Decomposable functions will play a key role in the sequel. This notion was introduced by
E. Shulman in [11]. Besides this, we heavily rely on the work of Laczkovich [9].
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Definition 4 Let G be a group and n ∈ N, n ≥ 2. A function F : Gn → C is said to be
decomposable if it can be written as a finite sum of products F1 · · · Fk , where all Fi depend
on disjoint sets of variables.

Remark 5 Without loss of generality we can suppose that k = 2 in the above definition, that
is, decomposable functions are those mappings that can be written in the form

F(x1, . . . , xn) =
∑

E

∑

j

AE
j B

E
j

where E runs through all non-void proper subsets of {1, . . . , n} and for each E and j the
function AE

j depends only on variables xi with i ∈ E , while BE
j depends only on the variables

xi with i /∈ E .

The theorem below is about the connection between decomposable functions and gener-
alized exponential polynomials, see Laczkovich [9].

Theorem 7 Let G be a commutative topological semigroup with unit. A continuous function
f : G → C is a generalized exponential polynomial if and only if there is a positive integer
n ≥ 2 such that the mapping

Gn � (x1, . . . , xn) 
−→ f (x1 + · · · + xn)

is decomposable.

Now we show that the functions f1, . . . , fn are decomposable functions. This together
with equation (1) will yield that the functions g1, . . . , gn are decomposable functions, too.
After this, we apply Theorem 7, which immediately yields that the solutions of equation (1)
are generalized exponential polynomials of the multiplicative group F×.

Lemma 8 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn be
fixed positive integers fulfilling conditions C(i)–C(iii). Assume that the additive functions
f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1), that is,

n∑

i=1

fi (x
pi )gi (x)

qi = 0

for each x ∈ F. Then all the functions f1, . . . , fn are decomposable functions of the group
F

×.

Proof Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn be
fixed positive integers fulfilling conditions C(i)–C(iii). Assume that the additive functions
f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1) for each x ∈ F. Let

S = {p1, . . . , pn}
Then due to condition C(i) max S = pn . In view of Lemma 6, we have

1

N !
∑

σ∈SN

n∑

i=1

fi (xσ(1) · · · xσ(pi )) · gi (xσ(pi+1)) · · · gi (xσ(N )) = 0

123
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for all x1, . . . , xN ∈ F, or after some rearrangement,

1

N !
∑

σ∈SN

fn(xσ(1) · · · xσ(pn)) · gn(xσ(pn+1)) · · · gn(xσ(N ))

= − 1

N !
∑

σ∈SN

n−1∑

i=1

fi (xσ(1) · · · xσ(pi )) · gi (xσ(pi+1)) · · · gi (xσ(N ))

(
x1, . . . , xN ∈ F

×)
.

Let now

xpn+1 = · · · = xN = 1,

then the above identity says that gn(1)q1 · fn is decomposable. If gn(1) were zero, but gn
would not be identically zero, then the would exists a ∈ F

× such that gn(a) �= 0. In this
case, the above substitutions should be modified to

xpn+1 = a, xpn+2 = · · · = xN = 1,

to get the same conclusion.
After that, let us consider the set S\ {pn} and apply the above argument for this set. This

step-by-step descending argument follows the statement of the lemma. ��
To verify that g1, . . . , gn are also decomposable functionswe have to introduce the notions

of exponential polynomials.

Definition 5 Let G be a commutative group. The function f : G → C is called a polynomial
if, there exist n is a positive integer, a (classical) complex polynomial P : Cn → C in n
variables and additive functions ak : G → C (k = 1, . . . , n) such that

f (x) = P(a1(x), . . . , an(x)) (x ∈ G) .

Remark 6 We recall that the elements of N
n for any positive integer n are called (n-

dimensional)multi-indices. Addition, multiplication, and inequalities between multi-indices
of the same dimension are defined component-wise. Further, we define xα for any n-
dimensional multi-index α and for any x = (x1, . . . , xn) in C

n by

xα =
n∏

i=1

xαi
i

where we always adopt the convention 00 = 0. We also use the notation |α| = α1 +· · ·+αn .
With these notations, any polynomial of degree at most N on the commutative semigroup G
has the form

p(x) =
∑

|α|≤N

cαa(x)α (x ∈ G) ,

where cα ∈ C and a = (a1, . . . , an) : G → C
n is an additive function. Furthermore, the

homogeneous term of degree k of p is
∑

|α|=k

cαa(x)α.
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Lemma 9 [Lemma 2.7 of [12]] Let G be a commutative group, n be a positive integer and
let

a = (a1, . . . , an) ,

where a1, . . . , an are linearly independent complex valued additive functions defined on G.
Then the monomials {aα} for different multi-indices are linearly independent.
Definition 6 A function m : G → C is called an exponential function if it satisfies

m(xy) = m(x)m(y) (x, y ∈ G) .

Furthermore, on a(n) (generalized) exponential polynomial we mean a linear combination of
functions of the form p · m, where p is a (generalized) polynomial and m is an exponential
function.

The following lemmashows that generalized exponential polynomial functions are linearly
independent. Although it can be stated more generally (see [12]), we adopt it to our situation,
when the functions are complex-valued.

Lemma 10 [Lemma 4.3 of [12]] Let G be a commutative group, n a positive integer,
m1, . . . ,mn : G → C (i = 1, . . . , n) be distinct nonzero exponentials and p1, . . . , pn : G →
K (i = 1, . . . , n) be generalized polynomials. If

∑n
i=1 pi ·mi is identically zero, then for all

i = 1, . . . , n the generalized polynomial pi is identically zero.

However, we will need the analogue statement for polynomial expressions of generalized
exponential polynomials which was proved in [6].

Theorem 11 Let K be a field of characteristic 0 and k, l, N be positive integers such that
k, l ≤ N. Let m1, . . . ,mk : K× → C be distinct exponential functions that are additive on
K, let a1, . . . , al : K× → C be additive functions that are linearly independent over C and
for all |s| ≤ N let Ps : Cl → C be classical complex polynomials of l variables. If

∑

|s|≤N

Ps(a1, . . . , al)m
s1
1 · · ·msk

k = 0

then for all |s| ≤ N, the polynomials Ps vanish identically.

It is easy to see that each polynomial, that is, any function of the form

x 
−→ P(a1(x), . . . , an(x)),

where n is a positive integer, P : Cn → C is a (classical) complex polynomial in n variables
and ak : G → C (k = 1, . . . , n) are additive functions, is a generalized polynomial. The
converse however is in general not true. A complex-valued generalized polynomial p defined
on a commutative group G is a polynomial if and only if its variety (the linear space spanned
by its translates) is of finite dimension.

The notion of derivations can be extended in several ways. We will employ the concept of
higher-order derivations according to Reich [10] and Unger–Reich [13]. For further results
on characterization theorems on higher-order derivations consult e.g. [1–3] and [6].

Definition 7 Let F ⊂ C be a field. The identically zero map is the only derivation of order
zero. For each n ∈ N, an additive mapping f : F → C is termed to be a derivation of order
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n, if there exists B : F × F → C such that B is a bi-derivation of order n − 1 (that is, B is a
derivation of order n − 1 in each variable) and

f (xy) − x f (y) − f (x)y = B(x, y) (x, y ∈ F) .

The set of derivations of order n of the ring R will be denoted by Dn(F).

Remark 7 Since D0(F) = {0}, the only bi-derivation of order zero is the identically zero
function, thus f ∈ D1(F) if and only if

f (xy) = x f (y) + f (x)y (x, y ∈ F) ,

that is, the notions of first-order derivations and derivations coincide. On the other hand
for any n ∈ N the set Dn(F) \ Dn−1(F) is nonempty because d1 ◦ · · · ◦ dn ∈ Dn(F), but
d1 ◦ · · · ◦ dn /∈ Dn−1(R), where d1, . . . , dn ∈ D1(F) are non-identically zero derivations.

For our future purposes, the notion of differential operators will also be important, see
[8].

Definition 8 Let F ⊂ C be a field. We say that the map D : F → C is a differential operator
of degree at most n if D is the linear combination, with coefficients from F, of finitely many
maps of the form d1 ◦ · · · ◦dk , where d1, . . . , dk are derivations on F and k ≤ n. If k = 0 then
we interpret d1 ◦ · · · ◦ dk as the identity function. We denote by On(F) the set of differential
operators of degree at most n defined on F. We say that the degree of a differential operator
D is n if D ∈ On(F)\On−1(F) (where O−1(F) = ∅, by definition).

The main result of [8] is Theorem 1.1 which reads in our settings as follows.

Theorem 12 Let F ⊂ C be a field and let n be a positive integer. Then, for every function
D : F → C, the following are equivalent.

(i) D ∈ Dn(F)

(ii) D ∈ cl (On(F))

(iii) D is additive onF, D(1) = 0, and D/ j , as amap from the groupF× toC, is a generalized
polynomial of degree at most n. Here j stands for the identity map defined on F.

Note that according to Lemma 8, if the additive functions f1, . . . , fn, g1, . . . , gn solve
equation (1), then the functions f1, . . . , fn are decomposable functions on the multiplicative
group F

×, but this lemma tells nothing about the functions g1, . . . , gn . Now we show that
the functions g1, . . . , gn are also decomposable functions on the multiplicative group F×.

