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Abstract
Recently Tomasz Natkaniec in (Natkaniec in Rev R Acad Cenc Exactas Fís Nat Ser A
Mat RACSAM, 115(1):10, 2021) studied the lineability problem for several classes of non-
measurable functions in two variables. In this note we improve his results in the direction of
algebrability. In particular, we show that most of the classes considered by Natkaniec contain
free algebras with 2c many generators.
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1 Introduction

The last 20 years have seen a huge development in the study of the existence of large and rich
algebraic structures within the subsets of linear spaces, function algebras and their Cartesian
products. The topic already has its own place in the Mathematical Subject Classification—
46B87, and both a monograph (see [1]) and a review article (see [6]) are devoted to it. The
customary name for problems in this area is lineability or algebrability problems. These
problems occur in many areas of mathematics.
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Recently Tomasz Natkaniec in [18] considered the lineability problem for several classes
of non-measurable functions of two variables. Most of his results are optimal in the sense
that given families are 2c-lineable in the algebra of all real functions of two variables which
is itself of cardinality 2c.

Improving all the results of [18] in the direction of algebrability is the main goal of this
paper:

• In [18, Theorem 3 and Theorem 9] it is proved that the family of all sup-measurable
functions that are non-measurable is 2c-lineable; first it is proved under CH, then under
non(N ) = c. Both of these imply condition (A) (see Sect. 2.7), which in turn implies
that the family is strongly 2c-algebrable, see Theorem 5.

• In [18, Theorem 4 and Theorem 10] it is proved that the family of all weakly sup-
measurable functions which are neither measurable nor sup-measurable is 2c-lineable;
first it is proved under CH, then under non(N ) = c. We prove in Theorem 6 that (A)
implies that the family is strongly 2c-algebrable.

• In [18, Theorem 12] it is proved that the family of all non-measurable separately mea-
surable functions (see Sect. 2.3) is 2c-lineable. We prove that this family is strongly
2c-algebrable, see Theorem 8.

• In [18, Theorem 13] it is proved that the family of all non-measurable functions F : R2 →
Rwhose all vertical and horizontal sections areDarbouxBaire one is c-lineable.We prove
that this family is strongly c-algebrable, see Theorem 9. Our proof is relatively simple
compared to Natkaniec’s.

• In [18, Theorem 16] it is proved that the family of all non-measurable functions having
all vertical sections approximately continuous (see Sect. 2.5) and all horizontal sections
measurable is 2c-lineable under the assumption that cov(N ) = add(N ) (see Sect. 2.8).
In Theorem 10 we improve it to strong 2c-algebrability.

For completeness, we show that the family of all measurable functions that are not sup-
measurable is strongly 2c-algebrable, see Theorem 4. Furthermore, in Sect. 2.6 we define a
family of sup-Jones functions. We prove that this family is 2c-lineable, see Theorem 11.

The paper is organised as follows. In Sect. 2 we give all the ingredients. We have divided
it into several subsections to help the reader navigate. In Sect. 3 we cook up the proofs.

2 Preliminaries

2.1 Lineability and strong algebrability

Let L be a vector space, A ⊆ L and κ be a cardinal number. We say that A is κ-lineable if
A ∪ {0} contains a κ-dimensional subspace of L. If we take L to be a commutative algebra,
A ⊆ L, then we say that A is strongly κ-algebrable if A ∪ {0} contains a κ-generated
subalgebra B which is isomorphic to a free algebra.

Note that the set X = {xα : α < κ} is a set of free generators of some free algebra if
and only if the set of all elements of the form xk1

α1xk2
α2 · · · xkn

αn , where k1, k2, . . . , kn are non-
negative integers non-equal to 0 and α1 < α2 < . . . < αn < κ , is linearly independent;
equivalently, for any k ≥ 1, any non-zero polynomial P in k variables without a constant
term and any distinct xα1 , . . . , xαk ∈ X , we have that P(xα1 , . . . , xαk ) ∈ A \ {0}. Note that
if P(xα1 , . . . , xαk ) is non-zero for any distinct α1, . . . , αk , then {xα : α < κ} ⊆ A \ {0}
(consider P(x) = x) and elements of {xα : α < κ} are different (consider P(x, y) = x − y).
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We will use this observation without mentioning it in every single proof of algebrability or
lineability.

It turns out that RR, or equivalently Rc, contains a set of free generators with cardinality
2c, see [3].

