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Abstract
Inspired by the construction of Bernstein andKantorovich operators, we introduce a family of
positive linear operators Kn preserving the affine functions. Their approximation properties
are investigated and compared with similar properties of other operators. We determine the
central moments of all orders of Kn and use them in order to establish Voronovskaja type
formulas. A special attention is paid to the shape preserving properties. The operators Kn

preserve monotonicity, convexity, strong convexity and approximate concavity. They have
also the property of monotonic convergence under convexity. All the established inequalities
involving convex functions can be naturally interpreted in the framework of convex stochastic
ordering.

Keyword Bernstein–Kantorovich operators · Shape preserving properties · Inequalities for
convex functions

Mathematics Subject Classification 41A36 · 26A51

1 Introduction

The classical Bernstein operators are the prototypical positive linear operators used in
Approximation Theory. They approximate the continuous functions, preserve the functions
e0(x) = 1 and e1(x) = x and have remarkable shape preserving properties. The classical
Kantorovich operators can be used to approximate integrable functions and preserve e0, but
not e1. Their properties were intensively investigated from several points of view (see, e.g.,
[2, 3, 7, 8, 14–16] and the references therein). Some papers (see, e.g., [6, 28]) are devoted to
modifying the Kantorovich operators in order to preserve e0 and e1. Beside their importance
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in classical Aproximation Theory, the Kantorovich polynomials play an important role in the
theory of generalized sampling operators. The classical sampling operators are of discrete
type and use point evaluations of the approximated function f . The Kantorovich type gener-
alized operators use mean values of f on suitable intervals and consequently perform better
than the classical ones from several points of view (see, e.g., [11–13] and the references
therein).

In this paper we introduce a family of Bernstein–Kantorovich type operators Kn preserv-
ing the affine functions. Their structure is inspired by the construction of the Kantorovich
and Bernstein operators. The family depends on several parameters. In a limiting case the
operatorsKn reduce to Bernstein operators. For special parameters one obtains the operators
investigated in [28]. As mentioned above, the classical Kantorovich operators were the start-
ing point for new developments in the theory of generalized sampling operators, leading to
important results in digital image processing with medical and industrial applications. Our
modified operators Kn could also be used in this context.

The operators Kn are defined as follows. For a given integer n ≥ 2 let an,1, . . . , an,n−1

be real numbers such that

0 < an,k ≤ 1

n
, k = 1, . . . , n − 1. (1.1)

Define the functionals Fn,k : C[0, 1] → R as

Fn,0( f ) := f (0), Fn,n( f ) := f (1),

Fn,k( f ) := 1

2an,k

∫ k
n +an,k

k
n −an,k

f (t)dt, k = 1, . . . , n − 1. (1.2)

Let pn,k(x) := (nk
)
xk(1 − x)n−k, k = 0, 1, . . . , n, x ∈ [0, 1].

Consider the operators Kn defined by

Kn f (x) :=
n∑

k=0

Fn,k( f )pn,k(x), f ∈ C[0, 1], x ∈ [0, 1]. (1.3)

They are positive linear operators on C[0, 1] and
Kne0 = e0, Kne1 = e1, (1.4)

where e j (x) := x j , j = 0, 1, . . . , x ∈ [0, 1].
Section 2 contains the Voronovskaja type formula for the sequence Kn , which coincides

with the corresponding formula for the sequence of Bernstein operators Bn . Proposition 2.1
presents an example of a function for which the approximation in the sense of Voronovskaja’s
formula, provided by Kn , is better than that provided by the classical Kantorovich opera-
tors. The central moments of Kn are described in Proposition 2.2 and used to present the
Voronovskaja formula of order two for the sequenceKn . The operatorsKn have useful shape
preserving properties. Theorem 3.1 shows that they preserve the monotonicity. The images
of a convex function f under Bn , Kn and the genuine Berstein–Durrmeyer operators Un are
compared in Sect. 4. The proof of the main result Theorem 4.1 is based on Ohlin’s Lemma,
a result from the theory of convex stochastic ordering (see, e.g., [22, 23]). In fact, all the
inequalities presented in this paper and involving convex functions have natural interpreta-
tions in the framework of convex stochastic ordering. Theorem 5.1 deals with the preservation
of convexity. Theorems 5.2 and 5.3 describe the behavior of the operatorsKn with respect to
the parameters in their structure. Themonotonic convergence under convexity is an important
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property of the Bernstein operators. Theorem 6.1 shows that the operators Kn have also this
property. Strongly convex functions and approximately concave functions were investigated
in several papers. The preservation of the corresponding properties under the Bernstein oper-
ators was studied in [18]. The preservation of these properties under Kn is presented in Sect.
7. Section 8 is devoted to conclusions and further work.

