
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.         (2024) 118:113 
https://doi.org/10.1007/s13398-024-01608-w

ORIG INAL PAPER

Regularity results for solutions to elliptic obstacle problems
in limit cases

Fernando Farroni1 · Gianluigi Manzo1

Received: 5 September 2023 / Accepted: 15 April 2024
© The Author(s) 2024

Abstract
We prove the Lewy–Stampacchia’s inequality for elliptic variational inequalities with obsta-
cle involving Leray–Lions type operator whose simpler model case is given by the following

u ∈ W 1,N
0 (�) �→ −�N u − div

(
B(x)|u|N−2u

)

where � is a smooth bounded domain of RN with N � 2, �N u denotes the classical N–
Laplacian operator and the coefficient B : � → R

N belongs to a suitable Lorentz–Zygmund
space. For this kind of obstacle problems, we also provide regularity results and amongst
them we give sufficient conditions to get boundedness of solutions.

Keywords Obstacle problem · Regularity results · Leray–Lions operator · Lower order
terms

Mathematics Subject Classification 35R35 · 35J25 · 35J87

1 Introduction

We let� be a Lipschitz bounded domain ofRN with N � 2. In the present paper, we consider
some obstacle problem involving a Leray–Lions operator of the type

A u := −divA(x, u,∇u), (1)

where A : � × R×R
N → R

N is a Carathéodory vector field satisfying the following
assumptions

for some α > 0 and some nonnegative functions a ∈ L N ,∞ log L(�), φ ∈ L N (�) we have

A(x, u, ξ) · ξ � α|ξ |N − (a(x)|u|)N − φN (x) for a.e. x ∈ � and for all (u, ξ) ∈ R×R
N ;

(2)
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for some β > α and some nonnegative function b ∈ L N ,∞ log L(�) we have

|A(x, u, ξ)| � β|ξ |N−1 + (b(x)|u|)N−1 + φN−1(x) for a.e. x ∈ �, and for all (u, ξ) ∈ R×R
N ;
(3)

(A(x, u, ξ) − A(x, u, η)) · (ξ − η) > 0 for a.e. x ∈ �, for all u ∈ R and ξ, η ∈ R
N wi th ξ �= η.

(4)

The function space L N ,∞ log L(�) is the Lorentz–Zygmund space (see Sect. 2.2 for more
precise definitions) which consists of real measurable functions u in � such that

ess sup
0<t<|�|

t
1
N

(
1 + log

|�|
t

)
u∗(t) < ∞ (5)

where u∗ is the decreasing rearrangement of u. The structure assumptions (2), (3), (4) and
the presence of coefficients in the lower order term fulfilling (5) are modeled on an operator
of the form

AN ,γ u := −�N u − div

⎛
⎜⎝ γ |u|N−2u

|x |N−1
(
1 + log R

|x |
)N−1

x

|x |

⎞
⎟⎠ (6)

where γ > 0, R := supx∈� |x | and 0 ∈ �. In the right–hand side of (6) we adopt the usual
notation �N u := div

(|∇u|N−2∇u
)
for the N–Laplacian operator.

Let us now give a more precise statement of the obstacle problem we consider in the
present paper. For a classical overview on topic we refer for instance to [25, 33]. We let
ψ : � → [−∞,+∞] be a measurable function and consider the set

Kψ(�) :=
{
v ∈ W 1,N

0 (�) : v � ψ a.e. in �
}

.

Assume

� ∈ W −1,N ′
(�). (7)

A function u ∈ Kψ(�) satisfying a variational inequality of the type
∫

�

A(x, u,∇u) · ∇(v − u)dx � 〈�, v − u〉 ∀v ∈ Kψ(�) (8)

is called a solution to the obstacle problem involving the operatorA. Hereafter 〈·, ·〉 denotes
the duality product between W −1,N ′

(�) and W 1,N
0 (�) so assumption (7) means that

� = | f |N−2 f − div
(
|F |N−2F

)

for some

f ∈ L N (�), F ∈ L N (�,RN ).

In turn, we have

〈�,ϕ〉 =
∫

�

(
| f |N−2 f ϕ + |F |N−2F · ∇ϕ

)
dx for every ϕ ∈ C∞

0 (�).

We point out that obstacle problems for monotone or pseudomonotone operators have
been previously considered in [5–7, 17, 27, 29]. In the peculiar case ψ ≡ −∞, the solution
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of the obstacle problem is actually a solution of the Dirichlet problem
{

−divA(x, u,∇u) = � in �

u = 0 on ∂�
(9)

in the sense that u ∈ W 1,N
0 (�) is such that

∫

�

A(x, u,∇u) · ∇ϕ dx = 〈�,ϕ〉 for every ϕ ∈ C∞
0 (�). (10)

The summability of the coefficients in the lower order term comes into play for the pairing
in (8) to be well defined. Thanks to the embedding Sobolev type theorem of Brezis-Wainger
[8] and Hansson [24], the membership of the coefficients a and b to L N ,∞ log L(�) provides
a necessary and sufficient condition to get

A(x, u,∇u) ∈ L
N

N−1

(
�,RN

)
whenever u ∈ W 1,N

0 (�). (11)

See Corollary 2.3 below for more details.
Linear and nonlinear operators similar to (1) with growth exponent p ∈ (1, N ) have

been already considered in literature. We point out that the treatment of problems involving
variational inequalities as in (8) in the limit case considered here differs from the case where
the principal part behaves like the p–Laplacian with 1 < p < N and the analogous of the
coefficients a and b in inequalities (2) and (3) are in L N (�) [4, 34] or in the weak-Lebesgue
space L N ,∞(�) with distance to bounded functions not large enough [14, 18, 22, 30, 37].
We refer to Section 7 for a discussion on the optimality of our assumptions. We also remark
that, when � is bounded, L N ,∞ (�) is strictly larger than L N (�), while L N ,∞ log L(�) is
strictly smaller than L N (�), and this aspect will be crucial in our context.

This paper concerns the existence and regularity issues of a solution to problem (8). Before
we enter into details, we recall that L∞(�) is not dense in L N ,∞ log L(�), so one can define
the distance to L∞(�) in L N ,∞ log L(�) by setting

distL N ,∞ log L(�)(u, L∞(�)) := inf
h∈L∞(�)

�u − h�L N ,∞ log L(�) (12)

where

�u�L N ,∞ log L(�) := ess sup
0<t<|�|

t
1
N

(
N + log

RN
� ωN

t

)
u∗(t)

with R� := supx∈� |x | and ωN denotes the measure of the unit ball in R
N .

We assume that

ψ ∈ W 1,N (�), (13)

such that

ψ ≤ 0 on ∂�. (14)

We point out that this inequality has to be understood in the sense of traces, i.e. (ψ − w)+ ∈
W 1,N

0 (�) for all w ∈ W 1,N
0 (�). This in turn implies thatKψ(�) is nonempty, as the positive

part ψ+ of ψ is an element of Kψ(�).
We define

g := � + divA(x, ψ,∇ψ) (15)
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and we assume that g is an element of the order dual of W 1,N
0 (�), that is

g = g+ − g− where g± ∈
(

W −1,N ′
(�)

)+
. (16)

An element h ∈ W −1,N ′
(�) belongs to

(
W −1,N ′

(�)
)+

if 〈h, w〉 � 0 for all w ∈ W 1,p
0 (�)

such that w � 0 a.e. in �.
We are in a position to state some existence result for a solution to the obstacle problem

satisfying a Lewy–Stampacchia type inequality.