Theorem 13 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn be
fixed positive integers fulfilling conditions C(i)–C(iii). Assume that the additive functions
f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1), that is,

n∑

i=1

fi (x
pi )gi (x)

qi = 0

for each x ∈ F. Then all the functions f1, . . . , fn and g1, . . . , gn are decomposable functions
of the group F×,i.e., all are generalized exponential polynomials.
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Proof Due to Lemma 8, the functions f1, . . . , fn are decomposable functions, hence gener-
alized exponential polynomials on the Abelian group F×. At the same time, they are assumed
to be additive on F. Thus these functions are higher-order derivations on the field F. There-
fore, x 
−→ fi (x pi ) is a linear combination of the products of higher-order derivations.
Let us denote all derivations on F by D . If gi are not in D then there is a summand in the
decomposition of gi , which is not in D . Let us denote it by a. Then, by Lemma 10, we get
that

n∑

i=1

fi (x
pi ) · (ci · a(x))qi = 0 (x ∈ F) ,

with some constants c1, . . . , cn ∈ C, since these are exactly those terms that contain a. Using
the fact that qi are distinct and Lemma 10, we have that a and thus g1, . . . , gn have to be in
D . Hence not only f1, . . . , fn , but also g1, . . . , gn are decomposable functions. ��
Remark 8 Note that the statement of Lemma 8 holds under milder conditions. Indeed, com-
pared to equation

n∑

i=1

fi (x
pi )gi (x

qi ) = 0 (x ∈ F)

that was studied in [5], in equation (1) the role of the parameters is not equal. During the
proof, it was enough to use only that the parameters p1, . . . , pn are different. This is important
because in such a way it becomes clear that equation

n∑

i=1

fi (x
pi )xqi = 0 (2)

is a special case of equation (1). We remark that equation (2) plays a fundamental role in the
characterization of higher-order derivations, see [1–3, 6].

4 Main results

Theorem 14 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn be
fixed positive integers fulfilling conditions C(i)–C(iii) and we further assume qi < N

2 for all
i = 1, . . . , n.
Suppose that the additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equa-
tion (1) for each x ∈ F. Then there exists a positive integer l, there exist exponentials
mi : F× → C and generalized polynomials Pi , Qi : F× → C of degree at most l such that

fi (x) = Pi (x)mi (x) and gi (x) = Qi (x)mi (x)
(
x ∈ F

×)
(3)

for each i = 1, . . . , n.

Proof Part 1. Due to Lemma 8, the solutions f1, . . . , fn and g1, . . . , gn of equation (1) are
decomposable functions.Hence, they are generalized exponential polynomials on theAbelian
group F

×. Accordingly, there exists a positive integer l, for all j = 1, . . . , l, i = 1, . . . , n
there exist exponentials m j : F× → C and generalized polynomials Pi, j , Qi, j : F× → C of
degree at most l such that

fi (x) =
l∑

j=1

Pi, j (x)m j (x) and gi (x) =
l∑

j=1

Qi, j (x)m j (x)
(
x ∈ F

×)
. (4)
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Part 2. We can assume that F is finitely generated. If so, then the generalized polynomials
Pi, j , Qi, j are polynomials of degree atmost l. This technical assumptionmakes the argument
simpler, sincewheneverwe get that fi = Pimi and gi = Qimi , where Pi , Qi are polynomials
of degree at most l for all finitely generated subfield of F, then fi = Pimi and gi = Qimi

holds on F, where Pi , Qi are generalized polynomial of degree at most l.
Part 3. Suppose contrary that there is an i ∈ {1, . . . , n} such that there are j1 �= j2 so

that Pi, j1 �= 0 and Pi, j2 �= 0. We can assume that j1 = 1, j2 = 2. Since, by Theorem 11,
all Pi · mi are algebraically independent, the additive functions f̃i and g̃i are also satisfy
equation (1), where

f̃i = Pi,1 · m1 + Pi,2 · m2 g̃i = Qi,1 · m1 + Qi,2 · m2.

As Pi,1, Pi,2, Qi,1, Qi,2 are now polynomials, they can be written of the form
P(a1(x), . . . , an(x)), where P is a classical complex polynomial in n variables and a1, . . . an
are additive functions from F

× to C (usually called logarithmic functions). Again, by the
algebraic independence, equation (1) holds for eachmonomial terms of P(a1(x), . . . , an(x)).
Thus, without loss of generality, we can assume that there are some αi,1, αi,2, βi,1, βi,2 ∈ C

such that

f̄i = αi,1m1 + αi,2m2 ḡi = βi,1m1 + βi,2m2, (5)

which satisfy (1). It is clear that for eachmonomial term of polynomials Pi,1, Pi,2, Qi,1, Qi,2

we have the same type of equations as abovemultiplied by a fixmonomial. Furthermore, if we
can prove that in this case αi,1 = βi,1 = 0 or αi,2 = βi,2 = 0 hold for every i ∈ {1, . . . , n},
then this argument can be applied for each monomial terms and different indices j1 �= j2.
Hence we get the statement. Therefore, the statement is equivalent to show that if (5) is a
solution of (1) then αi,1 = βi,1 = 0 or αi,2 = βi,2 = 0 hold for every i ∈ {1, . . . , n}.

Part 4. We collect and compare the coefficients. We can write

n∑

i=1

f̄i (x
pi )ḡqii (x) =

n∑

i=1

(αi,1m
pi
1 + αi,2m

pi
2 )(x)(βi,1m1 + βi,2m2)

qi (x) = 0. (6)

First we assume that βi,1 �= 0 for all i ∈ {1, . . . , n}. Let ai,1 = αi,1

(βi,1)qi
, ai,2 = αi,2

(βi,1)qi
and

bi = βi,2

βi,1
. Then the previous equation can be reformulated as

n∑

i=1

(ai,1m
pi
1 + ai,2m

pi
2 )(m1 + bim2)

qi = 0.

In this case, all the coefficients of mN−l
1 ml

2 have to vanish for each l = 1, . . . , N . In other
words, we have

n∑

i=1

((
qi
l

)
ai,1b

l
i +

(
qi

N − l

)
a2,i b

N−l
i

)
= 0, (7)

where

(
qi
l

)
and

(
qi

N − l

)
, resp. are defined to be 0 if l > qi , resp. N − l > qi .

Note that till now we have not used the assumption qi < N
2 . As qi + pi = N and all pi , qi

are different we have that pi > qi and hence we can assume that p1 > · · · > pn > qn >

· · · > q1. The condition qi < N
2 implies that for every l ∈ {1, . . . , N } and i ∈ {1, . . . , n} at
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least one of the summand of
(qi
l

)
ai,1bli + ( qi

N−l

)
a2,i b

N−l
i vanishes. Furthermore, for l = qn

the coefficient of mN−qn
1 mqn

2 is
(qn
qn

)
an,1 · bqnn = 0. Similarly, the coefficient mqn

1 mN−qn
2 is

(qn
qn

)
an,2 · bN−qn

n = 0. This implies that either an,1 = an,2 = 0 or bn = 0. In the first case,

we get f̄n = 0, then n can be reduced to n − 1. In the second case, we get that ḡn = βn,1m1

and ḡn does not influence any term that contains m2. In both cases, we can reduce from n to
n − 1 and now we can proceed by an inductive argument from n to 1.

Suppose that for 1 ≤ s < n we have that f̄i �= 0 and ḡi = βi,1m1, βi,1 �= 0 for all
s < i ≤ n. Now we consider the coefficients of mN−qs

1 mqs
2 and mqs

1 mN−qs
2 respectively,

which are

as,1 · bqss = 0 as,2 · bN−qs
s = 0.

Indeed, for i < s both
(qi
qs

) = ( qi
N−qs

) = 0, while for i > s the coefficients of mqs
1 mN−qs

2 and

mN−qs
1 mqs

2 are 0, since qi > qs and qi > ps . Hence we have that either as,1 = as,2 = 0 or
bs = 0. Then either f̄s = 0 or ḡs = βs,1m1.

If not all βi,1 �= 0, then for those i ′ ∈ {1, . . . , n} such that βi ′,1 = 0we have ḡi ′ = βi ′,2m2.
In other cases, a similar argument works as above. Thus we get that every ḡi (i ∈ {1, . . . , n})
is either βi,1m1 or βi,2m2. Now we show that if ḡi = βi,1m1 (reps. ḡi = βi,2m2), then
fi = αi,1m1 (reps. fi = αi,2m2). In this case there are disjoint subsets I1, I2 of {1, . . . , n}
such that I1 ∩ I2 = {1, . . . , n} and equation (6) can be written

∑

i∈I1
(αi,1m

pi
1 + αi,2m

pi
2 )(x)(βi,1m1)

qi (x) +
∑

i∈I2
(αi,1m

pi
1 + αi,2m

pi
2 )(x)(βi,2m2)

qi (x) = 0.

Let c1 and c2 denote the coefficients of the monomialmpi
1 mqi

2 andmqi
1 m

pi
2 respectively. Then

c1 =
{
0 if i ∈ I1
αi,2β

qi
i,1 if i ∈ I2

c2 =
{

αi,1β
qi
i,2 if i ∈ I1

0 if i ∈ I2
.

Eliminating those terms where ḡi ≡ 0, we get that if βi,1 �= 0, then αi,2 = 0 and similarly
if βi,2 �= 0, then αi,1 = 0. This completes the proof of the theorem. ��

Aswe noticed, the statement of Theorem 14 is not necessarily true without the assumption
qi ≤ N

2 for all i ∈ {1, . . . , n}. In the following, we show an example where neither fi , nor
gi is of the form P · m.