2 Voronovskaja type results

Let Bn , n ≥ 1, be the classical Bernstein operators,

Bn f (x) :=
n∑

k=0

f

(
k

n

)
pn,k(x), f ∈ C[0, 1], x ∈ [0, 1].

According to Voronovskaja’s formula,

lim
n→∞ n(Bn f (x) − f (x)) = x(1 − x)

2
f ′′(x), f ∈ C2[0, 1], (2.1)

uniformly on [0, 1].
Theorem 2.1 For each f ∈ C2[0, 1] we have

lim
n→∞ n (Kn f (x) − f (x)) = x(1 − x)

2
f ′′(x), (2.2)

uniformly on [0, 1].
Proof Let us remark that for k = 1, . . . , n − 1,

Fn,k(e2) =
(
k

n

)2
+ 1

3
a2n,k .

On the other hand, for f ∈ C2[0, 1] we have (see, e.g., [4, Lemma 4.1])

Fn,k( f ) − f

(
k

n

)
=
(
Fn,k(e2) −

(
k

n

)2) f ′′(ξn,k)

2

with a certain ξn,k ∈ [0, 1]. Therefore,

Fn,k( f ) − f

(
k

n

)
= 1

6
a2n,k f

′′(ξn,k), k = 1, . . . , n − 1. (2.3)

Using (2.3) we can write

n(Kn f (x) − f (x)) = n (Kn f (x) − Bn f (x)) + n (Bn f (x) − f (x))

= 1

6
n
n−1∑
k=1

pn,k(x)a
2
n,k f

′′(ξn,k) + n (Bn f (x) − f (x)) .

Due to (1.1) we have∣∣∣∣∣
1

6
n
n−1∑
k=1

pn,k(x)a
2
n,k f

′′(ξn,k)

∣∣∣∣∣ ≤
1

6n
‖ f ′′‖∞

(
1 − (1 − x)n − xn

)→ 0

uniformly on [0, 1]. Combined with (2.1), this leads to (2.2) and the proof is finished. 	
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Let Kn , n ≥ 1, be the classical Kantorovich operators,

Kn f (x) := (n + 1)
n∑

k=0

pn,k(x)
∫ k+1

n+1

k
n+1

f (t)dt, f ∈ C[0, 1].

It is known (see [10]) that

lim
n→∞ n(Kn f (x) − f (x))

= x(1 − x)

2
f ′′(x) +

(
1

2
− x

)
f ′(x) =: V f (x), f ∈ C2[0, 1], x ∈ [0, 1].

Set W f (x) := x(1 − x)

2
f ′′(x) (see (2.2).

Proposition 2.1 Let f ∈ C2[0, 1] be decreasing on [0, 1], concave on
[
0,

1

2

]
and convex on[

1

2
, 1

]
.

Then,

|V f (x)| ≥ |W f (x)|, x ∈ [0, 1]. (2.4)

Proof It is easy to verify that for x ∈ [0, 1
2

]
,

|V f (x)| = |W f (x)| −
(
1

2
− x

)
f ′(x) ≥ |W f (x)|,

while for x ∈
[
1

2
, 1

]
,

|V f (x)| = |W f (x)| +
(
1

2
− x

)
f ′(x) ≥ |W f (x)|.

This concludes the proof. 	

The inequality (2.4) shows that, from the point of view of Voronovskaja’s formula, the

approximation of f furnished by Kn is better than that provided by Kn . For other results of
this type see [5]. In fact, the following figures show that for the functions f (x) = cos(πx)
and f (x) = arctan(x − 1/2), x ∈ [0, 1],

|Kn f (x) − f (x)| ≤ |Kn f (x) − f (x)|.