Theorem 1.1 Let assumptions (2)–(4), (7) and (13)–(16) be in charge. If we suppose that

distL N ,∞ log L(�)(a, L∞(�)) < (N − 1)(ωN α)1/N , (17)

then there exists a solution u ∈ Kψ(�) to the obstacle problem involving A satisfying the
following Lewy–Stampacchia inequality

0 � −divA(x, u,∇u) − � � g−. (18)

The Lewy-Stampacchia’s inequality was established for the first time in [28] and it plays a
crucial role in existence and regularity theory for variational inequalities driven by various
kind of operators, see for instance [5, 11, 23, 29] and the reference therein. The existence of
a solution to the problem (9) under the only assumptions (13) and (14) is not addressed in
details in this paper, since it is a byproduct of the proof of Theorem 1.1 and it can be shown
in a similar fashion as [14, 15]. We explicitly remark that condition (16) is satisfied when
g ∈ L N ′

(�) and it occurs just to show existence of a solution to the obstacle problem.
As a consequence of the interplay between a proper bound on the distance to L∞(�)

and the regularity of the obstacle function on one hand and the source term on the other,
we are able to prove some improvement of the summability of solutions (in the scale of
Lorentz–Zygmund spaces).

Theorem 1.2 Assume that (2)–(4) and (14) are in charge and let u ∈ Kψ(�) be a solution

to the obstacle problem involving A. For λ > 1, let φ, f ∈ L N ,λN log
λ−1
λ L(�) and F ∈

L N ,λN log
λ−1
λ L(�,RN ). Let also ψ ∈ W 1 L N ,λN log

λ−1
λ L(�). If

distL N ,∞ log L(�)(a, L∞(�)) < λ−1(N − 1)(ωN α)1/N , (19)

then

u ∈ L∞,λN log− 1
λ L(�). (20)

In particular,

u ∈ EXPλN/(N−1)(�). (21)

Concerning the existence of bounded solutions, we are able to prove the following result.

Theorem 1.3 Assume that (2)–(4) and (14) are in charge and let u ∈ Kψ(�) be a solu-
tion to the obstacle problem involving A. For γ > 1, let φ, f ∈ L N ,∞ logγ L(�),
F ∈ L N ,∞ logγ L(�,RN ). Let also ψ ∈ W 1L N ,∞ logγ L(�). Then u ∈ L∞(�).

The proof of Theorem 1.1 is based upon a penalization argument, which is a tool so effective
to provide both existence and validity of the Lewy–Stampacchia inequality (18). In few
words, a solution to the obstacle problem is obtained as the limit of a sequence of solutions
to suitable Dirichlet problems which are a generalization of (9). It is worth to mention here
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that condition (17) turns to be essential to get existence results for the Dirichlet problem (9).
We are going to discuss this issue in details in Sect. 4. The proofs of Theorems 1.2 and 1.3
apply verbatim to the Dirichlet problem (9) (see Theorem 7.1 below for a precise statement).

In case the coefficients in the lower order term vanishes, an elliptic equation with right-
hand side in a Zygmund space has been considered in [13]. N -Laplacian type equations have
been also considered in [12, 20].

2 Preliminaries

2.1 Notation

If A and B are two quantities, we use A � B to denote that there exists a constant C > 0,
depending on the appropriate parameters, such that A � C B. We also say that a Banach
space X is embedded in another Banach space Y if there exists a bounded linear immersion
map ι : X → Y . Equivalently, X can be identified with a subset of Y in a linear way - usually
in a natural way - and ‖ · ‖Y � ‖ · ‖X .

The truncation at a level σ > 0 will be denoted by Tσ (·) and is defined by

Tσ (z) :=

⎧
⎪⎨
⎪⎩

σ if z > σ

z if |z| � σ

−σ if z < −σ

for all z ∈ R.

2.2 Lorentz–Zygmund spaces

Throughout this section we let� be a bounded domain inRN . For a real measurable function
u defined in �, we let μu : [0,∞) → [0, |�|] be the distribution function of u, namely

μu(k) := |{x ∈ � : |u(x)| > k}| for k � 0.

The decreasing rearrangement of u is denoted by u∗ and defined through the formula

u∗(t) := inf{k > 0 : μu(k) � t} for t ∈ [0, |�|].
As an immediate consequence of the latter definition, one gets that u and u∗ have the same
distribution function. Also, it is well known that the following Hardy–Littlewood inequality
holds

∫

�

|u(x)v(x)| dx �
∫ |�|

0
u∗(t)v∗(t) dt

for all real measurable functions u and v defined in �.
For p, q ∈ (0,∞] and α ∈ R the Lorentz–Zygmund space L p,q logα L(�) consists of all

real measurable functions u in � such that the quantity

‖u‖L p,q logα L(�) :=
∥∥∥∥t

1
p − 1

q

(
1 + log

|�|
t

)α

u∗(t)
∥∥∥∥

Lq (0,|�|)
(22)

is finite, where we use the convention 1/∞ = 0. In particular, if q < ∞ we have

‖u‖L p,q logα L(�) =
(∫ |�|

0

(
t1/p

(
1 + log

|�|
t

)α

u∗(t)
)q dt

t

)1/q
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while

‖u‖L p,∞ logα L(�) = ess sup
0<t<|�|

t
1
p

(
1 + log

|�|
t

)α

u∗(t).

The quantity ‖ · ‖L p,q logα L(�) defines a quasinorm which is equivalent to a norm with
respect to which L p,q logα L(�) is complete. Moreover, the space L p,q logα L(�) includes
the Lorentz spaces L p,q(�) (which corresponds to the case α = 0) and the Zygmund space
L p logβ(�) (which corresponds to the case p = q and α = pβ).

It is worth to mention here that, for γ > 0 the class L∞,∞ log1/γ L(�) coincides with the
space EXPγ (�) of exponentially integrable functions, which is defined as the class of real
measurable functions u in � for which there exists λ = λ(u) > 0 such that

∫

�

exp

( |u(x)|γ
λ

)
dx < ∞.

Inclusion relations among these spaces can be described taking into account several dif-
ferent cases. We start by recalling that Lorentz–Zygmund spaces decrease with the primary
index regardless of what the other exponents does, in the sense that

L p1,q1 logα1 L(�) ⊂ L p2,q2 logα2 L(�) if p1 > p2 and for any 0 < q1, q2 < ∞, α, β ∈ R.

On the other hand, if the primary exponent does not change and is finite, then

L p,q1 logα1 L(�) ⊂ L p,q2 logα2 L(�) if
either q1 � q2 and α1 � α2

or q1 > q2 and α1 + 1/q1 > α2 + 1/q2

while

L∞,q1 logα1 L(�) ⊂ L∞,q2 logα2 L(�) if
either α1 + 1/q1 > α2 + 1/q2

or q1 � q2 and α1 + 1/q1 = α2 + 1/q2 � 0.

It is also interesting to see the dual of L p,q logα L(�). It can be shown [3] that if 1 < p < ∞
and 1 � q < ∞ the duality relation

(
L p,q logα L(�)

)∗ = L p′,q ′
log−α L(�)

holds, where as usual, for an exponent p ∈ [1,∞] we denote by p′ ∈ [1,∞] its conjugate
exponent defined by the relation

1

p
+ 1

p′ = 1,

with the convention 1/∞ = 0.
We will later need to use the following generalized Hölder-type inequality for Lorentz–

Zygmund spaces.