2.2 Sup-measurable functions

Given a real function f in one variable and a real function F in two variables, we can define
the Carathéodory superposition of F and f as a real function F f in one variable given
by F f (x) = F(x, f (x)). A function F : R2 → R is said to be sup-measurable if F f is
Lebesgue measurable for every Lebesgue measurable f : R → R. By [5, Lemma 3.4] (this
lemma can be already found in [14, Lemma 1, p. 215], see also [15, Lemma 1, p. 312]),
it is sufficient to check the measurability of F f only for continuous functions f . There are
measurable functions that are not sup-measurable: consider F : R2 → R, F = χX×{0}, where
X ⊆ R is non-measurable. The problem whether sup-measurable functions are measurable
is undecidable in ZFC. On the one hand under the continuum hypothesis (CH) there is a sup-
measurable function that is non-measurable, see [11] and [16] for the first such constructions.
On the other hand there is a model of ZFC in which every sup-measurable function is
measurable [19].

In [14], the following notion has been introduced: a function F : R2 → R is weakly sup-
measurable if the superposition F f is measurable for any continuous and almost everywhere
differentiable function f : R → R.

2.3 Separately measurable functions

For a function F : R2 → R and y ∈ R we denote by F(·, y) the horizontal section of F at
y, i.e. the function x �→ F(x, y). Similarly, F(y, ·) is the vertical section of F at y.

We say that a function F : R2 → R is separately measurable if all horizontal and vertical
sections of F are measurable. A separately measurable function needs not to be measurable.
To see this, consider a set A ⊆ R

2 which has full outer measure but its intersection with each
vertical and each horizontal line is a finite set (e.g. A = ⋃

α<c Aα , where Aα, α < c, are like
in Lemma 1 for Y = R

2). A has full outer measure, but every vertical section of A is null.
Therefore, by Fubini’s Theorem, A is non-measurable. Consider the characteristic function
χA of A. Clearly χA is non-measurable. Let x ∈ R. Then {y ∈ R : (x, y) ∈ A} is finite. Since
y �→ χA(x, y) takes non-zero values on a finite set, it is measurable. Similarly, x �→ χA(x, y)

is measurable for every y ∈ R. So χA is separately measurable. Note that if F : R2 → R has
the property that {(x, y) : F(x, y) �= 0} ⊆ A, then F is separately measurable by the very
same argument.

The following observation, which is a slight modification of [18, Lemma 11], will be a
useful tool for us.

Lemma 1 Let Y ⊂ R
2 be a measurable set with positive measure. There exists a family

{Aα : α < c} of pairwise disjoint subsets of Y such that

(1) each Aα has full outer measure (in Y );
(2) all horizontal and vertical sections of

⋃
α<c Aα have at most one element.
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2.4 Darboux Baire one functions

We say that that a function f : R → R is Darboux if it has the intermediate value property.
We say that f is Baire one if it is a pointwise limit of a sequence of continuous functions.
The latter is equivalent to the fact that f −1[U ] is Fσ for any open U ⊆ R.

The next simple lemma will be a useful tool in our investigations.

Lemma 2 Let F1, F2, . . . , Fn be a partition of R into Fσ sets, f1, . . . , fn be Baire one
functions. Then � = ∑n

i=1 fiχFi is a Baire one function.

Proof Let U ⊆ R be open. Then

�−1[U ] =
{

x ∈ R :
n∑

i=1

fi (x)χFi (x) ∈ U

}

=
n⋃

i=1

{

x ∈ Fi :
n∑

i=1

fi (x)χFi (x) ∈ U

}

=
n⋃

i=1

{x ∈ Fi : fi (x) ∈ U } =
n⋃

i=1

(Fi ∩ f −1
i [U ])

is an Fσ set, since the family of all Fσ sets is closed under finite unions and intersections.
��

2.5 Approximately continuous functions

A function f : R → R is called approximately continuous if it is continuous in the density
topology, i.e. for any open set U ⊆ R the set f −1[U ] is measurable and has density one at
each of its points. It turns out that every approximately continuous function is Darboux of the
first Baire class. If N is a null set, then by Zahorski Theorem [7, Theorem 6.5] there exists
an approximately continuous function g : R → [0, 1] such that g−1(0) is a null cover of N .
Then every hn = n min{g, 1/n} : R → [0, 1] is approximately continuous as a composition
of a continuous function x �→ n min{x, 1/n} and an approximately continuous function g.
Furthermore, h−1

n (0) is a null cover of N and there exists n such that themeasure ofR\h−1
n (1)

is less than 1.

2.6 Jones functions

A function f : R → R is called a Jones function if for every closed set K ⊆ R
2 with an

uncountable projection on the x-axis we have f ∩ K �= ∅. Equivalently, if for any perfect
subset P ⊆ R and continuous function g : P → R we have f ∩ g �= ∅.

One can show that Jones functions are perfectly everywhere surjective and have connected
graphs (in fact, they are almost continuous in the sense of Stallings, see [13]).

Jones functions were introduced by F. B. Jones in [12]. The Author considered solutions
of the Cauchy equation f (x + y) = f (x) + f (y). He constructed a function that satisfies
the equation and the above definition.