Example 1 Let n = 2 and p1 = 2, p2 = 1 in equation (1), i.e., assume that we have

f1(x
2)gN−2

1 (x) + f2(x)g
N−1
2 (x) = 0 (x ∈ F) .

Let furtherm1 andm2 be different exponentials on F× and define the functions f1, f2, g1, g2
on F

× by

f1(x) = m1(x) − m2(x)
f2(x) = m2(x) − m1(x)
g1(x) = m1(x) + m2(x)
g2(x) = m1(x) + m2(x)

(
x ∈ F

×)
.
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Then

f1(x
2)gN−2

1 (x) + f2(x)g
N−1
2 (x)

= (
m2

1(x) − m2
2(x)

) · (m1(x) + m2(x))
N−2 + (m2(x) − m1(x)) · (m1(x) + m2(x))

N−1

= (m1(x) − m2(x)) · (m1(x) + m2(x)) · (m1(x) + m2(x))
N−2

+(−1) · (m1(x) − m2(x)) · (m1(x) + m2(x))
N−1 = 0

for all x ∈ F
×. Since the involved functions f1, f2, g1, g2 were assumed to be additive,

as well, we get that if ϕ1, ϕ2 : F → C are homomorphisms and we consider the following
functions

f1(x) = ϕ1(x) − ϕ2(x)
f2(x) = ϕ2(x) − ϕ1(x)
g1(x) = ϕ1(x) + ϕ2(x)
g2(x) = ϕ1(x) + ϕ2(x)

(
x ∈ F

×)
,

then the above equation is fulfilled for all x ∈ F. This shows that the condition qi <
N

2
cannot be omitted from Theorem 14 in general.

Remark 9 It is very important to emphasize that when we talk about the solutions of equation
(1), we look for the solutions among additive functions.

Consider equation (1) and now assume that the functions in it are exponential polynomials
on the multiplicative group F

× of degree different from zero. Then with a similar argument
as above, one can show that there could be found solutions having similar form (i.e., there
are at least two different exponentials in the solutions). To see this, let m1,m2 be different
exponentials and a be an additive function on the multiplicative group F

× and consider the
functions

f1(x) = a(x)(m1(x) − m2(x))
f2(x) = −2a(x)(m1(x) − m2(x))
g1(x) = m1(x) + m2(x)
g2(x) = m1(x) + m2(x)

(
x ∈ F

×)
.

An easy computation shows that in this case, we have

f1(x
2)gN−2

1 (x) + f2(x)g
N−1
2 (x) = 0

holds for all x ∈ F. It is important to emphasize however that these functions will be
additive only if the functions a and m1,m2 appearing in the above representations satisfy
m1(x)−m2(x) = 0 if a(x) �= 0, i.e., the previous system of equations becomes trivial. From
Lemma 24 one can also deduce that the above functions are not additive in general.

As an intermediate result in connection to Theorem 14 and Example 1 is the following
example we show that the assumptions of Theorem 14 are not sharp, as not all of the param-
eters should satisfy qi < N

2 . As a counterpart of Example 1, we prove that the solutions in
the following case are of the form fi = Pim and gi = Qim, for generalized polynomials
Pi , Qi and exponential m.

Example 2 Consider equation

f1(x
k)g1(x)

N−k + f2(x
N−l)g2(x)

l = 0 (8)

for all x ∈ F, where l + 1 < k ≤ N
2 .
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As we showed above in this case there are solutions that can be represented as

fi (x) = ai,1m1(x) + ai,2m2(x) gi (x) = m1(x) + bim2(x) (x ∈ F) .

Nowwe show that if none of fi and gi vanishes, thenb1 = b2 = 0.Calculating the coefficients
of the termms

1m
N−s
2 , we can observe that it is taken only from the first term f1(xk)g1(xN−k),

if l < s < N − l. If further s < k, then the coefficient of ms
1m

N−s
2 satisfies

(
N − k

s

)
a1,2b

N−k−s
1 = 0.

Similarly, for the coefficient of mN−s
1 ms

2 we get that
(
N − k

s

)
a1,1b

s
1 = 0.

These equations imply that either b1 = 0 or a1,1 = a1,2 = 0. The latter is not possible as f1
is not identically zero, thus b1 = 0. Hence equation (8) reduces to

(
a1,1(m

k
1(x) + a1,2m

k
2(x)

)
mn−k

1 (x)

+(
a2,1m

N−l
1 (x) + a2,2m

N−l
2 (x)

)(
m1(x) + b2m2(x)

)l = 0.

In this case a2,2bN2 = 0 can be obtained as the coefficient of mN
2 , and a2,1bl2 = 0 is given

as the coefficient mN−l
1 ml

2, if k �= l. A similar argument as above shows that b2 = 0. Hence
we can assume that g1 = g2 = m1. It is straightforward to verify that f1 = a1,1m1 and
f2 = a1,2m1 in this case, which as in the proof of Theorem 14 implies that every solution of
(8) is of the form fi = Pim and gi = Qim, where Pi , Qi are generalized polynomials and
m is an exponential on F

×.
Note that if we omit the assumption that there exists an s such that l < s < k, then the

coefficient ms
1m

N−s
2 for l < s < N − l appears in more than one term in the expansion of

f1(xk)(g1(x))N−k , which makes the whole calculation much more complicated and it is not
clear whether we can get similar result.

Remark 10 Although Example 1 shows that equation (1) cannot automatically be reduced
to solutions of type (3), by Theorem 11, algebraic independence guarantees that if a system
of solutions is of the form (4), then there are also solutions of the form (3) just keeping the
terms containing a given m in each fi and gi . These reduced functions are additive as well
and satisfy (1). Therefore, from now on we are dealing with those solutions that are of the
form fi = Pim and gi = Qim. By the equivalence relation ∼ introduced in Remark 3, we
can assume that fi (x) = Pi (x) · x and gi (x) = Qi (x) · x , where Pi , Qi are generalized
polynomial on F× of degree at most K . Hence by Theorem 12, these are derivations of order
at most K on any finitely generated subfield. Thus, we may restrict ourselves to functions
that are of the form

fi (x) = Pi (x) · x = Di (x) and gi (x) = Qi (x) · x = D̃i (x)(
x ∈ F

×, i = 1, . . . , n
)
. (9)

Every higher-order derivation on F is a differential operator on any finitely generated
subfield of F (see Theorem 12 and [8]). Hence on these fields the solutions are differential
operators. Moreover, if every solution on any finitely generated subfield of F is a differential
operator of order at most n, then every solution on F is a derivation of order at most n. By this
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fact, from now on, instead of finding solutions as higher-order derivations we may restrict
ourselves to look for differential operators as solutions.

The space of differential operators is a linear space. On the other hand, settling on a
useful basis is not trivial. The following lemma provides such a basis. Its proof is based on
generalized moment sequences and the notion of (multivariate) Bell polynomials. For further
details, we refer to [5, Subsection 3.4].

Lemma 15 Let F ⊂ C be a field, r be a positive integer and d1, . . . , dr : F → F be linearly
independent derivations. For all multi-index α ∈ N

r , α = (α1, . . . , αr ) define the function
dα(x) : F → C by

dα(x) = dα1
1 ◦ · · · ◦ dαr

r (x = d1 ◦ · · · ◦ d1︸ ︷︷ ︸
α1 times

◦ · · · ◦ dr ◦ · · · ◦ dr︸ ︷︷ ︸
αr times

(x)
(
x ∈ F

×)
.

Then (dα(x))α∈Nr constitute a basis of the differential operators constructed by d1, . . . , dr
in F.

For a multi-index α = (α1, . . . , αr ) we denote |α| = ∑n
i=1 αk .

Corollary 16 By Theorem 11, the elements of dα are algebraically independent, for all α ∈
∪r∈NNr . Let d1, . . . dr be derivations as in Lemma 15 and α1, . . . , αn ∈ ∪r∈NNr . Then
equation (1) can be written in the following form

n∑

i=1

fi (x
pi )(gi (x))

qi =
n∑

i=1

⎛

⎝
∑

|α|<ki

dα(x pi )

⎞

⎠

⎛

⎝
∑

|β|<li

dβ(x)

⎞

⎠
qi

= 0 (x ∈ F) .

Now we fix an α ∈ N
r such that |α| is maximal in fi ’s and β ∈ N

t is taken to be maximal
in those gi where dα appears as a summand in fi . Then by algebraic independence we can
restrict to those α′ ∈ N

r and β ′ ∈ N
t such that α′

k ≤ αk (k = 1, . . . , r) and β ′
j ≤ β j

( j = 1, . . . , t). This we denote by α′ ≤ α and β ′ ≤ β, respectively. Hence

n∑

i=1

fi (x
pi )(gi (x))

qi =
n∑

i=1

⎛

⎝
∑

k≤|α|
d̂k(x pi )

⎞

⎠

⎛

⎝
∑

l≤|β|
d̂l(x)

⎞

⎠
qi

= 0 (x ∈ F) ,

where d̂ is an arbitrary derivation (of order 1). In other words, we can substitute d1, . . . , dr
by d̂ in dα′

, dβ ′
in each case whenever α′ < α and β ′ < β.