Remark 2.1 If an,k := 1

n

k

2k + 1
, k = 1, . . . , n − 1, the operators Kn reduce to the operators

K ∗
n from [28]. A Voronovskaja type formula for the sequence (K ∗

n ) was proved in [28, p.
6194].

In the rest of this section we take an,k = θ

n
, k = 1, . . . , n − 1, for a given θ ∈ (0, 1]

and we denote by Kθ
n the corresponding operators Kn . The next result presents the relation

between central moments of Kθ
n and those of Bn .
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Fig. 1 Graph of Kn f , Kn f and
f for n = 10 and an,k = 1/2n

Fig. 2 Graph of |Kn f − f | and
|Kn f − f | for n = 10,
an,k = 1/2n

Fig. 3 Graph of Kn f , Kn f and
f for n = 4 and an,k = 1/2n
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Fig. 4 Graph of |Kn f − f | and
|Kn f − f | for n = 4,
an,k = 1/2n

Proposition 2.2 For k ≥ 1 one has

(i) Kθ
n

(
(t − x)2k; x) = Bn

(
(t − x)2k; x)+

k∑
j=1

1

2 j + 1

(
2k

2 j

)

×
(

θ

n

)2 j [
Bn
(
(t − x)2k−2 j ; x)− (1 − x)nx2k−2 j − xn(1 − x)2k−2 j

]
;

(ii) Kθ
n

(
(t − x)2k−1; x) = Bn

(
(t − x)2k−1; x)+

k−1∑
j=1

1

2 j + 1

(
2k − 1

2 j

)

×
(

θ

n

)2 j [
Bn
(
(t − x)2k−1−2 j ; x)+ (1 − x)nx2k−1−2 j − xn(1 − x)2k−1−2 j

]
.

Proof The proof is based on straightforward calculation and we omit it. 	

Remark 2.2 The central moments of Bernstein operators are investigated in detail in [9, Sect.
2.9]. In particular it is known that

Bn
(
(t − x)s; x) = O

(
n

−
[
s+1
2

])
,

where [a] is the integer part of a.
Combined with Proposition 2.2 this leads to

Kθ
n

(
(t − x)s; x) = O

(
n

−
[
s+1
2

])
.

The important conclusion is that the classical result of Sikkema [26] can be applied to the
sequence (Kθ

n). So, in this case we have another proof of Theorem 2.1 and moreover, for
f ∈ C4[0, 1], x ∈ [0, 1],

lim
n→∞ n

[
n
(Kθ

n f (x) − f (x)
)− x(1 − x)

2
f (2)(x)

]

=
{
0, x ∈ {0, 1},
1

6
f (2)(x) + 1

6
x(1 − x)(1 − 2x) f (3)(x) + 1

8
x2(1 − x)2 f (4)(x), 0 < x < 1.
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It is well known that (see, e.g., [1])

lim
n→∞ n

[
n (Bn f (x) − f (x)) − x(1 − x)

2
f (2)(x)

]

= 1

6
x(1 − x)(1 − 2x) f (3)(x) + 1

8
x2(1 − x)2 f (4)(x), 0 ≤ x ≤ 1.

We conclude that

lim
n→∞ n2

(Kθ
n f (x) − Bn f (x)

) =
{
0, x ∈ {0, 1},
1

6
f (2)(x), 0 < x < 1.

3 Kn and increasing functions

Consider the general case, i.e., 0 < an,k ≤ 1/n.

Theorem 3.1 If f ∈ C[0, 1] is increasing, then Kn f is increasing.

Proof Using p′
n,k(x) = n

(
pn−1,k−1(x) − pn−1,k(x)

)
, n ≥ 1, we get

(Kn f )
′(x) = n

n−1∑
k=0

(
Fn,k+1( f ) − Fn,k( f )

)
pn−1,k(x).

Clearly

Fn,1( f ) − Fn,0( f ) = 1

2an,1

∫ 1
n +an,1

1
n −an,1

f (t)dt − f (0) ≥ 0

and

Fn,n( f ) − Fn,n−1( f ) ≥ 0.

So, let k ∈ {1, . . . , n − 1}. Then

Fn,k+1( f ) − Fn,k( f ) = 1

2an,k+1

∫ k+1
n +an,k+1

k+1
n −an,k+1

f (t)dt − 1

2an,k

∫ k
n +an,k

k
n −an,k

f (t)dt

= 1

2an,k

∫ k
n +an,k

k
n −an,k

[
f

(
an,k+1

an,k

(
s − k

n

)
+ k + 1

n

)
− f (s)

]
ds.