One could ask if there is a function F : R2 → R for which all Carathéodory superpo-
sitions with continuous functions are Jones. Note that this problem is trivial – it suffices to
define F(x, y) = g(x), where g is any Jones function. Therefore we also consider inverted
Carathéodory superpositions: we say that a function F : R2 → R is sup-Jones if for every
continuous function f : R → R the functions F f (x) := F(x, f (x)), F f (x) := F( f (x), x)

are Jones.

123



On strong algebrability of families... Page 5 of 13    98 

2.7 Condition (A)

Consider the following condition.

(A) There exists a function f : R → R which is a union of a family of pairwise disjoint
partial functions { fα : α < c} such that each fα has positive outer measure and {x ∈
R : f (x) = g(x)} is a null set for each continuous g : R → R.

In [20] von Weizsäcker noted that if non(N ) := min{|A| : A ⊆ R is not a null set} = c,
then there exists a function f : R → R which has full outer measure and {x ∈ R : f (x) =
g(x)} is a null set for every continuous g : R → R. Under the same assumption, by [18,
Lemma 8], such a function can be decomposed into c many partial functions of full outer
measure. In fact, with the assumption non(N ) = c such a family of pairwise disjoint partial
functions can be defined in a similar way to von Weizsäcker’s definition of a single function.

Later we will prove that condition (A) implies strong 2c-algebrability of the family of all
sup-measurable functions which are non-measurable. Thus, by the result of Rosłanowski and
Shelah, [19] condition (A) is independent of ZFC. It is unclear to us whether condition (A)
is equivalent to the existence of a non-measurable sup-measurable function or to the equality
non(N ) = c.

2.8 Condition cov(N ) = add(N )

The minimal cardinal number κ such that the real line can be covered by κ many null sets
is denoted by cov(N ) and it is between ω1 and c. Similarly, the minimal cardinal number
κ such that some union of κ many null sets is not null is denoted by add(N ). Clearly
ω1 ≤ add(N ) ≤ cov(N ). The equality cov(N ) = add(N ) means that R can be covered by
κ many null sets but any union of less than κ many of them is null, where κ is the common
cardinal cov(N ) and add(N ). This condition is independent of ZFC, see [4] for details. For
example, it is fulfilled under CH, where both cov(N ) and add(N ) are ω1.

2.9 Almost perfectly everywhere surjective functions and Bernstein sets

We say that f : R → R is almost perfectly everywhere surjective if its range f [R] is one of
the following: R, [0,∞), or (−∞, 0], and f [P] = f [R] for any perfect set P ⊂ R. Note
that this notion is different from that of a perfectly everywhere surjective function known in
the literature, cf. [9]. Let us denote the family of all almost perfectly everywhere surjective
functions by APES. It follows from [3, Theorem 2.2] that APES is strongly 2c-algebrable.

This notion is connected to the following.A set B ⊆ R is called aBernstein set if B∩P �= ∅
and (R \ B) ∩ P �= ∅ for every perfect subset P of R. It is known that such sets are non-
measurable. Let f be an almost perfectly everywhere surjective function. Then f −1(x) is a
Bernstein set for every x ∈ f [R]. Therefore f is non-measurable and { f −1(x) : x ∈ f [R]}
is a partition of R.

2.10 Approximately differentiable and nowhere approximately differentiable
functions

A function f : R → R is said to be approximately differentiable at a point x ∈ R if there
exists a measurable set E ⊂ R such that x is its density point, and the restriction f � E is
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differentiable at x . A function f : R → R is nowhere approximately differentiable if it is
approximately differentiable at no x ∈ R.

We will use the following observation. Let g be a continuous and almost everywhere
differentiable function, and let f be a continuous and nowhere approximately differentiable
function. Then the set E := {x ∈ R : f (x) = g(x)} has measure zero. To see this, first
note that E is closed, since both g and f are continuous. Suppose, on the contrary, that E
has positive measure. By the Lebesgue Density Theorem, E has a density point, say x , at
which g is differentiable. This implies that f is approximately differentiable at x , which is
a contradiction.

2.11 Grande’s construction of non-measurable function with Darboux Baire one
sections

In [17] Lipiński constructed an example of a non-measurable function F : R2 → Rwhose all
vertical and horizontal sections are Darboux Baire one functions. Another such construction
is due to Grande [10, Theorem 2]. The paper is written in French and is therefore not easily
accessible. Here we present Grande’s construction, slightly modified for our purposes. The
difference is this. The function h : X → (0, 1] used below was constant and equal to 1 in
Grande’s original construction.

Let C ⊆ [0, 1] be a Cantor set of positive measure with 0, 1 ∈ C . Let a0 = 0, b0 = 1 and
{(an, bn) : n ≥ 1} be an enumeration of the gaps. Define

g(x) =
{

gn(x) if x ∈ (an, bn) for some n ≥ 1,

0 otherwise,

where gn : (an, bn) → (0, 1], n ≥ 1 are continuous surjections onto (0, 1], with
lim

x→a+
n

gn(x) = lim
x→b−

n

gn(x) = 0.