Our next aim is to understand the arithmetic of composition of derivations of the form
d ◦ · · · ◦ d︸ ︷︷ ︸

k

times(x), where d is a derivation (of order 1), k ∈ N, as they are building blocks

of differential operators. Lemma 15, together with [4, Proposition 1], implies the following
statement.

Proposition 17 Let F ⊂ C be a field and d : F → C a derivation. For all positive integer k
we define the function dk on F by

dk(x) = d ◦ · · · ◦ d︸ ︷︷ ︸
ktimes

(x) (x ∈ F) .
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Then for all positive integers p we have

dk(x p) =
∑

l1,...,l p≥0
l1+···+l p=k

(
k

l1, . . . , l p

)
· dl1(x) · · · dlp (x) (

x1, . . . , xp ∈ F
)
,

where the conventions d0 = id and

(
k

l1, . . . , l p

)
= k!

l1! · · · l p! are adopted.
Reordering the previous expression we can get the following

dk(x p) =
∑

j1+···+ js=p′<p
j1+2 j2+···+s js=k

(
k

1, . . . , 1︸ ︷︷ ︸
j1

, . . . , s, . . . , s︸ ︷︷ ︸
js

)
·

s∏

t=1

1

( jt !) ·
(

p

1, . . . , 1︸ ︷︷ ︸
p′

)

×(d(x)) j1 · · · (ds(x)) js · x p−p′
, (x ∈ F)

where j1, . . . , js denotes the number of d(x), . . . , ds(x) in a given composition of dk(x p).

Theorem 18 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn be
fixed positive integers fulfilling conditions C(i)–C(iii). Assume that the additive functions
f1, . . . , fn, g1, . . . , gn : F → C defined by

fi (x) = Di (x) and gi (x) = D̃i (x)
(
x ∈ F

×)
(10)

for each i = 1, . . . , n, satisfy functional equation (1) on F, where for all index i = 1, . . . , n,
the mappings Di , D̃i are higher-order derivations on F. Then one of the following two
alternatives holds:

(A) there exists i ∈ {1, . . . , n} such that gi (x) = ci · x and fi contains, as a summand, a
derivation of order K , where K is the maximum order in each Di , D̃i .

(B) fi and gi is of order at most 1 for all i ∈ {1, . . . , n} and there are i1, i2 ∈ {1, . . . , n}, i1 �=
i2 such that qi2 = qi1 + 1 (pi2 = pi1 − 1) and fi1 , gi1 , fi2 , gi2 is of the form

fi1 = λi1,1d(x) + λi1,0x, gi1(x) = λ̃i1,1d(x) + λ̃i1,0x,

fi2(x) = λi2,0x, gi2(x) = λ̃i2,1d(x) + λ̃i2,0x, (11)

where λi1,1, λ̃i1,1, λi2,0, λ̃i2,1 are nonzero complex numbers satisfying

pi1 · λi1,1 · (̃λi1,1)
qi1 + λi2,0 · (̃λi2,1)

q1+1 = 0. (12)

Proof Part 1. Substituting the form (9) to equation (1), we arrive to

0 =
n∑

i=1

fi (x
pi )gqii (x) =

n∑

i=1

Pi (x
pi )x pi · Qqi

i (x)xqi

=
n∑

i=1

Di (x
pi )(x)(D̃i (x))

qi
(
x ∈ F

×)
.

For simplicity, fromnowonwe assume thatF is finitely generated. Then the corresponding
functions can be represented as

fi (x) = Di (x) =
∑

|α|<ki

dα(x) and gi (x) = D̃i (x) =
∑

|β|<li

dβ(x)
(
x ∈ F

×)
,
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where α and β are running multi-indices and ki and li are some natural numbers depending
on fi and gi , respectively. ByCorollary 16, we can take only derivation d in each composition
of each dα and dβ so that the corresponding fi ’s and gi ’s still satisfy (9). We can represent
these functions as

fi (x) = Di (x) =
ki∑

j=0

λi, j d
j (x) and gi (x) = D̃i (x) =

li∑

j=0

λ̃i, j d
j (x)

(
x ∈ F

×)

with an appropriate derivation d : F → C and complex constants λi, j (i = 1, . . . , n, j =
0, . . . , ki ) λ̃i, j (i = 1, . . . , n, j = 0, . . . , li ), where ki and li denote the the highest order
term of those derivations that appear in fi and gi , respectively. This means that λi,ki , λ̃i,li
are nonzero for all i = 1, . . . , n.

If we write these representations into (1), we especially get that

n∑

i=1

⎛

⎝
ki∑

j=0

λi, j d
j (x pi )

⎞

⎠ ·
⎛

⎝
li∑

j=0

λ̃i, j d
j (x)

⎞

⎠
qi

= 0
(
x ∈ F

×)
.

By introducing the following quantities

S(pi , ki − 1) =
ki−1∑

j=0

λi, j d
j (x pi )

(
x ∈ F

×)

and

T (qi , li − 1) =
⎛

⎝
li∑

j=0

λ̃i, j d
j (x)

⎞

⎠
qi

− (̃λi,li d
li (x))qi

(
x ∈ F

×)
.

Dividing the above sum into smaller ones, we get

n∑

i=1

⎛

⎝
ki∑

j=0

λi, j d
j (x pi )

⎞

⎠ ·
⎛

⎝
li∑

j=0

λ̃i, j d
j (x)

⎞

⎠
qi

=
n∑

i=1

(
λi,ki d

ki (x pi ) + S(pi , ki − 1)
)

·
(
(λi,li d

li (x))qi + T (qi , li − 1)
) (

x ∈ F
×)

.

Let K = maxi {ki + li · qi } and for simplicity let us assume that this K realized for indices
i ∈ {1, . . . ,m} for some m ≤ n. Suppose that k1 maximal. Now we assume that l1 �= 0.
Otherwise, we immediately get the result, that the order of f1 is maximal and g1 = c1 · x .
Part 2. Now, we investigate the coefficient of dk1(x)(dl1(x))q1 in the expansion. As K is
maximal this can be taken only from the product of the first terms of the previous expression,
i.e., from

m∑

i=1

λi,ki (̃λi,li )
qi dki (x pi )(dli (x))qi . (13)
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By Proposition 17, we have that

dki (x pi ) =
∑

j1+···+ js=p′<pi
j1+2 j2+···+s js=ki

(
ki

1, . . . , 1︸ ︷︷ ︸
j1

, . . . , s, . . . , s︸ ︷︷ ︸
js

)

×
s∏

t=1

1

( jt !) ·
(

pi
1, . . . , 1︸ ︷︷ ︸

p′

)
· (d(x)) j1 · · · (ds(x)) js · x pi−p′

=
{(

pi · dki (x) · x pi−1 + R(pi , ki )
)
, if ki ≥ 1

x pi , if ki = 0
(x ∈ G, i = 1, . . . , n) ,

where each term in R(pi , ki ) contains the product of at least two derivations of order less
than ki .

The term dk1(x)(dl1(x))q1 is automatically appears in the expansion of dk1(x pi )(dl1(x))q1 .
As it has to vanish in the sum we should observe how we can get terms of the form
dk1(x)(dl1(x))q1 from the expansion of dki (x pi )(dli (x))qi for some i ∈ {2, . . . ,m}.

Part 3. We have to distinguish several cases and subcases.

Case 1. dk1(x) stems from the expansion of dki (x pi ). Then, by the maximality of k1, we
obtain ki = k1. As k1 + l1q1 = ki + li qi and qi �= q1 we have that l1 �= li and hence
we cannot get (dl1(x))q1 from (dli (x))qi , which is a contradiction.

Case 2. dk1(x) stems from (dli (x))qi . Then k1 = li andwe have several subcases. Case 2.1. If
qi > 1, then l1 = li , and dk1(x)(dl1(x))q1 can be reformulated as dk1(x)(dk1(x))q1 .
Similarly, dki (x pi )(dli (x))qi can be reformulated as dki (x pi )(dk1(x))qi .
Case 2.1.1. If k1 = ki , then we get a contradiction as in Case 1.
Case 2.1.2. If k1 �= ki , i.e., k1 > ki , then dk1(x) can only stems from (dk1(x))qi . As
qi > 1, it follows that l1 = k1, which implies ki = 0. Thus dk1(x)(dk1(x))q1 have
to be the same as (dk1(x))qi . Hence qi = q1 + 1, and hence p1 = pi + 1 > 2.
Case 2.1.2.1. k1 > 1. Since p1 > 2, the expansion of dk1(x p1)(dk1(x))q1 contains
a term of the form d(x)dk1−1(x)(dk1(x))q1 . This cannot appear in the expansion of
dk j (x p j )(dl j (x))q j for any j ∈ {2, . . . ,m}. Indeed, if k1 = k j and d(x)dk1−1(x)
stems from dk j (x p j ), then we get a contradiction as in Case 1. If k1 = k j and
d(x)dk1−1(x) stems from (dl j (x))q j , then k1 = 2, l j = 1, q j = 2, and (dk1(x))q1

