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Abstract
Given a unirational parameterization of a surface, we present a general algorithm to determine
a birational parameterization without using parameterization algorithms. Additionally, if the
surface is assumed to have a birational parameterization with empty base locus, and the input
parameterization is transversal, the degree of the solution is determined in advance and the
dimension of the space of solutions is reduced. As a consequence, for these cases, we present
a second faster algorithm.

Keywords Birational (proper) parameterizations · Reparameterization algorithm · Base
points · Generic fibers

Mathematics Subject Classification 14J26 · 14Q10

1 Introduction

The properness of parameterizations, defined by rational functions, has to dowith the injective
character of the rational map they induce, between a nonempty open Zariski subset of the
parameter space and the parameterized variety. It is therefore, from the point of view of
applications, or of algorithmic efficiency, or even from the point of view of the theoretical
analysis of algebraic varieties, a very important property.

Let us be more precise. LetP(t1, . . . , tr ) be a rational parameterization of a variety V over
a fieldK. If the induced rationalmapP : Kr → V is not injective, the question of deciding the
existence of an injective rational parameterization of V and, if so, of computing it, arises. The
problem about existence has its answer in Lüroth’s Theorem for the case of dimension one
(see e.g. [16]), and in Castenuovo’s rationality Theorem for the case of dimension two (see
e.g. [20]); in the first case, the existence of birational parameterizations (i.e. injective ones)
is ensured over any field, while in the second the requirement is that the field is algebraically
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closed of characteristic zero. We recall that throughout this paper we refer to generically
injective rational parameterizations by either proper or birational parameterizations.

Concerning to the calculation of proper parameterizations, the problem can be stated either
from the implicit equations or from a parameterization. In the first case, one derives a bira-
tional parameterization using a parameterization algorithm. In the second case, the question
is to compute a birational reparameterization of an input non-birational parameterization.
The case of curves (i.e. dimension one) has been analyzed by several authors and there are
effective answers in both approaches (see e.g. [7, 16]). For surfaces, the problem still lacks
some answers. In the implicit case, the problem is solved (see e.g. [14]). However, if the start-
ing point is parametric, an the implicit equation is not used, the problem is open. Although
there are some partial solutions (see [7, 8]) where the problem can be reduced, in a certain
sense, to the case of curves.

In this paper, we focus on the case of surfaces and from the parametric point of view.
We give a general algorithm (see Algorithm 2), which does not require parameterization
algorithms for implicitly defined surfaces, and therefore covers the open question mentioned
above. To do this, in Theorem 1, it is shown how the problem is directly related to the
generic fiber of the starting parameterization. Using this fact, solutions to the problem are
determined. Additionally, we see how by imposing two additional hypotheses, both related
to the base points of the parameterization, the general algorithm is considerably is simplified.
This is described in Algorithm 3. These two hypotheses are: the existence of a birational
parameterization without base points and the transversality of the input parameterization.
The first hypothesis allows knowing in advance the degree of the solution space (see Lemma
6) and the second allows reducing the dimension of the solution space (see Theorem 3).

At this point in the introduction, the readerwill wonder about the need to solve the problem
without leaving the parametric environment; that is, the natural question that arises is why
not implicitize and then use the solution provided by the parameterization algorithms. We
would like to mention some reasons that, for us, although we do not include any compassion
analysis, justify the strategic option of looking directly for a reparameterization, if the data is
given parametrically. A first reason is that the parameterization algorithms are not particularly
simple. On the other hand, developing an algorithmic solution to the problem that does not
require parameterizing techniques supposes having a theoretical methodology to be able to
address, as a future line of research, other problems as, for instance the properness problem
for the case of rational varieties of any dimension for which a unirational parameterization is
known; we recall that the problem of parameterizing in other dimensions, different from one
and two, is open. Let us emphasize that dealing with rational varieties implies, by definition,
the existence of birational parameterizations. In Sect. 6 we briefly comment on this issue.

The paper is structured as follows. In Sect. 2 we introduce, through several subsections, the
preliminaries of the paper on the generic fiber and the base locus of rational maps. Section3 is
devoted to the theoretical analysis of the problem. In this section, in Theorem 1, we state the
keys to computationally approach the properness. Section4 deals with the development of
the general algorithm. For this purpose, in Sects. 4.1 in 4.2 we discuss how to effectively deal
with the generic fiber of the input parameterization and of the reparameterizing functions,
respectively. In Sect. 4.3 the degree of the reparameterizing functions are studied. Finally, in
Sect. 4.4 the general algorithm is outlined. In Sect. 5, the particular case of surfaces admitting
a birational parameterization with empty locus is considered. The paper ends with a section
devoted to conclusions and open related problems (see Sect. 6).

We finish this section by introducing the main notation used throughout this paper, and
stating the problem we deal with.
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Notation. Let K be an algebraically closed field of characteristic zero. Pk(K) denotes the
k–dimensional projective space. Furthermore, for a generically finite rational map

M : P
k1(K) ��� P

k2(K)

h = (h1 : · · · : hk1+1) �−→ (m1(h) : · · · : mk2+1(h)),

where the non-zero mi are homogenous polynomials in h of the same degree, we denote by
deg(M) the degree degh(mi ), for mi non-zero, and by degMap(M) the degree of the map
M; that is, the cardinality of the generic fiber of M (see e.g. [4]).

Let f ∈ L[t1, t2, t3] be homogeneous and non-zero, where L is a field extension of K.
Then C

L
( f ) denotes the projective plane curve defined by f over the algebraic closure of L.

When there is no risk of ambiguity, we will simply write C ( f ). For A ∈ P
2(L), we represent

by multA(C ( f ),C (g)) the multiplicity of intersection of C ( f ) and C (g) at A. Also, we
denote by mult(A,C ( f )) the multiplicity of C ( f ) at A.

Finally, S ⊂ P
3(K) represents a rational projective surface and we denote by deg(S ),

the degree of S . We assume that

P( t ) = (
p1( t ) : p2( t ) : p3( t ) : p4( t )

)
, t = (t1, t2, t3), gcd(p1, . . . , p4) = 1,

(1.1)

is a fixed non-birational projective rational parameterization of S . We assume w.l.o.g. that
p4 is not the zero polynomial.

Throughout the paper we identify the set of all projective curves, including multiple
component curves, of a fixed degree d , with the projective space (see [6, 16] or [19] for
further details)

Vd := P
d(d+3)

2 (K). (1.2)

More precisely, we identify the projective curves of degree d with the forms in K[ t ] of
degree d , up to multiplication by non-zeroK-elements. Now, these forms are identified with
the elements in Vd corresponding to their coefficients, after fixing an order of the monomials.
By abuse of notation, we will refer to the elements in Vd by either their tuple of coefficients,
or the associated form, or the corresponding curve.
Birational reparameterizationproblemstatement.GivenS andP( t ) as above, determine
a birational parameterization Q( t ) of S as well as a rational map S : P2(K) ��� P

2(K)

such that

P( t ) = Q(S( t )). (1.3)

In this case, we will say that (Q,S) solves the birational reparameterization problem for P .

2 Preliminaries, notation and problem statement

In this section we recall the main preliminaries to be used throughout the paper.

2.1 The generic fiber

Let M be a generically finite rational map. That is, M is a rational map

M = (m1(t1, . . . , tk1+1) : · · · : mk2+1(t1, . . . , tk1+1)) : Pk1(K) ��� P
k2(K)

123



  109 Page 4 of 24 J. Caravantes

where all non-zero polynomials mi are homogenous of the same degree and such that there
exists a non-empty Zariski open subset � ⊂ im(M) and for every b ∈ � the cardinality of
the fiber M−1(b) is invariant and finite (see e.g. [4] and [17] pg. 76). We call this number
the degree of the map and we denote it by degMap(M). We define the generic fiber ofM
as

Fg(M) := {α ∈ P
k1(K(h)) |M(α) = M(h)}

where h = (h1, . . . , hk1+1) is a tuple of independent parameters and K(h) is the algebraic
closure of K(h). Note that #(Fg(M)) = degMap(M).

Let us assumew.l.o.g. thatmk2+1 is not the zero polynomial; if not, a change of coordinates
can be applied. Associated to M we may consider the affine rational map

Ma =
(

m1(t1, . . . , tk1 , 1)

mk2+1(t1, . . . , tk1 , 1)
, . . . ,

mk2(t1, . . . , tk1 , 1)

mk2+1(t1, . . . , tk1 , 1)

)
: Ak1(K) ��� A

k2(K).

(2.1)

Then, the generic fiber of Ma is defined as

Fg(Ma) := {α ∈ A
k1(K(h)) |Ma(α) = Ma(h)}

where h = (h1, . . . , hk1) is a tuple of independent parameters and K(h) is the algebraic
closure of K(h). Note that

#(Fg(M)) = degMap(M) = degMap(Ma) = #(Fg(Ma)).

Moreover, let us consider the dehomogenization and homogenization maps

D : {(a1 : · · · : ak1+1) ∈ P
k1(K) | ak1+1 �= 0} −→ A

k1(K)

(x1 : · · · : xk1+1) �−→
(

x1
xk1+1

, . . . ,
xk1
xk1+1

)
,

H : A
k1(K) −→ {(a1 : · · · : ak1+1) ∈ P

k1(K) | ak1+1 �= 0}
(y1, · · · , yk1) �−→ (y1 : · · · : yk1 , 1).

(2.2)

Taking into account that for α ∈ Fg(M), mk2+1(α) �= 0 because mk2+1(h) �= 0, we have
that, abusing notation,

D(Fg(M)) = Fg(Ma), H (Fg(Ma)) = Fg(M).