Lemma 2.1 Let � ⊂ R
N be a bounded open set. Let 1 � p, p1, p2, q1, q2 � ∞ and α ∈ R

be such that

1

p1
+ 1

p2
= 1

q1
+ 1

q2
= 1

p
.

Then

‖ f g‖L p(�) � ‖ f ‖L p1,q1 logα L(�)‖g‖L p2,q2 log−α L(�)
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for all f ∈ L p1,q1 logα L(�) and all g ∈ L p2,q2 log−α L(�).

Proof From theHardy–Littlewood inequalityweknow that‖ f g‖L p(�) � ‖ f ∗(t)g∗(t)‖L p(0,|�|).
We therefore have

‖ f g‖L p(�) � ‖ f ∗(t)g∗(t)‖L p(0,|�|)

=
∥∥∥∥∥
(

t
1
p1

− 1
q1

(
1 + log

|�|
t

)α

f ∗(t)
) (

t
1
p2

− 1
q2

(
1 + log

|�|
t

)−α

g∗(t)
)∥∥∥∥∥

L p(0,|�|)

�
∥∥∥∥t

1
p1

− 1
q1

(
1 + log

|�|
t

)α

f ∗(t)
∥∥∥∥

Lq1 (0,|�|)

∥∥∥∥∥t
1
p2

− 1
q2

(
1 + log

|�|
t

)−α

g∗(t)
∥∥∥∥∥

Lq2 (0,|�|)
= ‖ f ‖L p1,q1 logα L(�)‖g‖L p2,q2 log−α L(�).

The proof is complete. ��

2.3 Lorentz–Zygmund–Sobolev spaces

Let 0 < p, q � ∞ and α ∈ R. We define the Lorentz–Zygmund–Sobolev space
W 1L p,q logα L(�) as the space of all f ∈ L p,q logα L(�) ∩ W 1,1(�) such that

[ f ]W 1L p,q logα L(�) := ‖|∇ f |‖L p,q logα L(�) < ∞
endowed with the norm ‖ f ‖W 1L p,q logα L(�) := ‖ f ‖L p,q logα L(�) + [ f ]W 1L p,q logα L(�), and
its subspace W 1

0 L p,q logα L(�) as the closure of the space C∞
c (�) in W 1L p,q logα L(�),

endowed with the norm ‖|∇ (·)|‖L p,q logα L(�).
Now, we discuss some embedding results in the scale of the Lorentz–Zygmung spaces.

First, we want to recall that Yudovich [36], Pohozaev [32] and Trudinger [35] indepen-
dently proved that W 1,N

0 (�) ↪→ EXPN/(N−1)(�). This embedding result have been later
generalized in the independent papers Brezis–Wainger [8] and Hansson [24], where it is
shown that W 1,N

0 (�) ↪→ L∞,N log−1 L(�). Such embedding is optimal in the context of
rearrangement–invariant space and there is a relevant Sobolev type inequality naturally con-
nected with this embedding. To provide a sharp form of such inequality, we follow [10]. Let
ωN be the measure of the unit ball in RN . If

R� := sup
x∈�

|x |,

for p, q ∈ (0,∞] and α ∈ R we define

�u�L p,q logα L(�) :=
(∫ |�|

0

(
t1/p

(
N + log

RN
� ωN

t

)α

u∗(t)
)q

dt

t

)1/q

if q < ∞,

(23)

�u�L p,∞ logα L(�) := ess sup
0<t<|�|

t
1
p

(
N + log

RN
� ωN

t

)α

u∗(t).

(24)

For the cases we are interested in, (23) and (24) define quasinorms equivalent to
‖ · ‖L p,q logα L(�).

With this notation at hand, we have the following Sobolev type inequality.
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Theorem 2.2 Let � ⊂ R
N be a bounded open set with Lipschitz boundary. If u ∈ W 1,N

0 (�)

then u ∈ L∞,N log−1 L(�) and

(N − 1)ω1/N
N �u�L∞,N log−1 L(�) � ‖∇u‖L N (�). (25)

Inequality (25) appears in [10] (see formula (1.13) there) and it is known to be equivalent to
the Hardy inequality

(
N − 1

N

)N ∫

�

|v(x)|N

|x |N
(
1 + log D

|x |
)N

dx �
∫

�

|∇v|N dx (26)

which holds true for every v ∈ W 1,N
0 (�), provided � is a smooth bounded open subset of

R
N with 0 ∈ � and D � R�.
Since Lemma 2.1 holds also for the �·�L p,q logα L norms, a consequence of Theorem 2.2 is

the following corollary.

Corollary 2.3 Let � ⊂ R
N be a bounded open set with Lipschitz boundary. Then

‖ f g‖L N (�) � SN � f �L N ,∞ log L(�)‖∇g‖L N (�)

for all f ∈ L N ,∞ log L(�) and g ∈ W 1,N
0 (�), where SN = (N − 1)ω1/N

N .

We remark that L∞(�) is not dense in L p,∞ logα L(�) for 1 < p < ∞. For such spaces,
distance to L∞ has been widely studied along with its applications - see for instance [1, 2,
9].

2.4 Fixed point theorems and approximation results

To prove existence results, we shall use the Leray–Schauder fixed point theorem in a version
proposed in [19, Theorem 11.3 pg. 280].

Theorem 2.4 Let F be a compact mapping of a Banach space X into itself, and suppose there
exists a constant M such that ‖x‖X < M for all x ∈ X and λ ∈ [0, 1] satisfying x = λF(x).

Then, F has a fixed point.

We recall that a continuous mapping between two Banach spaces is called compact if the
images of bounded sets are precompact.

In the sequel, we will need the following approximation result (see [29]).

Theorem 2.5 Assume that q > 1 and � is a Lipschitz bounded domain of RN . Let h ∈(
W −1,q ′

(�)
)+

. Then, there exists a sequence (hn)n∈N of nonnegative functions in W 1,q
0 (�)

such that hn → h strongly in W −1,q ′
(�).

We mention here a weak compactness result proved in [14, Lemma 2].

Lemma 2.6 Let B be a nonempty subset of W 1,p
0 (�) with p > 1. Assume that there exists a

constant C > 0 such that

‖∇u‖p
L p(�\�σ ) � C

(
1 + ‖u‖p

L p(�\�σ )

)
(27)

for any σ > 0 and u ∈ B, where �σ := {x ∈ � : |u(x)| � σ }. Then, there exists a constant
M > 0 such that

‖u‖W 1,p(�) � M (28)

for any u ∈ B.
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3 A technical tool

Throughout this section we let all the assumptions (2)–(4), (13)–(16) be in charge and for
subsequent purposes, we want to describe the properties of Carathéodory vector field

Â(x, u, η) := A(x, u + ψ+, η + ∇ψ+). (29)

The vector field Â satisfies some conditions similar to (2), (3) and (4). We want to discuss the
properties of Â providing some details, as for instance (19) is made in terms of the constant
α and the coefficient a. As in [16], we prove the following.