stems from the expansion ofdk j (x p j ). Hence by themaximality of k1,we get k j = k1
and q1 = 1. On the other hand, if q1 = 1, then qi = 2 as well as q j , hence qi = q j ,
but ki = 0 and k j = k1, which is a contradiction.
Case 2.1.2.2. k1 = 1. As ki < k1, then ki = 0. In this case k1 = l1 = li = 1 and
ki = 0. There is no other k j = 1 for any j ∈ {2, . . .m} \ {i}, since l1 is maximal,
and if l1 = 0, then k1 is not maximal. If k j = 0, then the corresponding term is
x p j (dl j )q j , where l j · q j = q1 + 1 = K could be possible, but by the maximality
of k1 and l1 the term (dl j )q j cannot be eliminated. Thus there is no other k j = 0 for
any j ∈ {2, . . .m} \ {i}. Therefore, i = m = 2 and the term d(x)(d(x))q1 can only
be eliminated using the terms corresponding to k1 and k2. Namely,

f1 = λ1,1 · d(x) + λ1,0x, g1(x) = λ̃1,1 · d(x) + λ̃1,0x

f2(x) = λ2,0x, g2(x) = λ̃2,1 · d(x) + λ̃2,0x

and q2 = q1 + 1, so that

λ1,1(̃λ1,1)
q1 p1 · x p1−1d(x)q1+1 + λ2,0 (̃λ2,1)

q1+1 · x p1−1d(x)q1+1 = 0,
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hence p1λ1,1(̃λ1,2)q1 + λ2,0 (̃λ2,1)
q1+1 = 0. Repeating the whole argument recur-

sively for K j = max(ki + li qi ) \ {K1, . . . , K j−1} we get that either there is an
fi of degree at least 2 and, then there exists a fi of maximal degree K j such that
gi = ci · x , or every fi has degree at most 1, and the corresponding functions have
a strong connection as described above.

Case2.2. Ifqi = 1, thenwehave thatdk1(x) stems fromdli (x), so k1 = li and l1·q1 =
ki . In this case dk1(x)(dl1(x))q1 stems from the expansion of dk1(x p1)(dl1(x))q1

and of dki (x pi )(dli )qi = dl1q1(xN−1)dk1(x). As qi = 1, we have that q1 > 1 and
pi = N − 1 > 1, as pi , qi are distinct. Furthermore, as k1 is maximal and l1 �= 0
(otherwise we automatically get the result), we obtain k1 ≥ ki ≥ l1q1 ≥ 2.
Nowwe take the term dl1q1−1(x)d(x)dk1(x), this term stems from dki (x pi )(dli )qi =
dl1q1(xN−1)dk1(x) as pi = N − 1 > 1. Therefore, there must be a j ∈ {1, . . . ,m}
with j �= i so that dl1q1−1(x)d(x)dk1(x) stems from dk j (x p j )(dl j )q j . As we have
dl1q1−1(x)d(x)dk1(x) is the product of 3 terms and q j �= 1 as qi = 1 we have get
that q j = 2. We have three cases.

Case 2.2.1. d(x)dk1(x) = (dl j )2. Then k1 = 1, which contradicts the fact that
k1 ≥ 2.

Case 2.2.2. dl1q1−1(x)dk1(x) = (dl j )2. Then k1 = l1q1 − 1, then ki = l1q1 > k1,
which contradicts the maximality of k1.

Case 2.2.3. d(x)dl1q1−1(x) = (dl j )2. Then l1q1 = 2, and as q1 ≥ 2 and l1 ≥ 1
we get that l1 = 1 and q1 = 2. This implies q j = q1 and hence j = 1.
Thus, dki (x pi )(dli )qi = d2(xN−1)dk1(x). Now we take the term d2(x)dk1(x).
As it stems from the expansion of the previous expression, there should be a
j ∈ {2, . . . ,m}, where j �= i (and also j �= 1) so that d2(x)dk1(x) stems from
the term dk j (x p j )(dl j (x))q j . Then q j = 1 which is a contradiction as qi = 1 and
i �= j .

Part 4. Summarizing these results we have

• either l1 = 0, which indicates that the order of f1 is maximal and g1(x) = c1 · x (x ∈ F)

for some complex number c1,
• otherwise, for every i = 1, . . . , n the functions fi and gi are of degree at most 1.

Furthermore, if fi1 and gi1 is of the form

fi1 = λi1,1d(x) + λi1,0x, gi1(x) = λ̃i1,1d(x) + λ̃i1,0x

then there exists an i2 ∈ {1, . . . , n} such that
gi1 = λi2,0x, gi2(x) = λ̃i2,1d(x) + λ̃i2,0x

where and qi2 = qi1 + 1 (pi2 = pi1−1), so that λi1,1, λ̃i1,1, λi2,0, λ̃i2,1 are nonzero complex
numbers satisfying

pi1 · λi1,1 · (̃λi1,1)
qi1 + λi2,0 · (̃λi2,1)

q1+1 = 0.

��
Remark 11 We get more than it is stated in Theorem 18. Namely, if alternative (A) happens
then the maximal order of K is greater or equal to ki + qi · li for all i ∈ {1, . . . , n}, where ki
is the maximal order of fi and li is the maximal order of gi . Thus, if k j + q j · l j = K and
k j �= K for some j ∈ {1, . . . , n}, then we typically ki and li is much smaller than K . On
the other hand, it is worth mentioning that the possibility that such ki , li do exist cannot be
excluded by our results.
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Corollary 19 Under the conditions Theorem 18 suppose that one of the following conditions
is satisfied.

(A) The functions g1, . . . , gn, as higher-order derivations, have the same order.
(B) The functions f1, . . . , fn as higher-order derivations, have the same order.

Then for all i = 1, . . . , n there exists a complex number λi such that

gi (x) = λi x (x ∈ F)

and equation (1) is then of the following form

n∑

i=1

λN−i
i fi (x

i )xN−i = 0,

where some λi ∈ C can be 0. In this case we have fi ∈ Dn−1(F) for all i = 1, . . . , n as it
was shown in [3, 6].

Corollary 20 Under the conditions Theorem 18, suppose that

fi (x) = ci · gi (x) (x ∈ F)

holds for all for all i ∈ {1, . . . , n} with some nonzero constants ci ∈ C, i = 1, . . . , n. Then

fi (x) = λi x (x ∈ F) ,

and hence

gi (x) = ciλi x (x ∈ F)

with some complex constants λi for all i = 1, . . . , n. Further these constants also have to
fulfill

∑n
i=1 c

qi
i λ

qi+1
i = 0.

Remark 12 It seems that all of the previously mentioned examples lead to the equation

n∑

i=1

λN−i
i fi (x

i )xN−i = 0.

We note that the class of solutions of equation (1) is wider in general.
The simplest example is the following. Let p1, q1, p1 − 1, q1 + 1 be distinct positive

integers with p1 > 1 and d : F → C be a derivation. Define the functions f1, f2, g1, g2 by
f1 = g1 = g2 = d and

f2(x) = −p1x (x ∈ F) .

Then

f1(x
p1)(g1(x))

q1 + f2(x
p1−1)g2(x

q1+1) = d(x p1)d(x)q1 + (−p1x
p1−1)d(x)q1+1

= p1x
p1−1d(x)d(x)q1 + (−p1x

p1−1)d(x)q1+1 = 0

for all x ∈ F.

The corollaries and the remark above motivate the following conjecture.
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Conjecture 21 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn be
fixed positive integers fulfilling conditions C(i)–C(iii). Assume that the additive functions
f1, . . . , fn, g1, . . . , gn : F → C satisfy equation (1). Then every function is a generalized
exponential polynomial function of degree at most n − 1. In particular, if

fi (x) = Di (x) and gi (x) = D̃i (x)
(
x ∈ F

×)
(14)

for some derivations Di , D̃i (i = 1, . . . , n), then the order of Di , D̃i is at most n − 1.

Although we cannot verify the conjecture in its full generality, we can handle the case
when qi ≥ N

2 . We note that this condition complements the one in Theorem 14.

Theorem 22 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn be
fixed positive integers fulfilling conditions C(i)–C(iii) and qi ≥ N

2 . Assume that the additive
functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation (1). Then every function
fi (resp. gi ) is generalized exponential polynomials of degree at most n − 1.

Proof Part 1. By Lemma 8, the solutions fi , gi of (1) are decomposable functions for all
i = 1, . . . , n, i.e., they are generalized exponential polynomial functions of the form

∑
Pjm j

and
∑

Q jm j , respectively. If restricting the equation to the terms containing m j for fixed j
as in Remark 10 we can prove that the degree Pj is at most n − 1, then it holds in general for
the original solutions fi , gi . By the equivalence relation ∼ we can assume that m j (x) = x .
Then, by Theorem 12, the solutions can be seen as derivations Di and Dj having the same
order as the degree of Pj and Q j , respectively.

Part 2. Now we can apply Theorem 18. This implies that either there is some fi0 = Di0
of maximal order and the corresponding gi0 is of the form gi0(x) = ci0 · x (x ∈ F), or the
order of fi , gi is at most 1 for each i = 1, . . . , n. In the latter case, we get the result, as
n − 1 ≥ 1. The preceding case is more technical. First, we restrict our attention to finitely
generated subfields of F, since the result on these restricted fields implies the statement on
F. Hence from now on we assume that F is finitely generated. In this case, the derivations
are differential operators. Now as in the proof of Theorem 18, using Corollary 16, we can
assume that every differential operator is a function of a given derivation d and hence fi , gi
(i = 1 . . . , n) can be represented as

fi (x) = Di (x) =
ki∑

j=0

λi, j d
j (x) and gi (x) = D̃i (x) =

li∑

j=0

λ̃i, j d
j (x)

(
x ∈ F

×)

and equation (1) as

n∑

i=1

⎛

⎝
ki∑

j=0

λi, j d
j (x pi )

⎞

⎠ ·
⎛

⎝
li∑

j=0

λ̃i, j d
j (x)

⎞

⎠
qi

= 0
(
x ∈ F

×)
.