Remark 1 In Sects. 4.1 and 4.2 we will deal with the question of computing or describing
the generic fibre of a parameterization and/or of a dominant rational map from P

2(K) onto
P
2(K). Some of the techniques that will be used come from [10]. In the following we see

that, for our purposes, one of the two required hypotheses in [10], can be avoided.
Given a rational affine surface parameterization (a1/a2, b1/b2, c1/c2), in reduced form,

in Sect. 1.2. of [10] two general assumptions are introduced, namely, {∇(a1/a2),∇(b1/b2)}
must be linearly independent as vectors in theK-vector spaceK(t1, t2)2, and (0 : 1 : 0) must
belong to none of the projective curves defined by the numerators and denominators of the
parameterization. Nevertheless, this second hypothesis can be omitted when dealing with
the generic fiber of the parameterization, indeed: note that, taking into account Theorem 2
in [10] and Proposition 1 in [9], one may determine the degree of the rational map induced
by the rational parameterization from the polynomial R1 or R2, introduced in [9], without
imposing the second assumption. The underlying idea is that the resultant w.r.t. t2 (similarly
with (1 : 0 : 0) w.r.t. t1) may read wrongly the multiplicity of the point (0 : 1 : 0).
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Nevertheless, the polynomials Ri encode the coordinates of the non-constant intersection
points. This second hypothesis is however needed for the specialization of the computation
of the fibre at a particular point (see Lemma 6 and Theorems 5 and 6 in [10]).

Similarly, the partial degrees of an implicit equation can be computed without the assump-
tion on the point at infinity (0:1:0). More precisely, in [11], Theorems 1, 2 and 4 are obtained
from the results stated above and thus, if we do not specialize on the resultant, and we work
with generic points, we do not need to impose that each of the numerators and denominators
of the parameterization components passes through the point at infinity (0:1:0).

In addition, the techniques in [10] are easily extended to the case of dominant rational map
from P

2(K) onto P2(K) (see Sect. 4.2) by associating an auxiliary surface parameterization.
As a consequence the comments above on the hypothesis on (0 : 1 : 0) are also applicable.

2.2 The base locus

We recall some basic notions on base points; for further information we refer to [3] and
[13]. The base points of a projective rational map are the points where the map is not well-
defined. In our case, we will need to speak of base points of rational maps induced by
surface parameterizations and/or rational maps from P

2(K) on P
2(K). So, we unify both

cases considering a rational map

M = (m1( t ) : · · · : mk+1( t )) : P2(K) ��� P
k(K)

where all non-zero polynomialsmi are homogenous of the same degree and gcd(m1, . . . ,mk)

= 1. Then, A ∈ P
2(K) is called a base point of M if A ∈ ⋂k+1

i=1 C (mi ). The set of all base
points of M is called the base locus of M, and we represent it by B(M); note that, since
gcd(m1, . . . ,mk+1) = 1, the base locus is either empty or finite. The multiplicity of a base
point of M is the multiplicity of the point as element of the base locus. The multiplicity of
a base point can also be seen as follows. Associated to M we introduce the polynomials

W1( x , t ) :=
k+1∑

i=1

xi mi ( t ), W2( y , t ) :=
k+1∑

i=1

yi mi ( t ), (2.3)

where xi , yi are new variables, and we consider the corresponding projective plane curves
C (Wi ) in P2(F) where F is the algebraic closure ofK( x , y ). Note thatB(M) ⊂ C (W1) ∩
C (W2). Then, the multiplicity of a base point A ∈ B(M) is the multiplicity of intersection
of the curves C (W1) and C (W2) at A. We denote the multiplicity of a base point A ∈ B(M)

as

mult(A,B(M)). (2.4)

We say M is transversal if, for every A ∈ B(M), it holds that

mult(A,B(M)) = mult(A,C (W1))
2.

In order to check the transversality of a parameterization, one may apply Algorithm 1 pre-
sented in Section 5 in [13].

Furthermore, we introduce the notion of multiplicity of the base locus of M, denoted
mult(B(M)), as

mult(B(M)) :=
∑

A∈B (M)

mult(A,B(M)) (2.5)

Note that, since B(P) is either empty of finite the sum above well defined.
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3 Theoretical approach

In this section, we prove a characterization on the pairs (Q,S) solving the birational repa-
rameterization problem for P , where P is as in (1.1). This result will be crucial for the
algorithmic approach. We start with some technical lemmas.

Lemma 1 Let (Q,S) be a solution of the birational reparameterization problem. Then,
Fg(S) = Fg(P).

Proof Let α ∈ Fg(S). Then, S(α) = S(h), where h = (h1, h2) is the pair of new variables.
So, P(α) = Q(S(α)) = Q(S(h)) = P(h), and hence α ∈ Fg(P). Conversely, let β ∈
Fg(P). Then, P(β) = P(h). Thus, S(β) = Q−1(P(β)) = Q−1(P(h)) = S(h). So,
β ∈ Fg(S). 	

Lemma 2 Let S = (s1 : s2 : s3) : P2(K) ��� P

2(K) be a generically finite rational map.
Then,

{
∇

(
s1(t1, t2, 1)

s3(t1, t2, 1)

)
,∇

(
s2(t1, t2, 1)

s3(t1, t2, 1)

)}

are linearly independent as vectors in the K-vector space K( t )2.

Proof Let λ,μ ∈ K, not both zero, such that λ∇s1 + μ∇s2 = 0̄. Integrating w.r.t. t1 in
λ∂s1

∂t1
+ μ∂s2

∂t1
= 0, we get that there exists g(t2) such that λs1 + μs2 + g(t2) = 0. Now,

differentiating the previous equality w.r.t. t2, and taking into account that λ∂s1
∂t2

+ μ∂s2
∂t2

= 0,

we get that g(t2) is a constant k. So, λs1 + μs2 = −k. But this implies that (s1, s2) mapsK2

into the line λx + μy = −k which is impossible because the map is dominant in K
2. 	


Lemma 3 Let S = (s1 : s2 : s3) : P2(K) ��� P
2(K) be a generically finite rational map

such that Fg(P) = Fg(S). For j ∈ {1, 2, 3},

� j (t1, t2) :=
(
s1(t1, t2, 1)

s3(t1, t2, 1)
,
s2(t1, t2, 1)

s3(t1, t2, 1)
,
p j (t1, t2, 1)

p4(t1, t2, 1)

)

parameterizes an affine surface whose irreducible defining polynomial has degree one w.r.t.
z

Proof Let Sa be the affine version of S, as in (2.1). We start proving thatFg(Sa) = Fg(� j ).
Let α ∈ Fg(� j ). Then, � j (α) = � j (h), where h = (h1, h2) is the pair of new variables.
In particular Sa(α) = Sa(h). So, α ∈ Fg(Sa). Conversely, let α ∈ Fg(Sa). Then, Sa(α) =
Sa(h). On the other hand, since Fg(Sa) = Fg(Pa), then Pa(α) = Pa(h). In particular
p j (α)/p4(α) = p j (h)/p4(h). So φ j (α) = φ j (h) and hence α ∈ Fg(� j ). In particular, this
implies that degMap(� j ) = degMap(S) and that� j parameterizes a surface. Let Hj (x, y, z)
be its irreducible defining polynomial. Now, applying Lemma 2, we have that � j satisfies
the hypothesis in [11], page 120; see Remark 1. Applying Theorem 6 in [11], we get that

degz(Hj ) = degMap(S)

degMap(� j )
= 1.

	

The next theorem characterizes the solutions of the birational reparameterization problem

for P .
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Theorem 1 Let Q and S be rational maps

Q : P2(K) ��� S ⊂ P
3(K), S = (s1 : s2 : s3) : P2(K) ��� P

2(K),

where s3 �= 0 and Q(S) = P . The following statements are equivalent

1. Q and S solve the birational reparameterization problem for P .
2. Fg(P) = Fg(S).

Furthermore, if any of the above two equivalent conditions holds then

(a) For j ∈ {1, 2, 3},

� j (t1, t2) :=
(
s1(t1, t2, 1)

s3(t1, t2, 1)
,
s2(t1, t2, 1)

s3(t1, t2, 1)
,
p j (t1, t2, 1)

p4(t1, t2, 1)

)
(3.1)

parameterizes an affine surface defined by an irreducible polynomial of the form

Hj (x, y, z) := A j,1(x, y) − A j,0(x, y)z, (3.2)

with A j,0 not zero.
(b) Q( t ) is the homogenization, with t3 as homogenization variable, of

T :=
(
A1,1(t1, t2)

A1,0(t1, t2)
,
A2,1(t1, t2)

A2,0(t1, t2)
,
A3,1(t1, t2)

A3,0(t1, t2)

)
. (3.3)

Proof We argue with affine coordinates; note that by hypothesis p4 �= 0 and s3 �= 0. Let Pa

be the affine version of P , as in (2.1), and let Sa be the affine version of S, as in (2.1).
Let us see that (2) implies (1). By (2), we know that S is generically finite, in fact

degMap(S) = degMap(P). So, Sa is dominant in K
2. Moreover, by Lemma 3, � j (see

(3.1)) defines a surface which implicit equation has the form of Hj in (3.2). Since Sa is
dominant in K

2, A j,0 does not vanish at � j and, hence, T is well-defined (see (3.3)). Now,
using that Hj (� j ) = 0, we get that T (Sa) = Pa . Furthermore, since the degree is multi-
plicative under composition, we have that degMap(Q) = 1, and henceQ is a birational affine
parameterization of S . Thus, (1) holds.

(1) implies (2) follows from Lemma 1.
Note that the second part of the theorem, statements (a) and (b), has been shown to be

consequence of (2). 	