Moreover, for s ∈
[
k

n
− an,k,

k

n
+ an,k

]
we have

an,k+1

an,k

(
s − k

n

)
+ k + 1

n
≥ s

and so

Fn,k+1( f ) − Fn,k( f ) ≥ 0.

Summing-up, we see that (Kn f )′ ≥ 0. 	
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4 Approximating convex functions

A well known consequence of (1.4) is

Proposition 4.1 If f ∈ C[0, 1] is convex, then
Kn f ≥ f , n ≥ 1. (4.1)

In order to prove the main result, Theorem 4.1, we need two lemmas.

Lemma 4.1 Let i ≥ 1, j ≥ 1 be integers. Then

γi, j := (i + j)!
(i + j)i+ j

i i

i !
j j

j ! ≤ 1

2
. (4.2)

Proof First, we have

γi, j+1

γi, j
=
(
1 + 1

j

) j (
1 + 1

i + j

)−(i+ j)

< 1.

Then γi, j ≤ γi,1 =
(
1 + 1

i

)−i

≤ 1

2
, and the proof is completed. 	


Lemma 4.2 (Ohlin’s Lemma) [22] Let X, Y be two random variables such that EX = EY .
If the distribution functions FX , FY cross exactly one time, i.e., for some x0 holds

FX (x) ≤ FY (x) if x < x0 and FX (x) ≥ FY (x) if x > x0,

then E f (X) ≤ E f (Y ), for all convex functions f : R → R.

Remark 4.1 Szostok noticed in [27] that if the measures μX , μY corresponding to X , Y ,
respectively, are concentrated on the interval [a, b], then, in fact, the relationE f (X) ≤ E f (Y )

holds for all convex functions f : R → R if and only if this inequality is satisfied for all
continuous convex functions f : [a, b] → R.

Consider the genuine Bernstein–Durrmeyer operators Un defined by

Un f (x) := f (0)pn,0(x) + f (1)pn,n(x)

+(n − 1)
n−1∑
k=1

(∫ 1

0
pn−2,k−1(t) f (t)dt

)
pn,k(x).

Now we are in a position to state

Theorem 4.1 If an,k := 1

n
, 1 ≤ k ≤ n − 1, and f ∈ C[0, 1] is convex, then

f ≤ Bn f ≤ Kn f ≤ Un f . (4.3)

Proof The first inequality is well known, as a consequence of the fact that Bn preserves the
affine functions. According to the Hermite–Hadamard inequality we have

f

(
k

n

)
≤ n

2

∫ k+1
n

k−1
n

f (t)dt, k = 1, . . . , n − 1,
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and this implies the second inequality in (4.3). So, it remains to prove that

n

2

∫ k+1
n

k−1
n

f (t)dt ≤ (n − 1)
∫ 1

0
pn−2,k−1(t) f (t)dt, k = 1, . . . , n − 1. (4.4)

To this end, fix k ∈ {1, . . . , n − 1} and consider a random variable X uniformly dis-

tributed on

[
k − 1

n
,
k + 1

n

]
and a Beta-type random variable Y having the density (n −

1)pn−2,k−1(t), t ∈ [0, 1]. The distribution function of X is

FX (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ≤ k − 1

n
,

1

2
(nx − k + 1),

k − 1

n
< x ≤ k + 1

n
,

1, x >
k + 1

n
,

and the distribution function of Y is

FY (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ 0,∫ x

0
(n − 1)pn−2,k−1(t)dt, x ∈ (0, 1],

1, x > 1.

We have EX = EY = k

n
, k = 1, . . . , n − 1.

(1) Let k = 1. Then

FX (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 0,
1

2
nx, 0 < x ≤ 2

n
,

1, x >
2

n
,

and

FY (x) =
⎧⎨
⎩
0, x ≤ 0,
1 − (1 − x)n−1, 0 < x ≤ 1,
1, x ≥ 1.

It is easy to prove the existence of x0 ∈ (0, 1) from Ohlin’s Lemma.
(2) The case k = n − 1 can be treated similarly.
(3) It remains to consider the case 2 ≤ k ≤ n − 2. Define H(x) := FY (x) − FX (x), x ∈ R.