As in the proof of Theorem 18, homogeneity argument lead to

m∑

i=1

λi,ki (̃λi,li )
qi dki (x pi )(dli (x))qi = 0, (15)

where i = 1, . . . ,m are those indices that satisfy K = ki + li qi and K is the largest possible.
Now we have that i0 ∈ {1, . . . ,m}, i.e., ki0 = K and li0 = 0.

Part 3. We have to show that K ≤ n − 1 which immediately implies the statement. Assume
contrary that K ≥ n. In the expansion of equation (15) all monomials of x, d, d2, . . . , dK
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have to vanish. Suppose that the first m′ indices satisfy that ki = K , li = 0 for all i ∈
{1, . . . ,m′}. This also means that λi,K �= 0 and λ̃i,0 �= 0. Take monomials

dK−t (d(x))t x N−t−1 for t = 0, . . . , n − 1. (16)

Note that qi ≥ N
2 immediately implies that qi > n for all i = 1, . . . , n. Hence, if li >

0, i.e., i > m′, then none of the terms defined in (16) can appear in the expansion of
dki (x pi )(dli (x))qi if i > m′. Hence these terms in (16) can stem only from the expansion of
dK (x pi )(x)qi , where i = 1 . . .m′. In this case for any t = 0, . . . ,m′−1 the term dK−t (d(x))t

stems from dK (x pi ). By Proposition 17, its coefficient is
(

K

K − t

)(
pi

1, . . . , 1,︸ ︷︷ ︸
pi−t+1

)
.

As the coefficient of dK−t (d(x))t x N−t−1 has to vanish we get that

m′∑

i=1

λi,K (̃λi,0)
qi

(
K

K − t

)
·
(

pi
1, . . . , 1︸ ︷︷ ︸

t+1

)
= 0 (t = 0, . . . ,m′ − 1)

This can written in the following matrix form
⎛

⎜⎜⎜⎜⎜⎜⎝

(p1
1

)
. . .

(pm′
1

)
( p1
1,1

)
. . .

(pm′
1,1

)

...
. . .

...( p1
1, . . . , 1︸ ︷︷ ︸

m′

)
. . .

( pm′
1, . . . , 1︸ ︷︷ ︸

m′

)

⎞

⎟⎟⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎝

λ1,K (̃λ1,0)
q1

λ2,K (̃λ2,0)
q2

...

λm′,K (̃λm′,0)qm′

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0
0
...

0

⎞

⎟⎟⎟⎠

Note that none of the rows of the previousmatrix is identically 0. Indeed, there exists pi ′ ≥ m′
for some i ′ ∈ {1, . . . ,m′}, since all pi (i = 1, . . . ,m′) are different and positive integers. In
this case, it is straightforward to verify that the previous matrix equation is equivalent to

⎛

⎜⎜⎜⎝

p1 . . . pm′
p21 . . . p2m′
...

. . .
...

pm
′

1 . . . pm
′

m′

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

λ1,K (̃λ1,0)
q1

λ2,K (̃λ2,0)
q2

...

λm′,K (̃λm′,0)qm′

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0
0
...

0

⎞

⎟⎟⎟⎠

The matrix of this equation is a Vandermonde matrix of pi . As pi are all different the
equation has only trivial solutions. Thus λi,K (̃λi,0)

qi = 0 for every i ∈ {1, . . . ,m′}, which is
a contradiction as λi,K �= 0 and λ̃i,0 �= 0. This contradiction shows that the maximal order
K of Di and D̃i is at most n − 1. This also finishes the proof of the theorem. ��

The most important results of this section are briefly summarized below.

Special cases of equation (1)

Now we consider equations of the form

f1(x
p1)g1(x)

q1 + f2(x
p2)g2(x)

q2 = 0 (x ∈ F) , (17)
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where f1, f2, g1, g2 : F → C denote the unknown additive functions and the parameters
p1, p2, q1, q2 fulfill conditionsC(i)–C(iii), i.e., p1 < p2, p1+q1 = p2+q2 and p1, p2, q1, q2
are all distinct and positive integers. Even in this case, which can be considered as the
‘simplest’ example (as it contains only two summands), the description of all solutions
is elaborate. First, in Theorem 23 we characterize all solutions, where the corresponding
functions are of the form P(x) · x . Secondly, in Lemma 24 we consider the case when the
additive solutions (that are exponential polynomials on the multiplicative group) contain
more than one exponential in their representations.

In Lemma 8 we have shown that all solutions of (17) are generalized exponential poly-
nomial functions of the form

∑
i Pimi , where Pi are generalized polynomials and mi are

exponential functions on F
×. In Example 1 we illustrated that the solutions can be sums of

generalized exponential polynomials, however in all examples gi ’s are linear combinations
of different exponential functions. At the same time, we can concentrate on the solutions,
where all fi , gi are of the form Pim and Qim for a given exponential function m. Using the
equivalence relation∼ (see Lemma 2) we can assume that solutions are of the form Pi (x) · x ,
that is, those solutions are higher-order derivation or linear functions. Note that these solu-
tions are the building blocks of the solutions in general, since by algebraic independence of
exponential polynomial functions, necessarily equation (17) has such a solution, in any case.

Theorem 23 Suppose that f1, f2, g1, g2 : F → C are higher-order derivations that also
fulfill equation (17) so that the parameters p1, p2, q1, q2 satisfy conditions C(i)–C(iii). Then
all of them (as higher-order derivations) are of order at most 1 and the solutions are one of
the following.

(A)

f1(x) = λ1,1d(x) + λ1,0x, f2(x) = λ2,0x, (x ∈ F)

g1(x) = μ1,1d(x) + μ1,0x, g2(x) = μ2,1d(x) + μ2,0x, (x ∈ F)

where λ1,1, λ2,0, μ1,1, μ2,1 ∈ C are nonzero, q2 = q1 + 1 (i.e, p2 = p1 + 1) satisfying

p1 · λ1,1 · (μ1,0)
q1 + λ2,0 · (μ2,1)

q1+1 = 0.

Equivalently, there is a function h(x) = d(x) + ax such that

f1(x
p1) = λ1,1 p1h(x)x p1−1, g1(x) = μ1,1h(x) and g2(x) = μ2,1h(x).

(B)

f1(x) = λ1,1d(x) + λ1,0x, f2 = λ2,0x (x ∈ F)

g1(x) = μ1,0x, g2(x) = μ2,1d(x) + μ2,0x (x ∈ F)

where λ1,1, λ2,0, μ1,0, μ2,1 ∈ C are nonzero, q2 = 1 (i.e, p2 = N − 1) satisfying

p1 · λ1,1 · (μ1,0)
q1 + λ2,0 · μ2,1 = 0.

Furthermore, f1(x p1) = c1g2(x)x p1−1, g1(x) = c2 f2(x), where c1 · c2 = −λ
1−q1
2,0 .

(C)

f1(x) = λ1,1d(x) + λ1,0x, f2 = λ2,1d(x) + λ2,0x, (x ∈ F)

g1(x) = μ1,0x, g2(x) = μ2,0x, (x ∈ F)
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where λi, j , μi,0 ∈ C for all i ∈ {1, 2}, j ∈ {0, 1}, that satisfies
p1 · λ1,1 · (μ1,0)

q1 + p2 · λ2,1 · (μ2,0)
q2 = 0.

λ1,0 · (μ1,0)
q1 + λ2,0 · (μ2,0)

q2 = 0

In particular, (x p2−p1) f1(x p1) = c f2(x p2) for some c ∈ C.
We note that this case includes those when all solutions are linear functions.

Proof Part 1. Due to the results of Theorem 18, we get that the solutions of (17) are either
of the form as in Case (A) or one of gi , say g1, is a linear function, and f1 as a derivation is
of order K , where K is maximal. In this case let us denote the orders of f2 and g2 by k2 and
l2, respectively, so K = k2 + l2q2. Hence equation (17) can be written

(λ1,K d
K (x p1) + · · · + λ1,0x

p1)(μ1,0x)
q1(λ2,k2d

k2(x p2) + . . .

+λ2,0x
p1)(μ2,l2d

l2(x) + · · · + μ2,0x)
q2 = 0,

where λ1,K , λ2,k2 , μ2,l2 are nonzero by assumption. The expansion of dK (x p1) must be
covered by the expansion of dk2(x p2)(dl2(x))q2 , otherwise λ1,K = 0. This immediately
implies that l2 ≤ 1. We will show that if l2 = 1, then Case (B) happens, and l2 = 0 implies
Case (C).Part 2. Let us consider alternatives (A), (B), and (C), respectively.

(A) Equation (17) can be reformulated in case (A) as follows.

(λ1,1d(x p1) + λ1,0x
p1)(μ1,1d(x) + μ1,0x) + λ2,0x

p1−1(μ2,1d(x) + μ2,0x)
q1+1,

(x ∈ F) ,

where we assume at least one of λ1,1, μ1,1, μ2,1 is nonzero. This implies that none of
them is 0. The equation above is equivalent to

(p1λ1,1d(x) + λ1,0x)(μ1,1d(x) + μ1,0x) + λ2,0(μ2,1d(x) + μ2,0x)
q1+1, (x ∈ F) .