Let

Ud := {(s1, s2, s3) ∈ V 3
d | gcd(s1, s2, s3) = 1}. (3.4)

Note that every s ∈ Ud defines a rational map, namely, S : P2(K) ��� P
2(K); t �→ s( t )

with deg(S) = d . Conversely, every rational map S = (s1 : s2 : s3) : P2(K) ��� P
2(K),

with deg(S) = d , defines an element in Ud , namely (s1, s2, s3). So, we will identify the
rational maps of P2(K) with the elements in Ud for the suitable d .

Based on the previous result we introduce the following notion.

Definition 1 Let P be as in (1.1). We define the birational reparameterization solution
space, of a fixed degree d , and we denote it by SolSpaced(P), as a subset of Ud (see
(3.4)) such that each S ∈ SolSpaced(P) defines a rational map of P2(K) that satisfies
statement 2 in Theorem 1. Let SolSpace(P) be the union of all SolSpaced(P).
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Remark 2 Note that

1. by Castelnuovo’s Theorem, SolSpace(P) �= ∅, and
2. for every S ∈ SolSpace(P) there exists a rational surface parameterization Q such that

(Q,S) solves the reparameterization problem for P . For deriving Q from S and P see
the next section.

4 The computational approach: the general case

The computational strategy will be to determine algorithmically d , as well as SolSpaced(P),
such that SolSpaced(P) �= ∅. More precisely, let us assume that we are able to determine
SolSpaced(P) �= ∅ for such d . Then, for S ∈ SolSpaced(P), we implicitize the surface
parameterizations �1,�2,�3 (see Theorem 1 (3.1)) to get Q as in Theorem 1 (b). Now,
(Q,S) is a solution of the birational reparameterization for P .

4.1 On the generic fiber ofP

In order to compute SolSpaced(P) we need to determine degMap(P) and moreover the
generic fiber Fg(P). Using Sect. 2.1, we may work affinely. So, let Pa be the affine param-
eterization obtained from P as in (2.1). Let Pa(t1, t2) be expressed as

Pa(t1, t2) =
(
P1(t1, t2)

Q1(t1, t2)
,
P2(t1, t2)

Q2(t1, t2)
,
P3(t1, t2)

Q3(t1, t2)

)
(4.1)

where the rational functions are in reduced form. We show how to describe the points of
Fg(Pa). We consider the polynomials

Gi = Pi (h1, h2)Qi (t1, t2) − Pi (t1, t2)Qi (h1, h2), i ∈ {1, 2, 3}. (4.2)

Furthermore, letW := w ·lcm(Q1, Q2, Q3)−1wherew is a new variable. Also, we consider
the projection

π : K(h1, h2)
3 → K(h1, h2)

2

(t1, t2, w) �→ (t1, t2)
.

Then, we have the following lemma.

Lemma 4 Fg(Pa) = π(V
K(h1,h2)

(G1,G2,G3,W )).

Proof Let A := lcm(Q1, Q2, Q3) and W := V
K(h1,h2)

(G1,G2,G3,W ).

Let α ∈ Fg(Pa) ⊂ K(h1, h2)
2
. Then Pa(α) = Pa(h1, h2). Furthermore, Pa(α) is well

defined and hence A(α) �= 0. Therefore, (α, 1/A(α)) ∈ W . So, π((α, 1/A(α))) = α ∈
π(W ) ⊂ π(W ).

Conversely, let (a, b, c) ∈ W . Then Gi (h1, h2, a, b) = 0 for all i ∈ {1, 2, 3}, and
c A(a, b) = 1. So, A(a, b) �= 0. Therefore, Pa(a, b) is well defined and Pa(a, b) =
P(h1, h2). Thus, (a, b) = π(a, b, c) ∈ Fg(Pa). 	


Therefore, using the elimination property of Gröbner bases and the Closure Theorem (see
e.g. [2] page 125, and [18] page 192), if ˜K is a Gröbner basis, w.r.t. lexicographic ordering
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with t1 < t2 < w, of the ideal J̃ :=< G1,G2,G3,W >⊂ K(h1, h2)[t1, t2, w], and let
J := ˜K ∩ K(h1, h2)[t1, t2]. Then

V
K(h1,h2)

(J) = Fg(Pa). (4.3)

Furthermore, if ˜K is minimal then ˜K = {k1,1, k2,1, . . . , k2,k2 , k3,1, . . . , k3,k3} where k1,1 ∈
K(h1, h2)[t1], k2, j ∈ K(h1, h2)[t1, t2] and k3, j ∈ K(h1, h2)[t1, t2, w] (see e.g. [18] page
194). Thus, Fg(Pa) is described by

K = {k1,1, k2,1, . . . , k2,k2}. (4.4)

That is

Fg(Pa) = V(K ) = {α ∈ K(h1, h2)
2 | k(α) = 0 for k ∈ K }. (4.5)

On the other hand, since Fg(Pa) is zero-dimensional, we may assume, maybe after a
linear change of {t1, t2}, that J is in general position w.r.t. t1 (see [18] page 194). So, if we
work with

√
J, we may apply the Shape Lemma (see [18] page 195). More precisely, the

normal reduced Gröbner basis of
√
J, w.r.t. the lexicographic order with t1 < t2, is of the

form

G := {u(t1), t2 − v(t1)}, (4.6)

with u square-free and deg(v) < deg(u). Therefore

Fg(Pa) = V(G ) = {α := (α1, v(α1)) ∈ K(h1, h2)
2 | u(α1) = 0}. (4.7)

In order to determine
√
J we can, for instance, use Seidenberg Lemma (see e.g. [15] or

[5]). More precisely, if J ∩ K(h1, h2)[t1] =< f (t1) > and J ∩ K(h1, h2)[t2] =< g(t2) >,
then (see (4.5))

√
J =< k1,1, k2,1, . . . , k2,k2 , f̃ , g̃ >, (4.8)

where f̃ = f /gcd( f , f ′) and g̃ = g/gcd(g, g′).
In [10], the authors introduce two polynomials whose roots describe, respectively, the

coordinates of the elements in Fg(Pa), and hence its degree provides degMap(P). More
precisely, let us assume that {∇P1/Q1,∇P2/Q2} are linearly independent as vectors in the
K vector space K(t1, t2)2, see Remark 1. Observe that this condition can be achieved after a
(x, y, z)-affine change of coordinates. In addition degMap will not change andFg(Pa) will
be obtained applying the corresponding inverse of the linear transformation. So, we assume
that Pa does indeed satisfy the hypothesis. In this situation, let

{
R̂1(h1, h2, t1) = PrimPart{h1,h2}(ContentZ (Rest2(G1,G2 + ZG3)))

R̂2(h1, h2, t2) = PrimPart{h1,h2}(ContentZ (Rest1(G1,G2 + ZG3))).
(4.9)

We observe that computing PrimPart{h1,h2} in (4.9) we are avoiding the base points of P( t ).
So, the polynomials above can be simplified by also avoiding the base points of P(h). That
is, we introduce the polynomials

{
R1(h1, h2, t1) = PrimPartt1(R̂1)

R2(h1, h2, t2) = PrimPartt2(R̂2).
(4.10)

Then, it holds that

degMap(P) = degt1(R1) = degt2(R2). (4.11)
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Moreover, if R1, R2 are considered as polynomials in K(h1, h2)[t1],K(h1, h2)[t2], respec-
tively, the roots of R1 (resp. of R2) are the first coordinates (resp. second coordinates) of
the elements in the fiber. In addition, note that f and g involved in (4.8) are R1, and R2,
respectively.

4.2 On the generic fiber ofS

The reasonings in Sect. 4.1 can be analogously performed to compute the generic fiber of
rational maps from P

2(K) onto P
2(K). In the sequel, we see how this can be reduced to the

case in Sect. 4.1. More precisely, let S = (s1 : s2 : s3) : P2(K) → P
2(K) be a generically

finite rational map, where we assume w.o.l.g. that s3 is not zero. We associate to S the map

S̃ : P2(K) ��� P
3(K)

t �−→ (s1( t ) : s2( t ) : s3( t ) : s3( t )).
Observe that S̃(P2(K)) is dense in {(x1 : · · · : x4) ∈ P

3(K) | x3 = x4}. So, S̃ parameterizes
the plane x3 = x4. Let (see (2.1))

S̃a =
(
A1(t1, t2)

B1(t1, t2)
,
A2(t1, t2)

B2(t1, t2)
, 1

)
,

where the fractions are in reduced form. Let us check that S̃a satisfies the hypothesis
in Sect. 1.2. in [10]; see Remark 1. We need to ensure the hypothesis requiring that
{∇(A1/B1),∇(A2/B2)} are linearly independent as vectors in theK vector spaceK(t1, t2)2.
However, if they were linearly dependent, reasoning as in Sect. 4.1, we would get that the
image of S would be included in a line which is a contradiction with the fact that S(P2(K))

is dense in P
2(K). In this situation, we consider the polynomials

G̃i := Ai (h1, h2)Bi (t1, t2) − Ai (t1, t2)Bi (h1, h2), i ∈ {1, 2}. (4.12)

and
{
R̃1 = PrimPartt1(PrimPart{h1,h2}(Rest2(G̃1, G̃2))),

R̃2 = PrimPartt2(PrimPart{h1,h2}(Rest1(G̃1, G̃2))).
(4.13)

Then

degMap(S) = degt1(R̃1) = degt2(R̃2).

4.3 On the degree ofS

The first problem that we find, in order to determine the solution space, is to know d such
that SolSpaced(P) �= ∅.

Lemma 5 Let S ∈ SolSpace(P) (see Remark 2 (2)) then

deg(S) = √
degMap(P) + mult(B(S)) ≥ �√degMap(P)�.