Lemma 3.1 Let the assumptions (2)–(4), and (13)–(16) be in charge. For all ε > 0 and
ϑ ∈ (0, 1), we obtain

Â(x, u, ξ) · ξ � α̂ |ξ |N − (â |u|)N − φ̂, (30)

where

α̂ := (α − β εN ) ϑ N , â := b + ε a

ϑ

and φ̂ is a suitable nonnegative function in L1(�). Moreover, the following estimate holds

distL N ,∞ log L(�)(â, L∞(�))

� 1 + √
ε

ϑ
distL N ,∞ log L(�)(a, L∞(�)) +

√
ε(1 + √

ε)

ϑ
‖a‖L N ,∞ log L(�). (31)

Proof By Young’s inequality one gets

Â(x, u, ξ) · ξ � (α − β εN ) |ξ + ∇ψ+|N −
(

aN + εN bN
)

|u + ψ+|N − φ1

with a suitable φ1 ∈ L1(�). As R � t �→ |t |N is convex, there exists C = C(ϑ, N ) > 0
such that

|ξ + ∇ψ+|N � ϑ p |ξ |N − C |∇ψ+|N , |u + ψ+|p � ϑ−p |u|N + C |ψ+|N .

Hence, (30) is proved. Estimate (31) follows by the definition of â. ��

4 Auxiliary Dirichlet problems

We consider the following
{

−divA(x, u,∇u) + B(x, u) = � in �

u = 0 on ∂�
(32)

where B : � × R → R is a Carathéodory function satisfying

|B(x, u)| � γ |u| + M(x) for a.e. x ∈ � and for all u ∈ R (33)

with γ > 0 and M ∈ L N (�), and a sign condition of the type

B(x, u)u � 0 for a.e. x ∈ � and for all u ∈ R. (34)
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Proposition 4.1 Let � ∈ W −1,N ′
(�) and A : � × R

N → R
N a Carathéodory vector field

satisfying (2), (3) and (4). If

distL N ,∞ log L(�)(a, L∞(�)) < (N − 1)(ωN α)1/N , (35)

then there exists u ∈ W 1,N
0 (�) solving problem (32).

Proof We divide this proof into several steps.
Step 1: the case of bounded coefficients.

Here we consider the case in which A satisfies (2) and (3) with a, b ∈ L∞(�). As in [14]
we consider, for a fixed v ∈ W 1,N

0 (�),

Av(x, ξ) := A(x, v, ξ), Bv(x) := B(x, v).

Thanks to a classical result by Leray and Lions [26] we obtain existence of a solution to

− divAv(x,∇u) + Bv(x) = �, (36)

which is unique because of the monotonicity assumption (4). It is not difficult to prove that,
for a fixed � ∈ W −1,N ′

(�), the map

F : v ∈ W 1,N
0 (�) �→ u ∈ W 1,N

0 (�)

sending v to the solution u of (36) is compact.
We want to use Leray-Schauder fixed point theorem to the map F to construct a solution

u ∈ W 1,N
0 (�) to problem (9). Let 0 < t � 1 and let u be a solution to u = t F(u), i.e.

− divA

(
x, u,

1

t
∇u

)
+ B(x, u) = �. (37)

By using condition (34) we have

B(x, u)Tσ (u) � 0 a.e. in � (38)

We use Tσ u as test for some σ > 0 and use conditions (2) and (38) to obtain

αt1−N
∫

�

|∇Tσ u|N dx � ‖�‖W −1,N ′(�)‖∇Tσ u‖L N (�) +
∫

�

(a|u|)N χ{|u|<σ } + ϕN χ{|u|<σ } dx .

Applying Young inequality and using the fact that t1−N � 1 we get

α

∫

�

|∇Tσ u(x)|N dx � αt1−N
∫

�

|∇Tσ u(x)|N dx

� ‖�‖W−1,N ′
(�)

‖∇Tσ u‖L N (�) +
∫

{|u|<σ }
(a(x) |u(x)|)N + ϕN (x) dx

� 1

α
1

N−1 N ′
‖�‖N ′

W−1,N ′
(�)

+ α

N
‖∇Tσ u‖N

L N (�)

+
∫

{|u|<σ }
(a(x) |u(x)|)N + ϕN (x) dx

and therefore

α

N ′ ‖∇u‖N
L N ({|u|<σ }) � 1

α
1

N−1 N ′
‖�‖N ′

W−1,N ′
(�)

+ ‖a‖L∞(�)‖u‖N
L N ({|u|<σ }) + ‖ϕ‖N

L N (�)
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and we apply Lemma 2.6 to obtain that ‖u‖W 1,N (�) � K for some constant K independent
of u.
Step 2: we prove the result in the general case by using an approximation argument.

For n ∈ N we define

θn(x) = Tn (max {a(x), b(x)})
max {a(x), b(x)}

and we see that the field An(x, u, ξ) := A(x, θnu, ξ) satisfies

〈An(x, u, ξ), ξ 〉 � α|ξ |N − (Tna(x)|u|)N − ϕN (x) ∀(x, u, ξ) ∈ � × R×R
N ;

(39)

|An(x, u, ξ)| � β|ξ |N−1 + (Tnb(x)|u|)N−1 + ϕN−1(x) ∀(x, u, ξ) ∈ � × R×R
N ;
(40)

〈An(x, u, ξ) − An(x, u, η), ξ − η〉 > 0 ∀(x, u) ∈ � × R (41)

for all ξ �= η in R
N .

For a fixed� ∈ W −1,N ′
(�), what we proved in Step 1 provides the existence of a solution

un ∈ W 1,N
0 (�) to the problem

{
−divAn(x, un,∇un) + B(x, un) = � in �

un = 0 on ∂�.
(42)

We want to apply again Lemma 2.6. We test problem (42) by Tσ u and we use (39) and (38)
to obtain

α

∫

�

|∇Tσ un |N dx � ‖�‖W−1,N ′
(�)

‖∇Tσ un‖L N (�) +
∫

�

(
(a|un |)N χ{|un |<σ } + ϕN

)
dx .

The latter relation clearly implies

α
1
N ‖∇Tσ un‖L N (�) �

(
‖�‖W−1,N ′

(�)
‖∇Tσ un‖L N (�)

) 1
N + ∥∥aunχ{|un |<σ }

∥∥
L N (�)

+ ‖ϕ‖L N (�).

We now take M > 0 and write a as (a − TM a) + TM a, so if we apply the triangle inequality
we obtain

∥∥aunχ{|un |<σ }
∥∥

L N (�)
�

∥∥(a − TM a) unχ{|un |<σ }
∥∥

L N (�)
+ ∥∥(TM a) unχ{|un |<σ }

∥∥
L N (�)

�
∥∥(a − TM a) unχ{|un |<σ }

∥∥
L N (�)

+ M
∥∥unχ{|un |<σ }

∥∥
L N (�)

.

We can now use Corollary 2.3 to manage the first term in the right hand side
∥∥(a − TM a) unχ{|un |<σ }

∥∥
L N (�)

� SN �a − TM a�L N ,∞ log L(�)‖∇Tσ un‖L N (�).

Using assumption (17) and the fact that

distL N ,∞ log L(�)(a, L∞(�)) = lim
M→∞�a − TM a�L N ,∞ log L(�)

that can be proved as in [14], we can choose M large enough to have

SN �a − TM a�L N ,∞ log L(�) < α
1
N

so that we have

C‖∇Tσ un‖L N (�) �
(
‖�‖W−1,N ′

(�)
‖∇Tσ un‖L N (�)

) 1
N + M‖unχ{|un |<σ }‖L N (�) + ‖ϕ‖L N (�).
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Applying Young inequality we show that the assumptions of Lemma 2.6 and obtain

‖un‖W 1,N (�) � K ∀n ∈ N (43)

for some K > 0 independent of n.
Due to (43) we can assume that there exists u ∈ W 1,N

0 (�) such that

un⇀u in W 1,N
0 (�)

un → u in Lq(�) for all 1 < q < ∞ and a.e. in �.