Now we use the algebraic independence of d(x) and x , therefore every coefficient has to
vanish in the expansion of the previous equation. This also means that we can substitute
other polynomially independent elements to the equation, so instead of the pair (x, d(x))
we can substitute the pair (1, y). Hence, we get

p1λ1,1μ1,1

(
y + λ1,0

p1λ1,1

)(
y + μ1,0

μ1,1

)q1
= −λ2,0μ2,1

(
y + μ2,0

μ2,1

)q1+1

, (y ∈ F) .

Note that Since the main coefficients have to be equal we get p1λ1,1μ1,1 = −λ2,0μ2,1.
Thus we can eliminate these terms. Introducing a = λ1,0

p1λ1,1
, b = μ1,0

μ1,1
and c = μ2,0

μ2,1
we

get that

(y + a)(y + b)q1 = (y + c)q1+1.

Since the polynomials in C are uniquely determined by their roots, hence a = b = c
should hold. This immediately implies the second part of Case (A).

(B) Recall that f1 as a derivation is of order K , g1 is a linear function, and the orders of f2
and g2 are k2 and l2, respectively, so K = k2 + l2q2. It is clear that p1 = 1 is not possible
if k2 �= K (i.e., l2 = 1). If l2 = 1 and p1 �= 1, then we get that q2 = 1, otherwise we
cannot eliminate the coefficient of dk2(x)dq2(x)x p1−2 in the expansion of dK (x p1) (here
we use that p1 ≥ 2). Hence we have that k2 + 1 = K

• If K ≥ 4 (and p1 ≥ 2), then the coefficient of dK−2(x)d2xx p1−2 cannot be elimi-
nated.
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• If K = 3 then the expansion of d3(x p1)xq1 and the expansion of d2(N − 1)d(x).
Since p1 + q1 = p2 + q2 = N ≥ 5, if p1 = 2, then (d(x))3 can only appear in the
expansion of d2(xN−1)d(x), hence λ2,k2 ·μ2,l2 = 0, which is a contradiction. On the
other hand if p1 ≥ 3, the d3(x) appears only in the expansion of d3(x p1)xq1 which
implies λ1,K = 0, a contradiction.

• If K = 2, then d2(x) appears only in the expansion of d3(x p1)xq1 (note that p1 ≥ 2).
• If K = 1 then we get that the solutions are of the form as in Case (B).

As q2 = 1 and K = 1, equation (17) in Case (B) can be written of the following form

(λ1,1d(x p1) + λ1,0x
p1)(μ1,0x)

q1 + λ2,0x
N−1(μ1,1d(x) + μ2,0x) = 0 (x ∈ F) ,

where at least one (and hence all) λ1,1, μ1,1 is nonzero. Equivalently, we have

μ
q1
1,0(p1λ1,1d(x) + λ1,0x) + λ2,0(μ2,1d(x) + μ2,0x) = 0 (x ∈ F) .

Since p1λ1,1μ
q1
1,0 = −λ2,0μ2,1, introducing a = λ1,0

p1λ1,1
and b = μ2,0

μ2,1
we get

d(x) + ax = d(x) + bx .

Hence a = b and we get all statements of Case (B).
(C) If l2 = 0, then K = k2, hence g2 is a linear function as well as g1. Thus the equation is

of the form

(λ1,K d
K (x p1) + · · · + λ1,0x

p1)(μ1,0x)
q1

+(λ2,K d
K (x p2) + · · · + λ2,0x

p1)(μ2,0x)
q2 = 0,

where λ1,K , λ2,K , μ1,0, μ2,0 are nonzero.
Suppose that K ≥ 2. If min(p1, p2) ≥ 2, then the following system of equations

(μ1,0)
q1λ1,K p1 + (μ2,0)

q2λ2,K p2 = 0

(μ1,0)
q1λ1,K p1(p1 − 1) + (μ2,0)

q2λ2,K p2(p2 − 1) = 0

implies that μ1,0xλ1,K = μ2,0λ2,K = 0, which is a contradiction. If min(p1, p2) = 1,
say p1 = 1, then (d(x))2 can only appear in the expansion of dK (x p2), hence λ2,K = 0
gives a contradiction. Hence we get that K = 1 and the functions are of the form as in
Case (C). The rest of the statement follows by direct calculations.

In all cases, we showed that every solution (as a higher-order derivation) is of order at most
1. ��

Nowwe turn to the casewhenmore than one exponential appears in the solution. Restricted
to each exponential the restricted solutions are equivalent to one of the solutions described in
Case (A), Case (B), and Case (C). Hence the task is to decide which are compatible with each
other. By a case-by-case argument, it can be shown that only the sum of different exponentials
is possible as a solution. In the following proof we study when Case (C) can be compatible
with itself (containing different exponentials) and exclude that any of the functions in the
solution contain a derivation as a summand. Similarly, the other cases can be excluded, but
because of the length of the argument we left it to the reader.
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Lemma 24 If the solution of (17) contains more than one exponential function, then it con-
tains exactly two. This is possible only if p1 = 2, p2 = 1 i.e., equation (17) is of the form

f1(x)g
N−1
1 (x) + f2(x

2)gN−2
2 (x) = 0 (x ∈ F) .

and the solutions are the following.

f1(x) = a1(ϕ1(x) + cϕ2(x))
f2(x) = a2(ϕ2(x) − c2ϕ1(x))
g1(x) = b1(ϕ1(x) − cϕ2(x))
g2(x) = b2(ϕ1(x) − cϕ2(x)),

(
x ∈ F

×)
,

where ϕ1 and ϕ2 are distinct automorphisms ofC, c ∈ C
× and ai , bi ∈ C

× satisfy a1b
N−1
1 =

−a2b
N−2
2 .

Proof Suppose that fi , gi (i = 1, 2) contain terms depending on two exponentials, i.e., there
are two automorphisms ϕ1 �= ϕ2 of C and derivations d1, d2 such that every function is of
the form c1ϕ1 ◦ d1 + c2ϕ1 + c3ϕ2 ◦ d2 + c4ϕ2, where we assume that ϕ1 ◦ d1 �= ϕ2 ◦ d2,
otherwise we can reduce the previous term.

Now we just investigate the case when restricting the solutions to ϕ1 or to ϕ2 we get
Case (C) in both cases. We show that in this case, all functions are the linear combination of
automorphisms, i.e., they do not contain nontrivial derivations. For other pairs of cases, the
argument is similar but slightly different. Those we left to the reader.

Hence we assume that

f1 = λ1,1ϕ1 ◦ d1 + λ1,0ϕ1 + λ2,1ϕ2 ◦ d2 + λ2,0ϕ2, g1 = μ1,0ϕ1 + μ2,0ϕ2,

f1 = λ̃1,1ϕ1 ◦ d1 + λ̃1,0ϕ1 + λ̃2,1ϕ2 ◦ d2 + λ̃2,0ϕ2 g1 = μ̃1,0ϕ1 + μ̃2,0ϕ2,

where μ1,0, μ2,0, μ̃1,0, μ̃2,0 are nonzero and for each i = 1, 2 at least one of λi, 0, λi, 1
is non-zero. Similar holds for λ̃i, j (i = 1, 2, j = 1, 2). These conditions are necessary
otherwise (17) reduces to Cases (A), (B) or (C).

If ϕ1 �= ϕ2 and ϕ1◦d1 �= ϕ2◦d2, then ϕ1◦d1, ϕ1, ϕ2◦d2, ϕ2 are algebraically independent
over C. Therefore we can substitute them functions by X , Y , Z ,W , respectively. Note that
in this case ϕ ◦ d1(x p) = pϕ ◦ d1(x) · ϕ p−1(x) = X · Y p−1.

In this case equation (17) can be reformulated as follows.

(p1λ1,1XY
p1−1 + λ1,0Y

p1 + p1λ2,1UV p1−1 + λ2,0V
p1)(μ1,0Y + μ2,0V )q1

+(p2λ̃1,1XY
p2−1 + λ̃1,0Y

p2 + p2λ̃2,1UV p2−1 + λ̃2,0V
p2)(μ̃1,0Y + μ̃2,0V )q2 = 0.

(18)

Without loss of generality, we can assume that p1 < p2. Now we take the coefficient of
XY p1−1V q1 . As p1 < p2, we have q1 > q2 and hence this term appears only once with
coefficient p1λ1,1μ2,0 which is then vanishes. Hence, λ1,1 = 0 (μ2,0 �= 0 was assumed).
Similar argument for Yq1UV p1−1 shows that λ̃1,1 = 0. Repeating the previous argument
now for XY p2−1V q2 and Yq2UV p2−1 implies that λ2,1 = 0 and λ̃2,1 = 0. Hence all fi are
the linear combination of ϕ1 and ϕ2.

We show that p1 = 1, p2 = 2 and the rest of the statement. By substituting V = 1 we get
the following equation, we get the following equation.