Proof By Theorem 7 (1) in [3], deg(S)2 = degMap(S) + mult(B(S)). Since S ∈
SolSpace(P), by Remark 2 (2), there existsQ proper such thatQ(S) = P . So, degMap(S) =
degMap(P) and hence the statement follows. 	
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Observe that theminimal expecteddegreeof an element inSolSpace(P) is �√degMap(P)�
which holds when B(S) = ∅. In the next lemma, we analyze the case where the birational
parameterization Q has empty base locus.

Lemma 6 Let us assume that S admits a birational parameterization without base points.
Then, there exists S ∈ SolSpace(P) such that

deg(S) = deg(P)
√
deg(S )

.

Proof LetQ be a birational parameterization ofS such thatB(Q) = ∅. Then, (Q,Q−1 ◦P)

solves the birational reparameterization problem. So, by Theorem 1, S := Q−1 ◦ P ∈
SolSpace(P). Moreover, by Corollary 10 in [3], deg(P) = deg(Q)deg(S). Now, by Theorem
3 in [3] applied to Q, deg(Q) = √

deg(S ). This concludes the proof. 	


4.4 General algorithm

In this subsection, combining all previous results and ideas, the general algorithm is derived.
For this purpose, let Vd be as in (1.2).

In the sequel, let us denote by

Ed(
, t ) ∈ K[λ, t ] (4.14)

the generic t –homogeneous polynomial in Vd , where 
 is the tuple of undetermined coef-
ficients.

First, we outline the auxiliary Algorithm 1 that computes the set SolSpaced . In the sequel,
we describe the basic ideas of our approach. We will see that SolSpaced is an open subset,
maybe empty, of a closed subset W of Ud (see (3.4)). For this purpose, let

Ei
d := E(
i , t ), i ∈ {1, 2, 3} (4.15)

where 
1,
2,
3 are different tuples of undetermined coefficients; we will use the notation

 := (
1,
2,
3). We will findU1, . . . ,Ur ∈ K[
1,
2,
3] and a variety W ⊂ Ud such
that U = W \∪r

i=1V(Ui ). The reasoning is as follows. E := (E1
d : E2

d : E3
d) defines a generic

rational map from P
2(K) into P

2(K). We look for those E such that Fg(E) = Fg(P). To
achieve this, we will ensure that Fg(P) ⊂ Fg(E) and that degMap(P) = degMap(E).

First let U1 contain the parameters in 
3; this guarantees that for E ∈ Ud\V(U1), E3
d is

not zero. We need to impose first that Fg(P) ⊂ Fg(E). But, since E3
d �= 0, according to

Sect. 2.1, it is enough to ask that Fg(Pa) ⊂ Fg(Ea), where eid := Ei
d(
i , t1, t2, 1) and

Ea :=
(
e1d
e3d

,
e2d
e3d

)

: A2(K) ��� A
2(K). (4.16)

Let U2 be the set containing the conditions on the parameters 
 that ensure that the rank of
the Jacobian matrix of Ea is smaller than 2; this guarantees that for E ∈ Ud\ ∪2

i=1 V(Ui ) the
hypothesis in Sect. 1.2. in [10] on the linear independency is satisfied (see Remark 1) and
that Ea is dominant. We observe that the denominator of the determinant Jacobian is a power
of e3d and, because of U1, the determinant of the Jacobian is always well-defined. Thus, in
U2, we only need to collect the coefficient w.r.t. {t1, t2} of the numerator of the determinant
of the Jacobian. Now, we introduce the polynomials [(compare to (4.12)]

G̃E
i := eid(
i , h1, h2)e

3
d(
3, t1, t2) − eid(
i , t1, t2)e

3
d(
3, h1, h2), i ∈ {1, 2},
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(4.17)

and we require that G̃E
1 (
1,
3, h1, h2, α) = 0 for every α ∈ Fg(Pa). We observe that

(h1, h2) ∈ Fg(Pa) and that G̃E
1 (
1,
3, h1, h2, h1, h2) = 0. So, we may work with

Fg(Pa)\{(h1, h2)}. Furthermore,Fg(Pa) = V(G ), see (4.7), where G is as in (4.6). There-
fore, let us replace the univariate polynomial u(t1) of G , that is the square-free part of R1

(see (4.10)), by

u∗(t1) := u(t1)/(t1 − h1)

in G ; let

G ∗ := {u∗(t1), t2 − v(t1)} (4.18)

be the resulting set. Then, G ∗ is still a Gröbner basis and

Fg(Pa)\{(h1, h2)} = V(G ∗). (4.19)

Thus, to achieve the condition above, one has to require the normal form Ni of G̃E
i , i ∈ {1, 2},

w.r.t. G ∗ to be zero. We have the following result.

Lemma 7 Let Ni be the normal form of G̃E
i , i ∈ {1, 2}, w.r.t. G ∗. It holds that

1. Ni , i ∈ {1, 2}, is the remainder of the division of G̃E
i (t1, v(t1)) by u∗(t1) w.r.t. t1.

2. For E ∈ V 3
d \ ∪2

i=1 V(Ui ), N1, N2 specializes properly.

Proof It follows from the special form of the Gröbner basis G ∗, and from the fact that the
polynomials in G ∗ does not depend on 
i 	


If N1 is not zero and does not depend on 
1,
3, then there exists no element in E ∈
Ud\∪2

i=1V(Ui ) satisfying Theorem 1 (2). So, let us assume that N1 does depend on
1,
3.
The condition N1 = 0 provides a finite set C1,3(
1,
3) of polynomials in the parameters

1,
3, namely the non-zero coefficients w.r.t. {h1, h2} of the coefficients w.r.t. {t1, t2} of N1.
LetC2,3(
2,
3) the corresponding set to N2. By symmetryC2,3(
2,
3) = C1,3(
2,
3).

As a consequence, we have the following result.

Lemma 8 Let C1,3 and Ui be as above. For every (E1 : E3), (E2 : E3) ∈ V(C1,3) such that
E := (E1 : E2 : E3) /∈ ∪2

i=1V(Ui ) it holds that Fg(P) ⊂ Fg(E).

We observe that the polynomials in C1,2 are easy to handle.

Lemma 9 The polynomials in C1,3 are bilinear forms in the undetermined parameters 
1

and 
3.

Proof The result follows taking into account the reduction process for computing the normal
form, that GE

1 is bilinear in the parameters 
1,
3, and that no polynomial in G ∗ depends
on 
1,
3. 	


In this situation, solving the algebraic system of bilinear forms {h(
1,
3) = 0}h∈C1,3

yields in general to a finite set of (parametric) solutions which provides a description, by
means of rational generic elements, on the irreducible components of V(C1,3). In this case,
the denominators of each generic point will be included in the set U2; or equivalently the
condition requiring that the projective point does not collapse to the zero tuple. Now, for
every generic solution (E1, E3) of V(C1,3), let v = (E1 : E2 : E3) where E2 is the result
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of substituting in E1 the parameters 
1 by 
2. We denote by V1,2,3, the set of all points
constructed in this way.

Let v ∈ V1,2,3. We look for the conditions such that degMap(P) = degMap(E). For this
we use Sect. 4.2. More precisely, let (see (4.17))

ĞE
i := G̃E

i ( v , h1, h2, t1, t2), i ∈ {1, 2}, (4.20)

and

R̆E
1 = PrimPart{t1,t2}(PrimPart{h1,h2}(Rest2(ĞE

1 , ĞE
2 ))). (4.21)

Let R̆E
1 be expressed as

R̆E
1 =

∑
ci (
1,
2,
3, h1, h2)t

i . (4.22)

Since degMap(E) = degt1(R̆
E
1 ), let C∗ be the set of all non-zero coefficients of ci w.r.t.

{h1, h2} and i > degMap(P). In addition, let U3 be the set of all non-zero coefficients of
cdegMap(P) w.r.t. {h1, h2}. Then, we have the following result.

Theorem 2 Let C∗ and Ui be as above. For every E ∈ V(C∗)\ ∪3
i=1 V(Ui ) it holds that

Fg(P) = Fg(E).

In the following algorithm, we summarize all these ideas.

Algorithm 1 SolSpace

Require: The set of polynomials G ∗ := {u∗(t1), t2 − v(t1)} as in (4.18), and a positive
integer d ≥ �√degt1(R1)�.

Ensure: Either A pair of sets [C, [U1,U2,U3]] as in Theorem 2 or the empty set.
1: Set C := ∅, Ui = ∅ for i = 1, 2.
2: Let Ed(
, t ) be as in (4.14). Set Ei

d := Ed(
i , t ), i ∈ {1, 2, 3}, where 
i is a tuple of
undetermined coefficients.

3: Include in U1 the entries of 
3, and in U2 the non-zero coefficients w.r.t. {t1, t2} of the
determinant of the Jacobian of Ea (see (4.16)).