We test equation (9) with T1(un − u) and obtain
∫

�

An(x, un,∇un)∇(un − u)χ{|un−u|�1} = 〈�,∇T1(un − u)〉.

Since T1(un − u)⇀0 in W 1,N
0 (�), we have

lim
n→∞

∫

�

An(x, un,∇un)∇T1(un − u) = 0.

Let us show that

lim
n→∞

∫

�

An(x, un,∇u)∇T1(un − u) = 0.

Since ∇un
W 1,N

0 (�)

⇀ ∇u, it suffices to prove that An(x, un,∇un)χ{|un−u|�1} is compact. Using
growth condition (3) we have

(An(x, un,∇u))N ′
χ{|un−u|�1} � C

(
|∇u|N + ϕN + (b|u|)N + (b |un − u|)N χ{|un−u|�1}

)

and since b ∈ L N ,∞ log L(�) ↪→ L N (�) we can pass to the limit. We therefore have

lim
n→∞

∫

�

(An (x, un,∇un) − An (x, un,∇u)) ∇ (un − u) χ{|un−u|�1} = 0

and, up to a subsequence,

(An (x, un,∇un) − An (x, un,∇u))∇(un − u) → 0.

Reasoning as in [26, Lemma 3.3] we obtain ∇un → ∇u a.e. in � and

An(x, un,∇un)⇀A(x, u,∇u) in L N ′
(�)

which concludes the proof. ��
To conclude this section, we provide an example which shows that a condition on the distance
as in (35) is crucial to get existence of a solution to our problem.

Example 4.1 Let γ > 0 and consider the problem
⎧
⎨
⎩

−�u − div

(
γ x

|x |2(1 − log |x |)u

)
= −div

(
x

|x |2(1 − log |x |)γ
)

in B

u = 0 on ∂ B
(44)

for u ∈ W 1,2
0 (B), where B is the unit ball in R

2. The underlying operator for problem (44)
is given by

A(x, u, ξ) = ξ + γ
u

|x |(1 − log |x |)
x

|x | .

123



Regularity results for solutions to. . . Page 13 of 24   113 

By using Young’s inequality we get

A(x, u, ξ) · ξ � 1

2
|ξ | − 1

2
(γ a(x)u)2 (45)

where

a(x) = 1

|x |(1 − log |x |) .

If we consider the adjoint problem
⎧⎨
⎩

−�v + γ x · ∇v

|x |2(1 − log |x |) = 0 in B

v = 0 on ∂ B
(46)

we have that a solution is given by

v(x) =
{

1
γ−1

(
1 − (1 − log |x |)1−γ

)
if γ �= 1

− log(1 − log |x |) if γ = 1,

and in particular it satisfies

∇v = x

|x |2(1 − log |x |)γ .

Let us now assume that there exists a solution u to problem (44). If γ > 1
2 we have that

v ∈ W 1,2
0 (B), so we can test it in (44) and we obtain

0 =
∫

B
|∇v|2 dx,

which is impossible and therefore problem (44) does not admit a solution if γ > 1
2 . This

result is also sharp in terms of the parameter γ . For the function a it results that

a∗(t) = π
1
2 t−

1
2

(
1 + 1

2
log

π

t

)−1

and a direct computation (see for instance [31]) gives us

distL2,∞ log L(B)(a, L∞(B)) = 2
√

π.

Taking into account (45), if we impose condition (35) we are forced to require γ < 1
2 . ��

5 Regularity

In this section we prove Theorems 1.2 and 1.3.

5.1 Improving the summability in the scale of Lorentz–Zygmund spaces

Proof of Theorem 1.2 We divide the proof in several steps.
Step 1: we prove that

|u|λ ∈ W 1,N
0 (�) (47)
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under the assumption

ψ � 0 a.e. in �. (48)

Clearly, (47) implies (20).
We notice that v = Tku is a valid test function since if u > 0 then v > 0 � ψ , while if

u � 0 then v � u � ψ . Using the structural assumption (2) we obtain

α

∫

Ek

|∇u|N dx �
∫

Ek

| f |N−1|u − Tku| dx +
∫

Ek

|F |N−1|∇u| dx

+
∫

Ek

(a|u|)N dx +
∫

Ek

φN dx

where Ek := {x ∈ � : |u(x)| > k}. Applying a Young inequality we obtain

(α − ε)

∫

Ek

|∇u|N dx �
∫

Ek

[
C | f |N + C |F |N + |u|N + (a|u|)N + φN

]
dx,

where ε > 0 is a parameter we will choose later and C is a constant depending on ε.
Multiplying by k(λ−1)N−1 and integrating on [0, K ] gives, thanks to Fubini theorem,

(α − ε)

∫

�

|∇u|N |TK u|(λ−1)N dx �
∫

�

(
C | f |N + C |F |N + |u|N + (a|u|)N + φN

)

× |TK u|(λ−1)N dx

which implies

(α − ε)
1
N

∥∥∇u |TK u|λ−1
∥∥

L N (�)
� C

(∥∥ f |TK u|λ−1
∥∥

L N (�)
+ ∥∥F |TK u|λ−1

∥∥
L N (�)

)

+ ∥∥u |TK u|λ−1
∥∥

L N (�)
+ ∥∥au |TK u|λ−1

∥∥
L N (�)

+ ∥∥φ |TK u|λ−1
∥∥

L N (�)
.

Let M > 0. If we write a = TM a + (a − TM a), we can give an estimate of∥∥au |TK u|λ−1
∥∥

L N (�)
:

∥∥au |TK u|λ−1
∥∥

L N (�)
�

∥∥(a − TM a) u |TK u|λ−1
∥∥

L N (�)
+ ∥∥(TM a) u |TK u|λ−1

∥∥
L N (�)

�
∥∥(a − TM a) u |TK u|λ−1

∥∥
L N (�)

+ M
∥∥u |TK u|λ−1

∥∥
L N (�)

.

To simplify this inequality, we use Corollary 2.3 on the first term on the right hand side to
obtain
∥∥(a − TM a) u |TK u|λ−1

∥∥
L N (�)

� SN �a − TM a�L N ,∞ log L(�)

∥∥∇ (
u |TK u|λ−1)∥∥

L N (�)
.