(λ1,0Y
p1 + λ2,0)(μ1,0Y + μ2,0)

q1 = −(λ̃1,0Y
p2 + λ̃2,0)(μ̃1,0Y + μ̃2,0)

q2 = 0. (19)

This is a polynomial equation inY overC. Firstwenote that P1(Y ) = λ1,0Y p1+λ2,0 (and reps.
P2(Y ) = λ̃1,0Y p2 +λ̃2,0) has no root withmultiplicity greater than 1, since (Pi (Y ), P ′

i (Y )) =
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1 (i = 1, 2). On the other hand, Q1(Y ) = (μ1,0Y + μ2,0)
q1 (and resp. Q2(Y ) = (μ̃1,0Y +

μ̃2,0)
q2 ) has only one root with multiplicity q1 (resp. q2). These immediately implies that

q2 + 1 = q1 (noting that p1 < p2 and p1 + q1 = p2 + q2). This means that one root of
P2(Y ) is the same as the root of Q1(Y ) and the root of Q2(Y ). The other roots are the same
as the roots of P1(Y ). However, the roots of P1(Y ) and P2(Y ) are constant multiples of p1’th
and (p1 + 1) = p2’th roots of unities, respectively. They can be equal only if p2 = 2, hence
p1 = 1. Thus q1 = N − 1, q2 = N − 2.

In this case equation (19) is of the following form

(λ1,0Y + λ2,0)(μ1,0Y + μ2,0)
N−1 = −(λ̃1,0Y

2 + λ̃2,0)(μ̃1,0Y + μ̃2,0)
N−2 = 0,

where μ2,0
μ1,0

= ˜μ2,0
μ̃1,0

. Introducing c1 = λ2,0
λ1,0

, c2 = μ2,0
μ1,0

= μ̃2,0
μ̃1,0

, c3 = λ̃2,0

λ̃1,0
we get

λ1,0μ
N−1
1,0 (Y + c1)(Y + c2) = −λ̃1,0 ˜μ1,0

N−2(Y 2 + c3).

Hence λ1,0μ
N−1
1,0 = −λ̃1,0μ̃

N−2
1,0 and c1 = −c2 and c3 = −c21. This means that all solutions

of (17) that contain two exponentials are

f1 = a1(ϕ1 + cϕ2), g1 = b1(ϕ2 − cϕ2), f2 = a2(ϕ1 − c2ϕ2), g2 = b2(ϕ2 − cϕ2),

where c ∈ C is arbitrary and ai , bi ∈ C satisfies a1b
N−1
1 = −a2b

N−2
2 as we stated.

It is simple to prove using the previous result that there is no solution containing three
exponentials. ��

In the following two special cases are presented as illustrations of our results.

Corollary 25 Let N be a positive integer, F ⊂ C be a field, and p, q be different positive
integers (strictly) less than N and assume that q �= N − p, let further κ be a nonzero complex
number. Suppose that the additive functions f , g : F → C are not identically zero and satisfy

f (x p)g(x)N−p = κ f (xq)g(x)N−q (x ∈ F) ,

then one of the following alternatives are possible

(A) there exist a derivation d : F → C and nonzero complex constants λ0, λ1, μ0 such that

f (x) ∼ λ1d(x) + λ0x and g(x) ∼ μ0x (x ∈ F) ,

where the above constants have even fulfilled that

λ0μ
N−p
0 (1 − κμ

p−q
0 ) = 0 and λ1μ

N−p
0 (p − κqμ

p−q
0 ) = 0

(B) there exist nonzero complex constants λ0, μ0 such that

f (x) ∼ λ0x and g(x) ∼ μ0x (x ∈ F) ,

where the above constants have even fulfilled that

λ0μ
N−p
0 (1 − κμ

p−q
0 ) = 0

(C)

f (x) = a(ϕ1(x) − ϕ2(x)) and g(x) = b(ϕ1(x) + ϕ2(x)),

where ϕ1, ϕ2 : F → C are arbitrary but distinct field homomorphisms, a, b ∈ C
× such

that a − κb = 0 and if p1 < p2, then p1 = 1, p2 = 2.
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Corollary 26 Let N be a positive integer, F ⊂ C be a field, and p, q be different positive
integers (strictly) less than N and assume that q �= N − p, let further κ be a nonzero complex
number. If the additive functions f , g : F → C satisfy

f (x p) f (x)N−p = κg(xq)g(x)N−q (x ∈ F) ,

then there exist nonzero complex constants λ0, μ0 such that

f (x) ∼ λ0x and g(x) ∼ μ0x (x ∈ F) .

The results of this subsection are summarized in the table below.

Appendix A Proofs of Lemmas 1 and 6

Proof of Lemma 1 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn
be fixed positive integers.

Assume that the additive functions f1, . . . , fn, g1, . . . , gn : F → C satisfy functional
equation (1) for each x ∈ F. Assume further that the set {p1, . . . , pn} has a partition
P1, . . . ,Pk with the property

if pα, pβ ∈ P j for a certain index j , then pα + qα = pβ + qβ .

Observe that for all i = 1, . . . , n, the mapping

F � x 
−→ fi (x
pi )gi (x))

qi

is a generalizedmonomial of degree pi +qi . Indeed, it is the diagonalization of the symmetric
(pi + qi )-additive mapping

F
pi+qi � (x1, . . . , xpi+qi ) 
−→ fi (xσ(1) · · · xσ(pi ))gi (xσ(pi+1) · · · gi (xσ(pi+qi )).

Since F ⊂ C, we necessarily have Q ⊂ F. Let now r ∈ Q be arbitrary and substitute r x in
place of x in equation (1) to get

n∑

i=1

fi ((r x)
pi )gi (r x)

qi = 0 (r ∈ Q, x ∈ F) .

Using the Q-homogeneity of the additive functions f1, . . . , fn and g1, . . . , gn , we deduce

0 =
n∑

i=1

fi ((r x)
pi )gi (r x)

qi =
n∑

i=1

fi (r
pi x pi )(rgi (x))

qi =
n∑

i=1

r pi+qi fi (x
pi )gi (x)

qi

=
k∑

j=1

∑

pα∈P j

r pα+qα fα(x pα )gα(x)qα (r ∈ Q, x ∈ F) .

Note that the right-hand side of this equation is a (classical) polynomial in r which is iden-
tically zero. Thus all of its coefficients should be (identically) zero, yielding that the system
of equations

∑

pα∈P j

fα(x pα )gα(x))qα = 0 (x ∈ F, j = 1, . . . , k)

is fulfilled. ��

123



Polynomial equations for additive... Page 33 of 35   112 

St
at
em

en
t

C
on

di
tio

ns
C
on

cl
us
io
n

T
he
or
em

23
E
qu

at
io
n
(1
7)
,i
.e
.,
f 1

(x
p 1

)g
1
(x

)q
1

+
f 2

(x
p 2

)g
2
(x

)q
2

=
0

(x
∈F

)
f 1

,
f 2

,
g 1

,
g 2

∈D
2
(F

)
an
d
al
te
rn
at
iv
es

(A
),

(B
),
an
d
(C

)
ho

ld
L
em

m
a
24

E
qu

at
io
n
(1
7)

an
d
th
e
so
lu
tio

ns
co
nt
ai
n
m
or
e
th
en

on
e
ex
po

ne
nt
ia
lf
un

ct
io
n

p 1
=

2,
p 2

=
1
i.e
.,
eq
ua
tio

n
(1
7)

re
du
ce
s
to

f 1
(x

)g
N

−1
1

(x
)
+
f 2

(x
2
)g

N
−2

2
(x

)
=

0
(x

∈F
).

C
or
ol
la
ry

25
p,

q
<

N
,
p

�=
q
,q

�=
N

−
p
an
d
f(
x
p
)g

(x
)N

−p
=

κ
f(
xq

)g
(x

)N
−q

(x
∈F

)
,

(A
)
f(
x)

∼
λ
1
d
(x

)
+

λ
0
x
an
d

g(
x)

∼
μ
0
x

(x
∈F

)
,
(B

)
f(
x)

∼
λ
0
x
an
d

g(
x)

∼
μ
0
x

(x
∈F

)
,
(C

)
f(
x)

=
a(

ϕ
1
(x

)
−

ϕ
2
(x

))
an
d

g(
x)

=
b(

ϕ
1
(x

)
+

ϕ
2
(x

))
.

C
or
ol
la
ry

26
p,

q
<

N
,
p

�=
q
,q

�=
N

−
p
an
d
f(
x
p
)
f(
x)

N
−p

=
κ
g(
xq

)g
(x

)N
−q

(x
∈F

)
,

f(
x)

∼
λ
0
x
an
d
g(
x)

∼
μ
0
x.

123



  112 Page 34 of 35 E. Gselmann, G. Kiss

Proof of Lemma 6 Let n be a positive integer, F ⊂ C be a field and p1, . . . , pn, q1, . . . , qn
be fixed positive integers fulfilling conditions C(ii). Assume that the additive functions
f1, . . . , fn, g1, . . . , gn : F → C satisfy functional equation

n∑

i=1

fi (x
pi )gi (x)

qi = 0

for each x ∈ F. Due to the additivity of the functions f1, . . . , fn and g1, . . . , gn for all
i = 1, . . . , n, the mapping

x 
−→ fi (x
pi )gi (x)

qi

is a monomial of degree pi +qi = N . Further, it is the trace of the symmetric and N -additive
mapping

Fi (x1, . . . , xN ) = 1

N !
∑

σ∈SN

fi (xσ(1) · · · xσ(pi )) · gi (xσ(pi+1) · · · gi (xσ(N ))

(x1, . . . , xN ∈ F) .

Therefore, the statement follows from Lemma 5. ��
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