4: if U2 contains a non-zero constant then
5: Set U2 = {1}.
6: end if
7: Let G̃E

i be as in (4.17) for i ∈ {1, 2}.
8: Compute the normal form N1 of G̃E

1 w.r.t. G ∗ as in Lemma 7.
9: if N1 ∈ K(h1, h2)[t1, t2] \ {0} then
10: return ∅
11: end if
12: Let C1,3 be the set non-zero coefficients w.r.t. {h1, h2} of the coefficients w.r.t. {t1, t2} of

N1.
13: Solve the system of bilinear forms C1,3. Let V ⊂ V 2

d be the set of solutions.
14: For each (E1, E3) ∈ V , let v = (E1 : E2 : E3) where E2 is the result of substituting in

E1 the parameters 
1 by 
2. Let V1,2,3 be the set of all points constructed in this way.
15: Delete from V1,2,3 those solutions vanishing all polynomials in, at least, one of the sets

Ui , i = 1, 2. Let V1,2,3 be the resulting set.
16: if V1,2,3 = ∅ then
17: return ∅
18: end if
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19: Set C = ∅ and U3 = ∅.
20: for each irreducible component of V1,2,3, choose v a generic element and do
21: Compute ĞE

i := G̃E
i ( v , h1, h2, t1, t2) for i = 1, 2 and R̆E

1 as in (4.21).
22: if degt1(R̆

E
1 ) < degt1(R1) then

23: go to Step 20
24: else
25: Let C∗ be the set of all non-zero coefficients of ci in (4.22), w.r.t. {h1, h2}, and

i > degt1(R1).
26: if an element in C∗ is a non-zero constant then
27: go to Step 20
28: else
29: Replace C by C ∪ C∗.
30: Let U∗ be the set of all non-zero coefficients of cdegt1 (R1) w.r.t. {h1, h2}.
31: if U∗ contains a non-zero constant then
32: Set U3 = {1}.
33: else
34: Replace U3 by U3 ∪U∗.
35: end if
36: end if
37: end if
38: end for
39: Solve C . Let V ⊂ V 3

d be the set of solutions.
40: Delete from V those solutions vanishing all polynomials in, at least, one of the sets Ui .

Let V be the resulting set.
41: return [C,U := [U1,U2,U3]].

Finally, the general algorithm is derived. We assume that the algorithm in [8] has been
applied and has not provide an answer to the problem.

Algorithm 2 General Algorithm

Require: P a rational surface parameterization as in (1.1).
Ensure: S and Q a solution to the birational reparameterization problem for P .
1: Compute � = �√degMap(P)� (see (4.11) and Lemma 5).
2: Compute G ∗ as in (4.18).
3: for d ≥ � do
4: Apply Algorithm 1 with input G ∗ and d .
5: if the output of Algorithm 1 is the empty set then
6: set d := d + 1 and go to Step 3
7: else
8: Let [C, [U1,U2,U3]] be the output of Algorithm 1.
9: Find v ∈ V(C) \ ∪3

i=1V(Ui ).
10: S := (E1

d( v ) : E2
d( v ) : E3

d( v )) see (4.15).
11: for j ∈ {1, 2, 3} do
12: Determine � j see (3.1).
13: Compute the implicit equation Hj := A j,1(x, y) − A j,0(x, y)z of the surface

parameterization � j .
14: end for
15: Set Q := (A1,1/A1,0, A2,1/A2,0, A3,1/A3,0).
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16: end if
17: return [S,Q].
18: end for

We finish this section with an example where we illustrate how the general algorithm
works. The interested reader may find, at https://jct.web.uah.es/research.html (Software sec-
tion below), a Maple 2021 sheet where all details on the computation of this example can be
followed.

Example 1 Let P( t ) = (t31 + t2t23 : t31 : t2t23 : t33 ) be the input of Algorithm 2; that
is, it is a rational projective parameterization of an algebraic surface S as in (1.1). The
parameterization is quite simple and one could implicitize and compute a proper rational
parameterization. Nevertheless, let us use this parameterization to illustrate carefully Algo-
rithm 2 and Algorithm 1. For this purpose, in Steps 1 and 2 of Algorithm 2, we first compute
� = √

degMap(P) = √
3 and the set of polynomials

G ∗ := {h21 + h1t1 + t21 , t2 − h2}
as in (4.18). Thus, u∗(t1) = h21 + h1t1 + t21 and v(t1) = h2.

The for-loop in Step 3 starts with d = 2. We apply Algorithm 1 to G ∗ and d = 2:
Algorithm 1 starts.
Step 1. C = U1 = U2 = ∅.
Step 2. Ei

2(
i , t1, t2) := λi,1t21 +λi,2t22 +λi,3t1t2+λi,4t1t3+λi,5t2t3+λi,6t23 , i ∈ {1, 2, 3}.
Steps 3–6. U1 = {λ3,1, . . . , λ3,6}. For determining U2, let

Ea =
(
e12
e32

,
e22
e32

)

,

where ei2 = Ei
2(t1, t2, 1) for i = 1, 2, 3. Let T be the determinant of the Jacobian of Ea w.r.t.

{t1, t2}. Then, U2 collects the coefficients of the numerator of T w.r.t. {t1, t2}. In this case,
U2 consists in ten 3-linear polynomials in λ1,i , λ2, j , λ3,k .
Step 7. Let G̃E

i = ei2(
i , h1, h2)e32(
3, t1, t2) − e32(
3, h1, h2)ei2(
i , t1, t2), i = 1, 2, 3.
Step 8. We get that the normal form N1of G̃E

1 w.r.t G� is
N1 = −h31h2λ1,1λ3,3+h31h2λ1,3λ3,1−2h21h

2
2λ1,1λ3,2+2h21h

2
2λ1,2λ3,1−2h21h2λ1,1λ3,3t1+

2h21h2λ1,3λ3,1t1 + h1h32λ1,2λ3,3 − h1h32λ1,3λ3,2 − h1h22λ1,1λ3,2t1 + h1h22λ1,2λ3,1t1 −
h32λ1,2λ3,3t1 + h32λ1,3λ3,2t1 − h31λ1,1λ3,4 + h31λ1,4λ3,1 − 2h21h2λ1,1λ3,5 + 2h21h2λ1,5λ3,1 −
2h21λ1,1λ3,4t1+2h21λ1,4λ3,1t1+h1h22λ1,2λ3,4−h1h22λ1,3λ3,5−h1h22λ1,4λ3,2+h1h22λ1,5λ3,3−
h1h2λ1,1λ3,5t1+h1h2λ1,5λ3,1t1−h22λ1,2λ3,4t1+h22λ1,3λ3,5t1+h22λ1,4λ3,2t1−h22λ1,5λ3,3t1−
2h21λ1,1λ3,6 +2h21λ1,6λ3,1 −h1h2λ1,3λ3,6 −h1h2λ1,4λ3,5 +h1h2λ1,5λ3,4 +h1h2λ1,6λ3,3 −
h1λ1,1λ3,6t1 + h1λ1,6λ3,1t1 + h2λ1,3λ3,6t1 + h2λ1,4λ3,5t1 − h2λ1,5λ3,4t1 − h2λ1,6λ3,3t1 −
h1λ1,4λ3,6 + h1λ1,6λ3,4 + λ1,4λ3,6t1 − λ1,6λ3,4t1
Step 9–11. Since N1 /∈ K(h1, h2)[t1, t2]\{0}, we continue in Step 12.
Step 12. We have that
C1,3 = {−2λ1,1λ3,2+2λ1,2λ3,1,−λ1,1λ3,2+λ1,2λ3,1,−2λ1,1λ3,3+2λ1,3λ3,1,−λ1,1λ3,3+
λ1,3λ3,1,−2λ1,1λ3,4+2λ1,4λ3,1,−λ1,1λ3,4+λ1,4λ3,1,−2λ1,1λ3,5+2λ1,5λ3,1,−λ1,1λ3,5+
λ1,5λ3,1,−2λ1,1λ3,6 + 2λ1,6λ3,1,−λ1,1λ3,6 + λ1,6λ3,1,−λ1,2λ3,3 + λ1,3λ3,2, λ1,2λ3,3 −
λ1,3λ3,2,−λ1,4λ3,6 + λ1,6λ3,4, λ1,4λ3,6 − λ1,6λ3,4,−λ1,2λ3,4 + λ1,3λ3,5 + λ1,4λ3,2 −
λ1,5λ3,3, λ1,2λ3,4 − λ1,3λ3,5 − λ1,4λ3,2 + λ1,5λ3,3,−λ1,3λ3,6 − λ1,4λ3,5 + λ1,5λ3,4 +
λ1,6λ3,3, λ1,3λ3,6 + λ1,4λ3,5 − λ1,5λ3,4 − λ1,6λ3,3}
is the set non-zero coefficients w.r.t. {h1, h2} of the coefficients w.r.t. {t1, t2} of N1.
Step 13. We solve the system of bilinear forms C1,3. We get V as the set solutions
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{{λ1,1 = 0, λ1,2 = λ1,2, λ1,3 = 0, λ1,4 = 0, λ1,5 = λ1,5, λ1,6 = λ1,6, λ3,1 = 0, λ3,2 =
λ3,2, λ3,3 = 0, λ3,4 = 0, λ3,5 = λ3,5, λ3,6 = λ3,6}, {λ1,1 = 0, λ1,2 = λ1,2, λ1,3 =
λ1,3, λ1,4 = λ1,4, λ1,5 = λ1,5, λ1,6 = −λ1,4

(
λ1,2λ1,4 − λ1,3λ1,5

)
/λ21,3, λ3,1 = 0, λ3,2 =

0, λ3,3 = 0, λ3,4 = λ3,4, λ3,5 = λ1,2λ3,4/λ1,3, λ3,6 = −λ3,4
(
λ1,2λ1,4 − λ1,3λ1,5

)
/λ21,3},{λ1,1 = 0, λ1,2 = λ1,3λ3,2/λ3,3, λ1,3 = λ1,3, λ1,4 = λ1,4, λ1,5 = −λ1,3λ3,2λ3,4 − λ1,3λ3,3

λ3,5 − λ1,4λ3,2λ3,3/λ
2
3,3, λ1,6 = −λ1,4

(
λ3,2λ3,4 − λ3,3λ3,5

)
/λ23,3, λ3,1 = 0, λ3,2 =

λ3,2, λ3,3 = λ3,3, λ3,4 = λ3,4, λ3,5 = λ3,5, λ3,6 = −λ3,4
(
λ3,2λ3,4 − λ3,3λ3,5

)
/λ23,3},{λ1,1 = λ1,1, λ1,2 = λ1,2, λ1,3 = 0, λ1,4 = 0, λ1,5 = λ1,5, λ1,6 = λ1,6, λ3,1 = λ3,1, λ3,2 =