Clearly

H(x) ≥ 0, x ∈
(

−∞,
k − 1

n

)
and H(x) ≤ 0, x ∈

(
k + 1

n
,∞
)

.

Moreover, H

(
k − 1

n

)
> 0 and H

(
k + 1

n

)
< 0. For

k − 1

n
< x <

k + 1

n
we have

H ′(x) = (n − 1)pn−2,k−1(x) − n

2

≤ (n − 1)pn−2,k−1

(
k − 1

n − 2

)
− n

2

123
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= (n − 1)
(n − 2)!

(n − 2)n−2

(k − 1)k−1

(k − 1)!
(n − k − 1)n−k−1

(n − k − 1)! − n

2
.

Using Lemma 4.1 we get

H ′(x) ≤ n − 1

2
− n

2
= −1

2
.

Therefore H is strictly decreasing on

[
k − 1

n
,
k + 1

n

]
and the existence of x0 from Ohlin’s

Lemma is proved. Summing-up, according to Ohlin’s Lemma we have E f (X) ≤ E f (Y )

and this is (4.4). 	


Returning to the general case with 0 < an,k ≤ 1

n
we have the following two remarks

Remark 4.2 Recall the operators K ∗
n from [28] (see also Remark 2.1). Using the technique

based on Ohlin’s lemma, it is not difficult to prove that for each convex function f ∈ C[0, 1]
we have

(i) If 0 < an,k ≤ 1

3n
, k = 1, . . . , n − 1, then f ≤ Kn f ≤ K∗

n f ;

(ii) If
n − 1

2n − 1

1

n
≤ an,k ≤ 1

n
, k = 1, . . . , n − 1, then f ≤ K ∗

n f ≤ Kn f .

Remark 4.3 We have

Kne2(x) − e2(x) = x(1 − x)

n
+ 1

3
a2n,k

[
1 − (1 − x)n − xn

] ≤ 4

3

x(1 − x)

n
,

Une2(x) − e2(x) = 2x(1 − x)

n + 1
.

Therefore, in light of the classical result of Shisha–Mond [25],

|Kn f (x) − f (x)| ≤ 2ω

(
f ;
√
4

3

x(1 − x)

n

)
,

|Un f (x) − f (x)| ≤ 2ω

(
f ;
√
2x(1 − x)

n + 1

)
.

So, from this point of view, the approximation of a function f ∈ C[0, 1] provided by Kn is
better than that provided by Un .

5 Kn and convex functions

In this section we take an,k := θ

n
, k = 1, . . . , n − 1, for a given θ ∈ (0, 1]. Consequently,

we denote the functionals by Fθ
n,k and the operators by Kθ

n . So, we have

Fθ
n,k( f ) := n

2θ

∫ k+θ
n

k−θ
n

f (t)dt, k = 1, . . . , n − 1.
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Theorem 5.1 If f ∈ C[0, 1] is convex, then Kθ
n f is convex.

Proof First, we have

(Kθ
n f )

′′(x) = n(n − 1)
n−2∑
k=0

(
Fθ
n,k+2( f ) − 2Fθ

n,k+1( f ) + Fθ
n,k( f )

)
pn−2,k(x)

(i) In order to prove that Fθ
n,2( f )−2Fθ

n,1( f )+ Fθ
n,0( f ) ≥ 0, it suffices to show that it holds

for the functions ϕ(t) = 1, ϕ(t) = t , ϕ(t) = max{t − x, 0}, t, x ∈ [0, 1] (see [19, p. 645,
B.4. Proposition and B.4.a. Proposition]). This can be done by elementary calculations.

(ii) The proof of the inequality

Fθ
n,n( f ) − 2Fθ

n,n−1( f ) + Fθ
n,n−2( f ) ≥ 0

is similar.
(iii) It remains to prove that

Fθ
n,k+2( f ) − 2Fθ

n,k+1( f ) + Fθ
n,k( f ) ≥ 0, k = 1, . . . , n − 3.

This follows by integrating

f

(
t − 1

n

)
+ f

(
t + 1

n

)
≥ 2 f (t),

1

n
≤ t ≤ n − 1

n

on the interval

[
k + 1 − θ

n
,
k + 1 + θ

n

]
.