We now notice that ∇ (
u |TK u|λ−1) � λ |∇u| |TK u|λ−1, so that

∥∥(a − TM a) u |TK u|λ−1
∥∥

L N (�)
� λSN �a − TM a�L N ,∞ log L(�)

∥∥∇u |TK u|λ−1
∥∥

L N (�)

and recalling the assumption (19) we have that by choosing M large enough and ε small
enough we get
∥∥∇u |TK u|λ−1

∥∥
L N (�)

�
∥∥ f |Tku|λ−1

∥∥
L N (�)

+ ∥∥F |TK u|λ−1
∥∥

L N (�)
+ ∥∥u |TK u|λ−1

∥∥
L N (�)

+ ∥∥φ |TK u|λ−1
∥∥

L N (�)
.
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If we use Lemma 2.1 we can write
∥∥ f |TK u|λ−1

∥∥
L N (�)

� ‖ f ‖
L N ,λN log

λ−1
λ L(�)

∥∥(TK u)λ−1
∥∥

L
∞, λN

λ−1 log
1−λ
λ L(�)

= ‖ f ‖
L N ,λN log

λ−1
λ L(�)

‖TK u‖λ−1

L∞,λN log− 1
λ L(�)

and similarly for F and u. We can then apply Corollary 2.3

‖TK u‖λ−1

L∞,λN log− 1
λ L(�)

= ∥∥|TK u|λ∥∥
λ−1
λ

L∞,N log−1 L(�)
�

∥∥∇ |TK u|λ∥∥
λ−1
λ

L N (�)
�

∥∥∇u |TK u|λ−1
∥∥ λ−1

λ

L N (�)

to obtain
∥∥∇u |TK u|λ−1

∥∥
L N (�)

�
(

‖ f ‖
L N ,λN log

λ−1
λ L(�)

+ ‖F‖
L N ,λN log

λ−1
λ L(�)

+ ‖u‖
L N ,λN log

λ−1
λ L(�)

+ ‖φ‖
L N ,λN log

λ−1
λ L(�)

) ∥∥∇u |TK u|λ−1
∥∥

λ−1
λ

L N (�)

�
(

‖ f ‖
L N ,λN log

λ−1
λ L(�)

+ ‖F‖
L N ,λN log

λ−1
λ L(�)

+ ‖u‖
L N ,λN log

λ−1
λ L(�)

+ ‖φ‖
L N ,λN log

λ−1
λ L(�)

)λ

.

Taking the limit K → +∞ we finally get

∥∥∇|u|λ∥∥L N (�)
�

(
‖ f ‖

L N ,λN log
λ−1
λ L(�)

+ ‖F‖
L N ,λN log

λ−1
λ L(�)

+ ‖u‖
L N ,λN log

λ−1
λ L(�)

+‖φ‖
L N ,λN log

λ−1
λ L(�)

)λ

,

which concludes the proof, since u ∈ L N ,λN log
λ−1
λ L(�) ↪→ W 1,N

0 (�).
Step 2: we get rid of assumption (48).

We consider the vector field Â as in (29) and we define ψ̂ := ψ − ψ+. As ψ̂ � 0 a.e.
in �, we obtain the existence of a function û ∈ K

ψ̂
(�) such that the following variational

inequality
∫

�

Â(x, û,∇û) · ∇(v̂ − û) dx � 〈�, v̂ − û〉 (49)

holds true for every admissible function v̂ ∈ K
ψ̂
(�). Since any v ∈ Kψ(�) can be rewritten

as v = v̂ + ψ+ for some v̂ ∈ K
ψ̂
(�). Hence, the variational inequality (8) holds true

with u := û + ψ+ and any admissible function v ∈ K′
ψ(�T ). It remains to show that

u satisfies the required summability. By Step 1, we observe that |û|λ ∈ W 1,N
0 (�) and so

û ∈ L∞,λN log− 1
λ L(�). On the other hand ψ+ ∈ L∞,λN log− 1

λ L(�) by Theorem 4.2 in
[21] and this proves the result. ��

5.2 Boundedness

Let us now prove the boundedness result.

Proof of Theorem 1.3 We divide the proof in several steps.
Step 1: we prove the result under the assumption (48).
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Let k > 0 and let us define the function

z ∈ R �→ σk(z) = sign(z)

N − 1

(
(1 + Tk |z|)1−N − (1 + |z|)1−N )

)
.

We have σk(u) ∈ W 1,N
0 (�) and

∇σk(u) = ∇u

(1 + |u|)N
χEk ,

where Ek := {|u| > k}. It is not difficult to prove that vk := u − σk(u) ∈ Kψ(�). Indeed,
σk(u) = 0 on the set where |u(x)| � k. On the other hand, if u(x) < −k then σk(u) < 0.
Finally, if u > k we notice that vk = V (u) with

V (z) := z − (1 + k)1−N − (1 + z)1−N

N − 1
,

and V ′(z) > 0 for z > k, which gives vk > 0 � ψ . We can therefore test our problem with
vk and applying assumption (2) and Poincaré inequality we get

α

∫

Ek

|∇u|N

(1 + |u|)N
dx �

∫

Ek

aN |u|N

(1 + |u|)N
dx +

∫

Ek

φN

(1 + |u|)N
dx

+
∫

Ek

| f |N−1|σk(u)| dx +
∫

Ek

|F |N−1|∇σk(u)| dx

� ‖a‖N
L N (�)

+ ‖φ‖N
L N (�)

+ C
(
‖ f ‖N−1

L N (�)
+ ‖F‖N−1

L N (�)

)
‖∇σk(u)‖L N (�).

(50)

We observe that |∇σk(u)|N � |∇u|N

(1+|u|)N χEk . Hence, by using Young inequality and reabsorb-
ing in the left–hand side, we obtain

‖∇ log(1 + |u|)‖L N (Ek ) � ‖ f ‖L N (Ek ) + ‖F‖L N (Ek ) + ‖a‖L N (Ek ) + ‖φ‖L N (Ek ).

For subsequent estimates, it is convenient to compute the norm ‖χG‖L∞,N log−γ L(�) of the
characteristich function of a measurable set G contained in �. As (χG)∗ = χ(0,|G|), the
definition of ‖ · ‖L∞,N log−γ L(�)–norm leads to the following

‖χG‖L∞,N log−γ L(�) =
⎛
⎜⎝

∫ |G|

0

1

t
(
1 + log |�|

t

)γ N
dt

⎞
⎟⎠

1/N

= (γ N − 1)−
1
N

(
1 + log

|�|
|G|

) 1
N −γ

.

In the last line we compute the exact value of the integral since γ > 1/N . We proceed further
and because of Lemma 2.1 we deduce

‖ f ‖L N (Ek ) = ‖ f χEk ‖L N (�)

� ‖χEk ‖L∞,N log−γ L(�)‖ f ‖L N ,∞ logγ L(�)

= (γ N − 1)−
1
N

(
1 + log

|�|
|Ek |

) 1
N −γ

‖ f ‖L N ,∞ logγ L(�),
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and similarly

‖F‖L N (Ek ) � (γ N − 1)−
1
N

(
1 + log

|�|
|Ek |

) 1
N −γ

‖F‖L N ,∞ logγ L(�),

‖a‖L N (Ek ) � (γ N − 1)−
1
N

(
1 + log

|�|
|Ek |

) 1
N −γ

‖a‖L N ,∞ logγ L(�),

‖φ‖L N (Ek ) � (γ N − 1)−
1
N

(
1 + log

|�|
|Ek |

) 1
N −γ

‖φ‖L N ,∞ logγ L(�).

We take into account previous estimates and we get

‖∇ log(1 + |u|)‖L N (Ek ) � C

(
1 + log

|�|
|Ek |

) 1
N −γ

where

C = C
(

N , γ, ‖ f ‖L N ,∞ logγ L(�), ‖F‖L N ,∞ logγ L(�), ‖a‖L N ,∞ logγ L(�), ‖φ‖L N ,∞ logγ L(�)

)
.