λ1,2λ3,1/λ1,1, λ3,3 = 0, λ3,4 = 0, λ3,5 = λ1,5λ3,1/λ1,1, λ3,6 = λ1,6λ3,1/λ1,1}, {λ1,1 =
λ1,1, λ1,2 = λ1,2, λ1,3 = λ1,3, λ1,4 = λ1,4, λ1,5 = λ1,5, λ1,6 = λ1,6, λ3,1 =
0, λ3,2 = 0, λ3,3 = 0, λ3,4 = 0, λ3,5 = 0, λ3,6 = 0}, {λ1,1 = λ1,3λ3,1/λ3,3, λ1,2 =
λ1,3λ3,2/λ3,3, λ1,3 = λ1,3, λ1,4 = λ1,3λ3,4/λ3,3, λ1,5 = λ1,3λ3,5/λ3,3, λ1,6 = λ1,3λ3,6/

λ3,3, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 = λ3,3, λ3,4 = λ3,4, λ3,5 = λ3,5, λ3,6 = λ3,6}, {λ1,1 =
λ1,4λ3,1/λ3,4, λ1,2 = λ1,4λ3,2/λ3,4, λ1,3 = 0, λ1,4 = λ1,4, λ1,5 = λ1,4λ3,5/λ3,4, λ1,6 =
λ1,4λ3,6/λ3,4, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 = 0, λ3,4 = λ3,4, λ3,5 = λ3,5, λ3,6 = λ3,6}}.
V ⊂ Vd × Vd contains 7 generic solutions.
Step 14 Replicating the 
i -elements in V we construct V1,2,3.
Step 15–18. We delete from V1,2,3 those solutions vanishing all polynomials in, at least,
one of the sets Ui , i = 1, 2. We get that the resulting set is an empty set. So, the output of
Algorithm 1 is the empty set. Therefore, we set d = 3, and we go to Step 3 in Algorithm 1
to repeat the above steps.
Algorithm 1 starts.
Step 1. This step was already performed in the first iteration of Algorithm 1.
Step 2. Let Ei

3 := λi,1t3t21 + λi,2t32 + λi,3t22 t3 + λi,4t2t3t1 + λi,5t23 t1 + λi,6t2t23 + λi,7t33 +
λi,8t31 + t2λi,9t21 + λi,10t22 t1, i ∈ {1, 2, 3}.
Step 3–6. U1 = {λ3,1, . . . , λ3,10} and reasoning as above U2 consists in 28 3-linear polyno-
mials in λ1,i , λ2, j , λ3,k .
Step 7. Let G̃E

i = ei3(
i , h1, h2)e33(
3, t1, t2) − e33(
3, h1, h2)ei3(
i , t1, t2), i = 1, 2, 3.
Step 8–11. We compute the normal form N1 of G̃E

1 w.r.t G� and we check that N1 /∈
K(h1, h2)[t1, t2]\{0}.
Step 12. We have that
C1,3 = {−2λ1,1λ3,5+2λ1,5λ3,1,−λ1,1λ3,5+λ1,5λ3,1,−2λ1,1λ3,7+2λ1,7λ3,1,−λ1,1λ3,7+
λ1,7λ3,1,−2λ1,1λ3,8 + 2λ1,8λ3,1,−λ1,1λ3,8 + λ1,8λ3,1, λ1,2λ3,9 − λ1,9λ3,2, 2λ1,2λ3,9 −
2λ1,9λ3,2,−λ1,2λ3,10 + λ1,10λ3,2, λ1,2λ3,10 − λ1,10λ3,2,−λ1,4λ3,8 + λ1,8λ3,4, λ1,4λ3,8 −
λ1,8λ3,4,−λ1,5λ3,7+λ1,7λ3,5, λ1,5λ3,7−λ1,7λ3,5,−λ1,5λ3,8+λ1,8λ3,5, λ1,5λ3,8−λ1,8λ3,5,

λ1,8λ3,9 − λ1,9λ3,8, 2λ1,8λ3,9 − 2λ1,9λ3,8,−λ1,8λ3,10 + λ1,10λ3,8, λ1,8λ3,10 − λ1,10λ3,8,

−2λ1,9λ3,10 + 2λ1,10λ3,9,−λ1,9λ3,10 + λ1,10λ3,9,−2λ1,1λ3,2 + 2λ1,2λ3,1 + 2λ1,3λ3,9 −
2λ1,9λ3,3,−λ1,1λ3,2 +λ1,2λ3,1 +λ1,3λ3,9 −λ1,9λ3,3,−2λ1,1λ3,3 +2λ1,3λ3,1 +2λ1,6λ3,9 −
2λ1,9λ3,6,−λ1,1λ3,3 +λ1,3λ3,1 +λ1,6λ3,9 −λ1,9λ3,6,−2λ1,1λ3,4 +2λ1,4λ3,1 +2λ1,5λ3,9 −
2λ1,9λ3,5,−λ1,1λ3,4+λ1,4λ3,1+λ1,5λ3,9−λ1,9λ3,5,−2λ1,1λ3,10+2λ1,4λ3,9−2λ1,9λ3,4+
2λ1,10λ3,1,−λ1,1λ3,10+λ1,4λ3,9−λ1,9λ3,4+λ1,10λ3,1,−2λ1,1λ3,6+2λ1,6λ3,1+2λ1,7λ3,9−
2λ1,9λ3,7,−λ1,1λ3,6 + λ1,6λ3,1 + λ1,7λ3,9 − λ1,9λ3,7,−λ1,2λ3,4 − λ1,3λ3,10 + λ1,4λ3,2 +
λ1,10λ3,3, λ1,2λ3,4 + λ1,3λ3,10 − λ1,4λ3,2 − λ1,10λ3,3,−λ1,4λ3,7 − λ1,5λ3,6 + λ1,6λ3,5 +
λ1,7λ3,4, λ1,4λ3,7 + λ1,5λ3,6 − λ1,6λ3,5 − λ1,7λ3,4,−λ1,2λ3,5 − λ1,3λ3,4 + λ1,4λ3,3 +
λ1,5λ3,2 − λ1,6λ3,10 + λ1,10λ3,6, λ1,2λ3,5 + λ1,3λ3,4 − λ1,4λ3,3 − λ1,5λ3,2 + λ1,6λ3,10 −
λ1,10λ3,6,−λ1,3λ3,5 + λ1,4λ3,6 + λ1,5λ3,3 − λ1,6λ3,4 − λ1,7λ3,10 + λ1,10λ3,7, λ1,3λ3,5 −
λ1,4λ3,6 − λ1,5λ3,3 + λ1,6λ3,4 + λ1,7λ3,10 − λ1,10λ3,7}.
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Step 13.We solve the system of bilinear formsC1,3. We get V as the set solutions. It contains
21 generic solutions.
Step 14 Replicating the 
i -elements in V we construct V1,2,3.
Step 15–18.We delete from V1,2,3 those solutions vanishing all polynomials in, at least, one
of the sets Ui , i = 1, 2. We get that V1,2,3 only contains one solution, namely,
V1,2,3 = {λ1,1 = 0, λ1,2 = λ1,2, λ1,3 = λ1,3, λ1,4 = 0, λ1,5 = 0, λ1,6 = λ1,6, λ1,7 =
λ1,7, λ1,8 = λ1,8, λ1,9 = 0, λ1,10 = 0, λ3,1 = 0, λ3,2 = λ3,2, λ3,3 = λ3,3, λ3,4 = 0, λ3,5 =
0, λ3,6 = λ3,6, λ3,7 = λ3,7, λ3,8 = λ3,8, λ3,9 = 0, λ3,10 = 0}
Step 19. We initialize C := ∅ and U3 := ∅.
Step 20. Since #(V1,2,3) = 1 the for-loop consists only in one iteration.
Steps 21–24. We compute the specializations ĞE

1 , ĞE
2 as well as the resultant R̆E

1 .
degt1(R̆

E
1 ) = 9. So we go to Step 26.

Steps 25–29. We compute C∗ (which is C in this case) that consists in 21 polynomials
Steps 30–38. U3 consists in 18 polynomials.
Step 39. We solve C∗ and we get V with 12 generic solutions.
Steps 40. Filtering the solutions withU1,U2,U3 we get that the new V contains 3 solutions,
namely
V = {{λ1,1 = λ1,1, λ1,2 = λ1,2, λ1,3 = λ1,10λ2,3

λ2,10
, λ1,4 = λ1,10λ2,4

λ2,10
, λ1,10 = λ1,10, λ2,1 =

λ2,1, λ2,2 = λ2,2, λ2,3 = λ2,3, λ2,4 = λ2,4, λ2,10 = λ2,10, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 =
0, λ3,4 = 0, λ3,10 = 0}, {λ1,1 = λ1,1, λ1,2 = λ1,2, λ1,3 = λ1,3, λ1,4 = λ1,4, λ1,10 =
λ1,10, λ2,1 = λ2,1, λ2,2 = λ2,2, λ2,3 = 0, λ2,4 = 0, λ2,10 = 0, λ3,1 = λ3,1, λ3,2 =
λ3,2, λ3,3 = 0, λ3,4 = 0, λ3,10 = 0}, {λ1,1 = λ1,1, λ1,2 = λ1,2, λ1,3 = λ1,10λ3,3

λ3,10
, λ1,4 =

λ1,10λ3,4
λ3,10

, λ1,10 = λ1,10, λ2,1 = λ2,1, λ2,2 = λ2,2, λ2,3 = λ2,10λ3,3
λ3,10

, λ2,4 = λ2,10λ3,4
λ3,10

, λ2,10 =
λ2,10, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 = λ3,3, λ3,4 = λ3,4, λ3,10 = λ3,10}}
Back to Algorithm 2 at Step 9.
At this step of the algorithm one take a particular solution in the V (see above). In first generic
point of V we take, for instance,
{λ1,1 = 1, λ1,2 = −1, λ1,10 = −1, λ2,1 = −1, λ2,2 = −3, λ2,3 = 2, λ2,4 = −2, λ2,10 =
−2, λ3,1 = −2, λ3,2 = 0},
which produces the solution

Sa =
(
1

2
t31 + 1

2
t2 − 1

2
+ 1

2
t32 − 1

2
t22 , t31 + t32 − t22 + 3

2
t2 + 1

2

)

and

Qa = (64t31 − 96t21 t2 + 48t22 t1 − 8t32 + 160t21 − 160t2t1 + 40t22 + 134t1 − 66t2 + 37,
64t31 − 96t21 t2 + 48t22 t1 − 8t32 + 160t21 − 160t2t1 + 40t22 + 138t1 − 68t2 + 40,
−3 − 4t1 + 2t2).