	

Theorem 5.2 If f ∈ C[0, 1] is convex, then Kσ

n f ≤ Kτ
n f whenever 0 < σ < τ ≤ 1.

Proof It suffices to prove that Fσ
n,k( f ) ≤ Fτ

n,k( f ), k = 1, . . . , n − 1. In fact, we will prove
that

d

dθ
Fθ
n,k( f ) ≥ 0, 0 < θ ≤ 1.

Indeed,

d

dθ
Fθ
n,k( f ) = − n

2θ2

∫ k+θ
n

k−θ
n

f (t)dt + n

2θ

[
1

n
f

(
k + θ

n

)
+ 1

n
f

(
k − θ

n

)]

= 1

θ

⎡
⎢⎢⎣

f

(
k − θ

n

)
+ f

(
k + θ

n

)

2
− n

2θ

∫ k+θ
n

k−θ
n

f (t)dt

⎤
⎥⎥⎦ ≥ 0, (5.1)

where the last inequality follows from the Hermite–Hadamard inequality. 	

In the next result we estimate the differnce between Kτ

n f and Kσ
n f .

Theorem 5.3 Let 0 < σ < τ ≤ 1, f ∈ C2[0, 1] and x ∈ [0, 1]. Then
∣∣Kτ

n f (x) − Kσ
n f (x)

∣∣ ≤ τ(τ − σ)
1

3n2
‖ f ′′‖∞(1 − (1 − x)n − xn),

where ‖ · ‖∞ is the supremum norm.
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Proof Denote ψn,k(θ) := Fθ
n,k( f ), θ ∈ (0, 1]. We have, for a suitable θ ∈ (σ, τ ),

|ψn,k(τ ) − ψn,k(σ )| = (τ − σ)|ψ ′
n,k(θ)|. (5.2)

Using (5.1) we can write

d

dθ
ψn,k(θ) = 1

θ

⎡
⎢⎢⎣

f

(
k − θ

n

)
+ f

(
k + θ

n

)

2
− n

2θ

∫ k+θ
n

k−θ
n

f (t)dt

⎤
⎥⎥⎦ . (5.3)

Applying the trapezoidal rule we get

∣∣∣∣∣∣∣∣

f

(
k − θ

n

)
+ f

(
k + θ

n

)

2
− n

2θ

∫ k+θ
n

k−θ
n

f (t)dt

∣∣∣∣∣∣∣∣
≤ θ2

3n2
‖ f ′′‖∞. (5.4)

From (5.3) and (5.4) it follows that

|ψ ′
n,k(θ)| ≤ τ

3n2
‖ f ′′‖∞.

Combined with (5.2) this leads to

|Fτ
n,k( f ) − Fσ

n,k( f )| ≤ τ(τ − σ)
1

3n2
‖ f ′′‖∞.

Therefore,

∣∣Kτ
n f (x) − Kσ

n f (x)
∣∣ ≤

n−1∑
k=1

pn,k(x)|Fτ
n,k( f ) − Fσ

n,k( f )|

≤ τ(τ − σ)
1

3n2
‖ f ′′‖∞(1 − (1 − x)n − xn)

and this concludes the proof. 	


Remark 5.1 For σ → 0, from Theorem 5.3 we get

∣∣Kτ
n f (x) − Bn f (x)

∣∣ ≤ τ 2

3n2
‖ f ′′‖∞(1 − (1 − x)n − xn).

Estimating directly with (2.3) we obtain

∣∣∣∣Fτ
n,k( f ) − f

(
k

n

)∣∣∣∣ =
(
Fτ
n,k(e2) −

(
k

n

)2) | f ′′(ξ)|
2

≤ 1

6

(τ

n

)2 ‖ f ′′‖∞.

This produces the better result

∣∣Kτ
n f (x) − Bn f (x)

∣∣ ≤ τ 2

6n2
‖ f ′′‖∞(1 − (1 − x)n − xn).
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6 Monotonic convergence under convexity

In this section we consider again the case an,k = θ/n, n ≥ 1, k = 1, . . . , n − 1, for a given
θ ∈ (0, 1].