Let us definew(z) := log(1+|z|)sign z and L := log(1+k). We set GL(m) := m −TL m for

m ∈ R. Then GL(w(u)) ∈ W 1,N
0 (�) and in particular GL(w(u)) = sign(u) log

(
1+|u|
1+k

)
χEk .

Hence, Sobolev embedding theorem applied to GL(w(u)) provides the estimate

‖∇ log(1 + |u|)‖L N (Ek ) � 1

SN

∥∥∥∥log
(
1 + |u|
1 + k

)
χEk

∥∥∥∥
L∞,N log−1 L(�)

� 1

SN

∥∥∥∥log
(
1 + |u|
1 + k

)
χEh

∥∥∥∥
L∞,N log−1 L(�)

� 1

SN
log

(
1 + h

1 + k

)
‖χEh ‖L∞,N log−1 L(�)

� (N − 1)− 1
N

SN
log

(
1 + h

1 + k

) (
1 + log

|�|
|Eh |

)− 1
N ′

as long as h > k. This implies

(
1 + log

|�|
|Eh |

)− 1
N ′

�

(
1 + log

|�|
|Ek |

) 1
N −γ

log
1 + h

1 + k

if h > k > 0. If we set h = exp η − 1, k = exp κ − 1 and define, for t > 0,

φ(t) =

⎧
⎪⎪⎨
⎪⎪⎩

(
1 + log

|�|∣∣Eexp t−1
∣∣
)− 1

N ′
if |Eexp t−1| > 0

0 otherwise

,

we obtain

φ(η) � 1

η − κ
φβ(κ)
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with β = γ− 1
N

1− 1
N

> 1, so φ satisfies the assumptions [34, Lemme 4.1] and there is θ > τ such

that φ(θ) = 0, or equivalently that |u(x)| � log θ almost everywhere.
Step 2: we get rid of assumption (48).

We adopt the same argument as in previous Step 2. By adopting the same notation, the
only fact that we need to prove is that u = û +ψ+ is bounded in �. As û is bounded in � by
previous step, we show thatψ+ is bounded in� as well. As γ > 1, we have∇ψ+ ∈ L N ,1(�)

and so ψ+ is bounded in � by Theorem 4.5 in [21]. ��

6 The Lewy–Stampacchia inequality

6.1 A penalized problem

In order to prove Theorem 1.1, we need to consider a penalized problem of the type

⎧
⎨
⎩

−divA (x, uδ ∨ ψ,∇uδ) = � + 1

δ
(ψ − uδ)

+ in �

uδ = 0 on ∂�
(51)

where δ > 0 and s ∨ t := max {s, t} for all s, t ∈ R. We add the following assumption on
the obstacle function

ψ � 0 a.e. in �. (52)

As a consequence of Theorem 4.1 we easily prove the following a priori estimates related
to the penalized problem (51).

Corollary 6.1 Let assumptions (2)–(4), (19) (16) and (52) be in charge. For every δ > 0,
there exists a solution uδ to problem (51) satisfying the estimate

‖∇uδ‖N
L N (�)

� C (53)

for some positive constant C independent of δ. In particular, there exists u ∈ Kψ(�) which
is a solution to the variational inequality (8) and

uδ → u in L N (�), (54)

∇uδ⇀∇u in L N (�;RN ) and a.e. in �. (55)

Proof Estimate (53) can be proved by using the same argument which gives (43). It is clear
that (53) implies the existence of u ∈ W 1,N

0 (�) such that (54) holds and ∇uδ⇀∇u weakly
in L N (�;RN ). Next stage of our proof consists in proving that u is greater than or equal to
the obstacle function ψ a.e. in �. To this aim, we test equation (51) by (ψ − uδ)

+, and we
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get in turn

1

δ

∫

�

∣∣(ψ − uδ)
+∣∣2 dx = −〈�, (ψ − uδ)

+〉 +
∫

�

A (x, uδ ∨ ψ,∇uδ) · ∇ (ψ − uδ)
+ dx

= −〈�, (ψ − uδ)
+〉 +

∫

�

A (x, ψ,∇uδ) · ∇ (ψ − uδ)
+ dx

�
∣∣〈�, (ψ − uδ)

+〉∣∣ +
∫

�

(
β|∇uδ|N−1 + (b|uδ|)N−1 + φN−1

) ∣∣∇ (ψ − uδ)
+∣∣ dx

� C
(
‖�‖W−1,N ′

(�)
+ ‖b‖L N ,∞ log L(�)‖∇uδ‖N−1

L N (�)
+ ‖∇ψ‖N−1

L N (�)
+ ‖φ‖N−1

L N (�)

)

× ‖∇ (ψ − uδ)
+ ‖L N (�).

We have that

‖∇ (ψ − uδ)
+ ‖L N (�) � ‖∇ (ψ − uδ) ‖L N (�) � ‖∇uδ‖L N (�) + ‖∇ψ‖L N (�)

and using estimate (53) we obtain that

1

δ

∫

�

∣∣(ψ − uδ)
+∣∣2 dx � C(N ,�, α, a,�, φ,ψ),

where in particular the right hand side does not depend on δ. Letting δ → 0 we obtain that
(ψ − u)+ = 0 almost everywhere, i.e. u ∈ Kψ(�).

We claim that ∇uδ → ∇u a.e. in �. We test problem (51) with T1(uδ − u) to obtain
∫

�

A(x, uδ ∨ ψ,∇uδ) · ∇(uδ − u)χ{|uδ−u|�1} dx

= 〈�, T1(uδ − u)〉
+ 1

δ

∫

�

(ψ − uδ)
+T1(uδ − u) dx

� 〈�, T1(uδ − u)〉.
Since uδ − u � uδ − ψ < 0 when ψ − uδ > 0 (up to a negligible set). Moreover, since
u � ψ , the remaining term on the right hand side goes to zero as well, so that

lim sup
δ→0

∫

�

A(x, uδ ∨ ψ,∇uδ) · ∇(uδ − u)χ{|uδ−u|�1} dx � 0.

Using the fact that uδ → u in L N (�) and assumption (2) we can apply the dominated
convergence theorem to show that

lim
δ→0

∫

�

A(x, uδ ∨ ψ,∇u) · ∇(uδ − u)χ{|uδ−u|�1} dx = 0

and therefore

lim sup
δ→0

∫

�

(A(x, uδ ∨ ψ,∇uδ) − A(x, uδ ∨ ψ,∇u)) · ∇(uδ − u)χ{|uδ−u|�1} dx � 0.

Assumption (4) implies that we must also have

(A(x, uδ ∨ ψ,∇uδ) − A(x, uδ ∨ ψ,∇u)) · ∇(uδ − u)χ{|uδ−u|�1} → 0 a.e. in �

and since uδ → u in L N (�)

(A(x, uδ ∨ ψ,∇uδ) − A(x, uδ ∨ ψ,∇u)) · ∇(uδ − u) → 0 a.e. in �.
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We conclude the proof of our claim by using [26, Lemma 3.1]. ��
Proposition 6.2 Let assumptions (2)–(4), (16), (19) and (52) be in charge. Assume further
that

g− ∈ W 1,N
0 (�).

Then, the solution u ∈ Kψ(�) provided by Corollary 6.1 satisfies the Lewy–Stampacchia
inequality (18).

Proof To simplify the proof, we set

μδ = 1

δ
(ψ − uδ)

+ , (56)

and also we define

zδ := g− − 1

δ
(ψ − uδ)

+ .