5 The computational approach: the case of empty base locus

In this section, we present some improvements to the previous general computational
approach. There are two sources of computational complication in Algorithm 2. On the
one hand, it is necessary to increase the value of the degree d until SolSpace(P)d �= ∅ (see
Algorithm 1) and, on the other hand, the dimension of the linear space can be high. To deal
with these two difficulties we introduce two additional hypotheses. More precisely, in the
sequel, we assume that the surfaceS , parameterized byP , admits a birational parameteriza-
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tionQwith empty base locus and we also assume thatP is transversal (see Sect. 2.2).Wewill
see that findingQ and its corresponding S is easier than in the general case. Indeed, Lemma
6, provides a particular value of d such that SolSpaced(P) �= ∅, and hence Algorithm 1 is
only executed once and, in Algorithm 2, the loop in Step 3 reduces to one execution.

Let us take d as in Lemma 6, and let us see that under our new hypotheses the dimension
of the solution space can be reduced. In the general case, SolSpaced(P) is constructed from
Ud imposing the condition Fg(S) = Fg(P). Below we show that Vd can be replaced by a
lower dimensional linear subsystem, generated from the base points of P (see Sect. 2.2).

Theorem 3 Let P be transversal and let Q be a birational parameterization of S such that
B(S) = ∅. Let

D :=
∑

A∈B (P)

√
mult(A,B(P))

deg(S )
A, (5.1)

and let Ld(D) be the linear system defined by the divisor D, where d is as in Lemma 6.
If (Q,S) solves the reparameterization problem for P , where S := (s1 : s2 : s3) and
deg(si ) = d, then s1, s2, s3 ∈ Ld(D).

Proof By Lemma 12, in [13], it holds thatB(S) = B(P). Furthermore, by the same lemma,
for A ∈ B(S) it holds that

mult(A,B(S)) = mult(A,B(P))

deg(S )
. (5.2)

We observe that, by Theorem 1 in [13], since P is transversal then S is also transversal. Let
V1 := x1s1 + x2s2 + x3s3, V2 := y1s1 + y2s2 + y3s3 where xi , y j are new variables. Then,
for i ∈ {1, 2, 3} and A ∈ B(S) it holds that

mult(A,C (si ))2 ≥ min{mult(A,C (si )) | i ∈ {1, 2, 3}}2
= mult(A,C (V1))2 (see Lemma 2 in [13])
= mult(A,B(S)) (S is transversal)

= mult(A,B(P))

deg(S )
(see (5.2))

Therefore,

mult(A,C (si )) ≥
√
mult(A,B(P))

deg(S )
.

Thus, since deg(si ) = d , then si ∈ Ld(D). 	

Let us define SolSpace∗

d(P) as the subset of SolSpaced(P) such that if S ∈ SolSpace∗
d(P)

then B(Q) = ∅ where Q is such that (Q,S) solves the reparameterization problem for P .
Then the following result holds.

Corollary 1 With the hypotheses of Theorem 3, it holds that if S := (s1 : s2, s3) ∈
SolSpace∗

d(P) then s1, s2, s3 ∈ Ld(D).

Now, one can proceed as in Sect. 4.4 but, instead of starting with Vd , we start withLd(D).
Therefore, the polynomial Ed (see (4.14)) is now the defining polynomial of the linear system
Ld(D).
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Let us discuss how to computationally treat (5.1). First, let us deal with B(P). We recall
that (see Sect. 2.2 and (1.1))

B(P) = C (p1) ∩ C (p2) ∩ C (p3) ∩ C (p4).

Let us decompose B(P) as

B(P) = B(P)a ∪ B(P)∞,

where B(P)a and B(P)∞ represent, respectively, the sets of affine base points and base
points at infinity. Let p(t1, t2) := gcd(p1(t1, t2, 0), . . . , p4(t1, t2, 0)). Then

B(P)∞ = {(a : b : 0) ∈ P
2(K) | p(a, b) = 0}.

For the affine base point, one may consider a minimal Gröbner basis GB (P), w.r.t. lexico-
graphic ordering with t1 < t2, of the ideal < p1(t1, t2, 1), . . . , p4(t1, t2, 1) >⊂ K[t1, t2].
Then GB (P) = {g1,1, g2,1, . . . , g2,k2}where g1,1 ∈ K[t1], g2, j ∈ K[t1, t2] (see e.g. [18] page
194). Then,

B(P)a = {(a : b : 1) ∈ P
2(K) | g(a, b) = 0 for g ∈ GB (P)}.

Alternatively, since one has to compute the intersection of finitely many plane curves, one
can approach the problem by means of resultants; see e.g. [16]. We also observe that, after a
suitable linear change of parameters t1, t2 one can proceed similarly as in Sect. 4.4 and use
the Shape Lemma.

Concerning the coefficient of the base point in the divisor in (5.1), we first recall that we
have already commented how to determine deg(S ). Furthermore, the numerators, namely,
mult(A,B(P)) can be computed by using the curves C (W1),C (W2) where (see (2.3))

W1 = x1 p1( t ) + · · · + x4 p4( t ), W2 = y1 p1( t ) + · · · + y4 p4( t )

and taking into account that

mult(A,B(P)) = multA(C (W1),C (W2)).

Moreover, since P is transversal, then

mult(A,B(P)) = mult(A,C (W1))
2.

In addition, by Proposition 2.5, in [3], it holds that

mult(A,C (W1)) = mult(A,C (W2)) = min{mult(A,C (pi )) | i ∈ {1, . . . , 4}}.
Therefore, because of the transversality,

mult(A,B(P)) = min{mult(A,C (pi )) | i ∈ {1, . . . , 4}}2.
In the following algorithm we use these ideas to derive a general algorithm when the

additional hypotheses of this section are assumed. In order to check the transversality of the
input parameterization, we refer to Algorithm 1 presented in Section 5 in [13]. In addition,
we assume that the algorithm in [8] has been applied and has not provided an answer to the
problem.
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Algorithm 3 Second Main Algorithm

Require: P a transversal rational surface parameterization as in (1.1) and assuming that
there exists a birational parameterization Q of S such that B(Q) = ∅.

Ensure: a solution (Q,S) to the birational reparameterization problem for P withB(Q) =
∅. Or a message informing that the additional hypothesis on Q is not satisfied; in this
case, one could apply Algorithm 2.

1: Compute � = deg(P)/
√
deg(S ) (see (4.11) and Lemma 6).

2: if � /∈ N then
3: return the additional hypothesis does not hold.
4: end if
5: Compute D (see (5.1)) as well as the linear system Ld(D) associated to d = �.

Let Ed(
, t ) be the defining polynomial ofLd(D). Let, for i = 1, 2, 3, Ei
d := E(
i , t )

where 
i are different tuples of new parameters.
6: Compute G ∗ as in (4.18).
7: Apply Algorithm 1 with G ∗ and Ei

d computed above.
8: if the output of Algorithm 1 is the empty set then
9: return the additional hypothesis does not hold.
10: else
11: Let [C, [U1,U2,U3]] be the output of Algorithm 1.
12: Find v ∈ V(C) \ ∪3

i=1V(Ui ).
13: Set S := (E1

d( v ) : E2
d( v ) : E3

d( v )).
14: for j ∈ {1, 2, 3} do
15: Determine � j see (3.1).
16: Compute the implicit equation Hj := A j,1(x, y)− A j,0(x, y)z of the surface param-

eterization � j .
17: end for
18: Set Q := (A1,1/A1,0, A2,1/A2,0, A3,1/A3,0).
19: end if
20: return [S,Q].

We finish this section with an example where we illustrate how the previous algorithm
works. One may check that algorithm in [8] does not provide an answer to the problem.

Example 2 Let P( t ) = (p1 : p2 : p3 : p4) be the input of Algorithm 3, where
p1( t ) = −t21

(
t31 − t21 t3 − 2t1t2t3 − t22 t3

)
t2,

p2( t ) = t61 −2t51 t3+ t41 t
2
2 −4t41 t2t3+ t41 t

2
3 − t31 t

3
2 +4t31 t2t

2
3 + t21 t

3
2 t3+6t21 t

2
2 t

2
3 +4t1t32 t

2
3 + t42 t

2
3

p3( t ) = t41 t
2
2 ,

p4( t ) = t21
(
t21 + t1t2 − t1t3 − t22

)2
.