Theorem 6.1 If f ∈ C[0, 1] is convex, then Kθ
n f ≥ Kθ

n+1 f , n ≥ 2.

Proof First, we have

Kθ
n f (x) − Kθ

n+1 f (x)

=
n∑

k=1

(
n + 1

k

)[
k

n + 1
Fθ
n,k−1( f ) + n + 1 − k

n + 1
Fθ
n,k( f ) − Fθ

n+1,k( f )

]
xk(1 − x)n+1−k .

(6.1)

The proof is similar to that of Proposition 2.10 from [9] and we omit it. It follows that

Kθ
n f (x) − Kθ

n+1 f (x)

= n(n + 1)

2θ
x(1 − x)n

∫ 1+θ
n

1−θ
n

[
1

n + 1
f (0) + n

n + 1
f (s) − f

(
n

n + 1
s

)]
ds

+ n(n + 1)

2θ
xn(1 − x)

∫ n−1+θ
n

n−1−θ
n

[
n

n + 1
f (s) + 1

n + 1
f (1) − f

(
n

n + 1
s + 1

n + 1

)]
ds

+ n

2θ

n−1∑
k=2

xk(1 − x)n+1−k
(
n + 1

k

)

×
∫ k−1+θ

n

k−1−θ
n

[
k

n + 1
f (s) + n + 1 − k

n + 1
f

(
s + 1

n

)
− f

(
n

n + 1
s + 1

n + 1

)]
ds

= I1 + I2 + I3.

Since f is convex, by Jensen inequality we have

1

n + 1
f (0) + n

n + 1
f (s) − f

(
n

n + 1
s

)
≥ 0,

n

n + 1
f (s) + 1

n + 1
f (1) − f

(
n

n + 1
s + 1

n + 1

)
≥ 0,

and so I1 ≥ 0, I2 ≥ 0. Concerning I3, we have

Ĩ3 :=
∫ k−1+θ

n

k−1−θ
n

[
k

n + 1
f (s) + n + 1 − k

n + 1
f

(
s + 1

n

)
− f

(
n

n + 1
s + 1

n + 1

)]
ds

≥
∫ k−1+θ

n

k−1−θ
n

[
f

(
s + n + 1 − k

n(n + 1)

)
− f

(
n

n + 1
s + 1

n + 1

)]
ds

=
∫ k

n+1+ θ
n

k
n+1− θ

n

f (s)ds − n + 1

n

∫ k+θ
n+1

k−θ
n+1

f (s)ds.
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Let y(s) be a polynomial function of degree at most 1 whose graph is a support line to the

graph of f (s) at s = k

n + 1
. Then

∫ k
n+1+ θ

n

k
n+1− θ

n

y(s)ds = n + 1

n

∫ k+θ
n+1

k−θ
n+1

y(s)ds,

so that

Ĩ3 ≥
∫ k

n+1+ θ
n

k
n+1− θ

n

( f (s) − y(s)) ds − n + 1

n

∫ k+θ
n+1

k−θ
n+1

( f (s) − y(s)) ds.

Setting g(s) := f (s) − y(s) we have g(s) ≥ 0 and the above inequality can be written as

Ĩ3 ≥
(∫ k−θ

n+1

k
n+1− θ

n

g(s)ds − 1

n

∫ k
n+1

k−θ
n+1

g(s)ds

)

+
(∫ k

n+1+ θ
n

k+θ
n+1

g(s)ds − 1

n

∫ k+θ
n+1

k
n+1

g(s)ds

)
= J1 + J2.

Let h := g

(
k + θ

n + 1

)
. With notation from Fig. 5, using the convexity of g and elementary

geometric considerations we find that H = n + 1

n
h,

∫ k
n+1+ θ

n

k+θ
n+1

g(s)ds ≥ h + H

2

θ

n(n + 1)
= (2n + 1)hθ

2n2(n + 1)
,

∫ k+θ
n+1

k
n+1

g(s)ds ≤ hθ

2(n + 1)
.

Therefore, J2 ≥ 0, and similarly J1 ≥ 0. We conclude that Ĩ3 ≥ 0, hence I3 ≥ 0, and the
proof is complete.