Therefore, the equation in problem (51) gives us

zδ = g+ + div [A(x, uδ ∨ ψ,∇uδ) − A(x, ψ,∇ψ)] .

As g− ∈ W 1,N
0 (�), also zδ ∈ W 1,N

0 (�), so we may test problem (51) by −z−
δ and by using

the obvious relation −z−
δ zδ = |z−

δ |2 we obtain
∫

�

|z−
δ |2 dx =

∫

�

[A(x, uδ ∨ ψ,∇uδ) − A(x, ψ,∇ψ)] · ∇z−
δ dx − 〈g+, z−

δ 〉. (57)

We observe that z−
δ vanishes on the set where uδ � ψ and we recall that g+ is a nonnegative

element of W −1,N ′
(�). We deduce from (57) that

∫

�

|z−
δ |2 dx �

∫

{z−
δ �=0}

[A(x, ψ,∇uδ) − A(x, ψ,∇ψ)] · ∇z−
δ dx . (58)

As already mentioned, to obtain the latter relation we used the fact that ψ > uδ a.e. in
{z−

δ �= 0}. Moreover, it is clear that g− − μδ < 0 a.e. in {z−
δ �= 0}, and so (58) gives us

∫

�

|z−
δ |2 dx �1

δ

∫

{z−
δ �=0}

[A(x, ψ,∇uδ) − A(x, ψ,∇ψ)] · (∇ψ − ∇uδ) dx

−
∫

{z−
δ �=0}

[A(x, ψ,∇uδ) − A(x, ψ,∇ψ)] · ∇g− dx .

(59)

By monotonicity, the first term in the right hand side of (59) is less than or equal to zero, so
we have

∫

�

|z−
δ |2 dx �

∫

�

χ{ψ>uδ} |A(x, ψ,∇uδ) − A(x, ψ,∇ψ)| |∇g−| dx . (60)

By using (54) and (55) we deduce that χ{ψ>uδ} |A(x, ψ,∇uδ) − A(x, ψ,∇ψ)| ⇀0 weakly
in L N ′

(�) and so z−
δ → 0 strongly in L2(�). Finally, we obtain the Lewy–Stampacchia

inequality (18) passing to the limit as δ → 0 in μδ − g− � z−
δ . ��

We now consider the general case.
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Proof of Theorem 1.1 We assume at first that (52) holds, namely ψ � 0 a.e. in �. Let us
consider a sequence ĝn ∈ W 1,N

0 (�)with ĝn � 0 a.e. in� such that ĝn → g− in W −1,N ′
0 (�).

Accordingly, we define

�n := g+ − ĝn − divA(x, ψ,∇ψ).

ByProposition 6.2we easily see that there exists un ∈ W 1,N
0 (�) solving the obstacle problem

∫

�

A(x, un,∇un) · ∇(v − un) dx � 〈�n, v − un〉 ∀v ∈ Kψ(�).

Moreover, the Lewy–Stampacchia inequality

0 � − div A(x, un,∇un) − �n � ĝn (61)

holds.We remark that un−Tσ (un) ∈ Kψ(�) and reasoning as in Proposition 4.1, the estimate

‖∇un‖L N (�) � M

holds with a constant M > 0 independent from n, and satisfying a Lewy-Stampacchia
inequality. As before, there exists u ∈ W 1,N

0 (�) such that un → u in L N (�) and ∇un⇀∇u
in L N (�;RN ). Testing with wn := un − T1(un − u) and reasoning as we did previously, we
get ∇un → ∇u a.e. in �.

We fix λ > 0 and observe that un −Tλ(un −v) ∈ Kψ(�) for a fixed v ∈ Kψ(�). Therefore
we have ∫

�

A(x, un,∇un) · ∇Tλ(un − v) dx � 〈�n, Tλ(un − v)〉.

Using again the dominated convergence theorem, we are able to pass to the limit as n → ∞,
to get

∫

�

A(x, u,∇u) · ∇Tλ(u − v) dx � 〈�, Tλ(u − v)〉.

It follows that ∫

�

A(x, u,∇u) · ∇(u − v) dx � 〈�, (u − v)〉

by passing to the limit as λ → ∞. On the other hand, the Lewy–Stampacchia inequality
claimed in the statement of Theorem 1.1 follows by passing to the limit in (61). To get rid
of assumption (52) we construct an operator Ã as in Lemma 3.1 and use it to deduce a result
for our case as done in the last parts of the proofs of Theorems 1.2 and 1.3. ��

7 Concluding remarks

A careful inspection of the proofs of both Theorems 1.2 and 1.3 allows us to conclude that
those regularity results hold for all solutions to problem (9) under the same assumptions on
f , F, φ. Precisely, we have the following result.

Proposition 7.1 Let u ∈ W 1,N
0 (�) solve the Dirichlet problem (11), under the assumptions

(2)–(4). If φ ∈ L N ,λN log
λ−1
λ L(�), f ∈ L N ,λN log

λ−1
λ L(�), F ∈ L N ,λN log

λ−1
λ L(�,RN )

for some λ > 1, then (20) holds true. Moreover, if φ, f ∈ L N ,∞ logγ L(�), F ∈
L N ,∞ logγ L(�,RN ) for some γ > 1, then u ∈ L∞(�).
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The first part of previous theoremwould dare to say that boundedness of solutions to problem
(9) can be obtained only by assuming that

a ∈ clos
(

L N ,∞ log L(�), L∞(�)
)

and f , F ∈ L N ,∞ log L(�).

Here clos
(
L N ,∞ log L(�), L∞(�)

)
denotes the closure of L∞(�) in L N ,∞ log L(�), or

equivalently the class of all g ∈ L N ,∞ log L(�) such that

distL N ,∞ log L(�)(g, L∞(�)) = 0

so in particular, recalling that

distL N ,∞ log L(�)( f , L∞(�)) = lim sup
λ→∞

λ (μa(λ))1/N log
|�|

μa(λ)
.

then clos
(
L N ,∞ log L(�), L∞(�)

)
contains any function such that

ess sup
λ>0

λ (μa(λ))1/N
(
1 + log

|�|
μa(λ)

)
ρ(λ) < ∞

withρ being a positive function such that limλ→∞ ρ(λ) = ∞. The following counterexample
shows that the set of assumptions we introduced before does not lead to boundedness of
solutions, even if the stronger assumption

f , F ∈ clos
(

L N ,∞ log L(�), L∞(�)
)

is in charge.

Example 7.1 Let θ ∈ (0, 1) and B the unit ball inR2. Consider, for u ∈ W 1,2
0 (B) the equation

⎧⎨
⎩

−�u − div

(
a(|x |)u(x)

x

|x |
)

= −div

(
F(|x |) x

|x |
)

in B

u = 0 on ∂ B
(62)

with

a(r) = 1

r (1 − log r) (1 − log (1 − log r))
, F(r) = − 1

r (1 − log r) (1 − log (1 − log r))θ
,

for r ∈(0,1). In particular,a ∈ L2,∞(log L)(log log L)(B) and F ∈ L2,∞(log L)(log log L)θ (B),
which canbedefined in anobviouswayandare both contained in clos

(
L2,∞ log L(B), L∞(B)

)
.

It can be shown that the function

u(x) = 1

θ
(1 − log (1 − log |x |)) (

1 − (1 − log (1 − log |x |))−θ
)

is the unique solution of problem (62). ��
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