P is a transversal rational projective parameterization (see Sect. 2.2) of an algebraic surface
S . In Step 1, we obtain � = 3. In Step 5, we compute D (see (5.1)) as well as the linear
system Ld(D) associated to d = � = 3. We get

D = 2 · (0 : 0 : 1) + 1 · (1 : 0 : 1) + 1 · (0 : 1 : 0).
Let Ei

3(
, t ) be the defining polynomial of LD and for i = 1, 2, 3. We get

Ei
3 := E(
i , t ) = t31λi,1 + t21 t2λi,2 − t21 t3λi,1 + t1t

2
2λi,3 + t1t2t3λi,4 + t22 t3λi,5

(5.3)
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where 
i are different tuples of new parameters. In Step 6 we compute G ∗ :=
{u∗

1(t1), t2v(t1)}. We get

u∗
1 = (

2t21 − 2t1
)
h41 + (

(2h2 − 2) t21 + (h2 + 2) t1 + h2
)
h31

+2h2
((

h2 − 5
2

)
t1 + h2 + 1

2

)
t1h21 + h22t

2
1 (h2 − 4) h1 − h32t

2
1 .

v(t1) = − (−2h41 − 2h31h2 − 2h21h
2
2 − h1h32 + 2h31 + 5h21h2 + 4h1h22 + h32

)
t21

− (
2h51 + 2h41h2 − 2h41 − 4h31h2 − 2h21h

2
2

)
t1 + h41h2.

Algorithm 1 starts.
Step 1. We set C = U1 = U2 = ∅.
Step 2. Ei

3(
i , t1, t2), for i ∈ {1, 2, 3}, are as in (5.3).
Steps 3–6. U1 = {λ3,1, . . . , λ3,6}. For determining U2, let

Ea =
(
e12
e32

,
e22
e32

)

,

where ei2 = Ei
2(t1, t2, 1) for i = 1, 2, 3. Let T be the determinant of the Jacobian of Ea w.r.t.

{t1, t2}. Then, U2 collects the coefficients of the numerator of T w.r.t. {t1, t2}. In this case,
U2 consists in seven 3-linear polynomials in λ1,i , λ2, j , λ3,k .
Step 7. Let G̃E

i = ei2(
i , h1, h2)e32(
3, t1, t2) − e32(
3, h1, h2)ei2(
i , t1, t2), i = 1, 2, 3.
Steps 8–11. We compute the normal form N1of G̃E

1 w.r.t G�, and we observe that N1 /∈
K(h1, h2)[t1, t2]\{0}.
Steps 12–13. We determine C1,3 that is is the set non-zero coefficients w.r.t. {h1, h2} of the
coefficients w.r.t. {t1, t2} of N1. We solve the system of bilinear forms C1,3. We get V as the
set solutions:
{{λ1,1 = 0, λ1,2 = 0, λ1,3 = 0, λ1,4 = λ1,4, λ1,5 = 0, λ3,1 = 0, λ3,2 = 0, λ3,3 =
0, λ3,4 = λ3,4, λ3,5 = 0}, {λ1,1 = 0, λ1,2 = λ1,2, λ1,3 = 0, λ1,4 = λ1,4, λ1,5 =
0, λ3,1 = 0, λ3,2 = λ3,2, λ3,3 = 0, λ3,4 = λ1,4λ3,2

λ1,2
, λ3,5 = 0}, {λ1,1 = λ1,1, λ1,2 =

λ1,2, λ1,3 = 0, λ1,4 = λ1,4, λ1,5 = 0, λ3,1 = λ3,1, λ3,2 = λ1,2λ3,1
λ1,1

, λ3,3 = 0, λ3,4 =
λ1,4λ3,1

λ1,1
, λ3,5 = 0}, {λ1,1 = λ1,1, λ1,2 = λ1,2, λ1,3 = λ1,3, λ1,4 = λ1,4, λ1,5 = 0, λ3,1 =

λ1,1λ3,3
λ1,3

, λ3,2 = λ1,2λ3,3
λ1,3

, λ3,3 = λ3,3, λ3,4 = λ1,4λ3,3
λ1,3

, λ3,5 = 0}, {λ1,1 = λ1,1, λ1,2 =
λ1,2, λ1,3 = λ1,3, λ1,4 = λ1,4, λ1,5 = λ1,5, λ3,1 = 0, λ3,2 = 0, λ3,3 = 0, λ3,4 = 0, λ3,5 =
0}, {λ1,1 = λ1,1, λ1,2 = λ1,2, λ1,3 = −λ1,1 − λ1,5, λ1,4 = 2λ1,5, λ1,5 = λ1,5, λ3,1 =
λ3,1, λ3,2 = λ3,2, λ3,3 = −λ3,1 − λ3,5, λ3,4 = 2λ3,5, λ3,5 = λ3,5}, {λ1,1 = λ1,5λ3,1

λ3,5
, λ1,2 =

λ1,5λ3,2
λ3,5

, λ1,3 = λ1,5λ3,3
λ3,5

, λ1,4 = λ1,5λ3,4
λ3,5

, λ1,5 = λ1,5, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 =
λ3,3, λ3,4 = λ3,4, λ3,5 = λ3,5}, {λ1,1 = −λ1,3, λ1,2 = λ1,2, λ1,3 = λ1,3, λ1,4 = 0, λ1,5 =
0, λ3,1 = −λ3,3, λ3,2 = λ3,2, λ3,3 = λ3,3, λ3,4 = 0, λ3,5 = 0}, {λ1,1 = −λ1,3−λ1,5, λ1,2 =
λ1,2, λ1,3 = λ1,3, λ1,4 = 2λ1,5, λ1,5 = λ1,5, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 = −λ3,1, λ3,4 =
0, λ3,5 = 0}}.
V ⊂ Vd × Vd contains 9 generic solutions.
Step 14–18We construct V1,2,3. We delete from V those solutions vanishing all polynomials
in, at least, one of the sets Ui , i = 1, 2. We get that V1,2,3 = V .
Step 19. We initialize C := ∅ and U3 := ∅.
Steps 20–40. Since #(V1,2,3) = 9 the for-loop consists in nine iterations. We compute the
specializations ĞE

1 , ĞE
2 as well as the resultant R̆E

1 . degt1(R̆
E
1 ) = 3. After some algebraic

manipulations, we that the new V is
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{{λ1,1 = −λ1,3 − λ1,5, λ1,2 = λ1,2, λ1,3 = λ1,3, λ1,4 = 2λ1,5, λ1,5 = λ1,5, λ2,1 = −λ2,3 −
λ2,5, λ2,2 = λ2,2, λ2,3 = λ2,3, λ2,4 = 2λ2,5, λ2,5 = λ2,5, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 =
−λ3,1, λ3,4 = 0, λ3,5 = 0}, {λ1,1 = λ1,1, λ1,2 = λ1,2, λ1,3 = −λ1,1 − λ1,5, λ1,4 =
2λ1,5, λ1,5 = λ1,5, λ2,1 = λ2,1, λ2,2 = λ2,2, λ2,3 = −λ2,1 − λ2,5, λ2,4 = 2λ2,5, λ2,5 =
λ2,5, λ3,1 = λ3,1, λ3,2 = λ3,2, λ3,3 = −λ3,1 − λ3,5, λ3,4 = 2λ3,5, λ3,5 = λ3,5}}.
and thus we have 2 solutions.
Back to Algorithm 3 at Step 12.
At this step of the algorithm one take a particular solution in the V . In the second generic
point of V we take, for instance,
{λ1,2 = 1, λ1,3 = 1, λ1,5 = −1, λ2,2 = 0, λ2,3 = 0, λ2,5 = 1, λ3,1 = 0, λ3,2 = 1},
which produces the solution

Sa =
(
t21 + t1t2 − t22 − t1

t1t2
, − t31 − t21 − 2t1t2 − t22

t21 t2

)

,

and

Qa =
(

t2
(t1 + t2 − 2)2

,− −t22 + t1 − 2

(t1 + t2 − 2)2
,

1

(t1 + t2 − 2)2

)

.

6 Conclusions and future work

In this paper, given a surfaceS , rationally parameterized byP( t ), we present a method (see
Algorithm 2) that determine a birational parameterization Q( t ) of S as well as a rational
map S : P2(K) ��� P

2(K) such that P( t ) = Q(S( t )).
In addition, we present some improvements to this previous general computational

approach by introducing two additional hypotheses. More precisely, we assume that the
input surface S admits a birational parameterization Q with empty base locus and that P
is transversal. As a consequence of these two hypotheses, we see that the previous general
method simplifies considerably.

As topics for further research on the problem, we mention some potential lines of work.

1. In order to simplify further the running performance of the method, one may consider
computing probabilistically the fibre of the input parameterization; this could be done
working on a suitable open subset as described in [10] (Algorithm-2). In this case, one
should compute the fibre of the input parameterization by choosing several random points
on the surface.

2. As mentioned in the introduction, the methods presented in this paper could be used as
a general strategy to approach the problem of computing birational reparameterizations
of both rational surfaces of any codimension and rational varieties of any dimension. We
recall that, by definition, every rational variety admits a birational parameterization. For
this purpose, one would have to develop further the theory of bases points and generic
fiber. For that, one may use the results in [12] and study generalizations of the results in
[3] and [10] to arbitrary rational varieties.

3. In this paper, we have not paid attention to the field required to provide the birational
parameterization. An interesting question is to analyze the optimality of the field extension
used in the process. And specially interesting, for the case of applications, is to analyze
the problem when the ground field isQ or a real extension ofQ and the output is required
to be expressed over R. The situation now turns to be more difficult in the sense that real
properness is not guaranteed but ideas as those developed in [1] could be combined.
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In this sense, and in particular, in Step 39 ofAlgorithm1, in general,wewill not get rational
coefficients (considered as solutions over the field of complex numbers). Although the
algorithm is assumed to work over an algebraically closed field, it is important, from an
implementation point of view, how to deal computationally with these solutions. This is
not the goal of the paper but it is another future work that is worth considering.
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