	

Remark 6.1 Let μ, ν be probability distributions (Borel measures on R, μ(R)= ν(R)= 1).
If
∫

ϕ(x)dν(x) ≤ ∫ ϕ(x)dμ(x), for each ϕ : R → R convex, ν is said to be smaller than μ

in the convex stochastic order. One uses the notation ν ≤cx μ (see, e.g., [23, 24]).
The operators in this paper can be represented under the form

Ln f =
∫

f dμn, Mn f =
∫

f dνn,

with suitable probability distributions μn , νn .
Moreover, they satisfy inequalities of the form (see Theorems 4.1, 5.2, 6.1)

Mn f ≤ Ln f , for all convex functions f .

This is equivalent to

∫
f dνn ≤

∫
f dμn, for all convex functions f ,
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Fig. 5 Support for the proof of Theorem 6.1

and hence to

νn ≤cx μn .

Therefore, Theorems 4.1, 5.2, 6.1 have natural interpretations in the theory of convex
stochastic ordering.

7 K�
n and strongly convex functions withmodulus c

For the definitions of strongly convex functions and approximately concave functions with
modulus c see, e.g., [17, 18, 20, 21] and the references therein. We need the following
characterizations of these functions.

Lemma 7.1 (i) A function f : I → R is strongly convex with modulus c > 0 if and only if
the function g : I → R defined by g = f − ce2 is convex.

(ii) A function f : I → R is approximately concave with modulus c > 0 if and only if the
function g : I → R defined by g = f − ce2 is concave.

Theorem 7.1 (i) If f ∈ C[0, 1] is strongly convexwithmodulus c, thenKθ
n is strongly convex

with modulus c

(
1 − θ2

6

)
n − 1

n
.

(ii) Let f ∈ C[0, 1] be approximately concave with modulus c, then Kθ
n is approximately

concave with modulus c

(
1 − θ2

3 · 2n−2

)
n − 1

n
.

Proof (i) Let f ∈ C[0, 1] be strongly convex with modulus c. Then f − ce2 is convex.
According to Theorem 5.1, Kθ

n f − cKθ
ne2 is convex. Therefore,

(Kθ
n f )

′′ ≥ c(Kθ
ne2)

′′.

We have

Kθ
ne2(x) = n − 1

n
x2 + 1

n
x + θ2

3n2
[
1 − (1 − x)n − xn

]
,
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and so

(Kθ
ne2)

′′(x) = 2
n − 1

n
− θ2

3

n − 1

n

[
(1 − x)n−2 + xn−2]

≥
(
2 − θ2

3

)
n − 1

n
.

It follows that

(Kθ
ne2)

′′(x) ≥ c

(
2 − θ2

3

)
n − 1

n
,

i.e., Kθ
n f − c

(
1 − θ2

6

)
n − 1

n
e2 is convex. This shows that Kθ

n f is strongly convex with

modulus c

(
1 − θ2

6

)
n − 1

n
.

(ii) The proof is similar to the previous one and we omit it. 	


8 Conclusions and further work

Let c ∈ R, n ∈ R, n > c for c ≥ 0 and −n/c = l ∈ N for c < 0. Furthermore, let
Ic = [0,∞) for c ≥ 0 and Ic = [0,−1/c] for c < 0. Take f : Ic −→ R given in such a way
that the corresponding integrals and series are convergent.

Let 0 < an,k <
1

n
. Define

K[c]
n ( f ; x) = f (0)p[c]

n,0(x) + n

2

∞∑
k=1

p[c]
n,k(x)

∫ k
n +an,k

k
n −an,k

f (t)dt, c ≥ 0,

K[c]
n ( f ; x) = f (0)p[c]

n,0(x) + f

(
l

n

)
p[c]
n,l(x) + n

2

l−1∑
k=1

p[c]
n,k(x)

∫ k
n +an,k

k
n −an,k

f (t)dt, c < 0,

with the corresponding basis functions

p[c]
n,k(x) =

⎧⎪⎪⎨
⎪⎪⎩

nk

k! x
ke−nx , c = 0,

nc,k

k! xk(1 + cx)−( n
c +k) , c �= 0,

(8.1)

and ac,k := ∏k−1
l=0 (a + cl), ac,0 := 1. As further work we propose to investigate the

operators K[c]
n .

We intend to consider all these modified Kantorovich operators in the framework of
generalized sampling operators with applications in medical and industrial domains.
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