Due to the density of the gaps in C , any modification of the function g on C with values in
[0, 1] preserves the intermediate value property. Let B ⊆ C \ ⋃

n≥0{an, bn} be a closed set
with positive measure.

Let X ⊆ B × B be a non-measurable set in which all vertical and horizontal sections
have at most one element (e.g. X = ⋃

α<c Aα , where Aα, α < c, are like in Lemma 1 for
Y = B × B). Let h : X → (0, 1] be any function. Define

F[h](x, y) =

⎧
⎪⎨

⎪⎩

g(x) if x ∈ R \ B,

g(y) if x ∈ B and (x, y) /∈ X ,

h(x, y) if (x, y) ∈ X .

Note that F[h]−1(0) ∩ (C × C) = (C × C) \ X , so F[h] is non-measurable.
We will show that all vertical and horizontal sections of F[h] are Darboux Baire one

functions.
Let x ∈ R. If x ∈ R \ B, then F[h](x, ·) is constant. Assume that x ∈ B. Then F[h](x, ·)

is either g or g modified at some point y ∈ C , where (x, y) ∈ X , so it has the intermediate
value property. By Lemma 2, F[h](x, ·) is also Baire one.

Let y ∈ R. Consider the function

�(x) =
{

g(x) if x ∈ R \ B,

g(y) if x ∈ B.
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Note that F[h](·, y) is either � or � modified at one point x ∈ C , provided that (x, y) ∈ X ,
so it has the intermediate value property. By Lemma 2, F[h](·, y) is also Baire one.

2.12 Exponential like functions

We say that a function f : R → R is exponential like if

f (x) =
n∑

i=1

αi e
βi x , x ∈ R

for some positive integer n, non-zero real numbers α1, . . . , αn and distinct non-zero real
numbers β1, . . . , βn . The notion was described in [2], where the Authors proved that if
A ⊆ R

R is an arbitrary family and there exists a function F ∈ A such that f ◦ F ∈ A for
every exponential like function f , then A is strongly c-algebrable.

2.13 Ultrafilters on!

By an utrafilter onω wemean anymaximal non-trivial family of subsets ofω which is closed
under taking supersets and finite intersections. Endowing ω with the discrete topology, we
denote by βω its Stone-Čech compactification, that is, the set of all ultrafilters on ω endowed
with the topology which basic sets are of the form

βa = {U ∈ βω : a ∈ U },
where a ⊂ ω. We will identify ω with the family of all principal ultrafilters δn = {a ⊂
ω : n ∈ a}, n ∈ ω.

Using the fact that if X is a compact space and f : ω → X is any function, then f is
continuous and therefore there exists a continuous extension f : βω → X of f (see e.g.
Theorem 3.6.5 in [8]), we prove the following.

Lemma 3 Let f : ω → m be any function. Let f : βω → m be a continuous extension of f ,
let i < m and u = f −1(i). Then f (U ) = i for every U ∈ βu.

Proof The extenstion f exists as f is continuous. Take any U ∈ βu and suppose that
f (U ) �= i . Take a neighbourhood V of f (U ) with i /∈ V . Then there is basic open set βb

withU ∈ βb∩βu ⊂ f
−1[V ]. By the density ofω in βω, there is k ∈ ω∩βu∩βb ⊂ f

−1[V ],
so f (k) �= i . However, f (k) = i because k ∈ u, a contradiction. ��

3 Results

Theorem 4 The family of all measurable functions that are not sup-measurable is strongly
2c-algebrable.

Proof C is the Cantor ternary set. By {hξ : ξ < 2c} we denote a set of free generators of an
algebra in R

C . Let X ⊆ R be a non-mesurable set. For ξ < c we define

Fξ (x, y) = hξ (y)χX×C (x, y).

Then {(x, y) ∈ R
2 : Fξ (x, y) �= 0} is a null set for each ξ < c, so functions Fξ aremeasurable.

123



   98 Page 8 of 13 S. Głąb et al.

For ξ1 < ξ2 < · · · < ξk and polynomial P in k variables without constant term we have

F(x, y) := P(Fξ1 , Fξ2 , . . . , Fξk )(x, y) = P(hξ1(y), hξ2(y), . . . , hξk (y))χX×C (x, y).

Let y0 ∈ C be such that P(hξ1(y0), hξ2(y0), . . . , hξk (y0)) is non-zero. Define g to be a
constant function, for x ∈ R

g(x) = y0.

Then

Fg = P(hξ1(y0), hξ2(y0), . . . , hξk (y0))χX

is a scaled characteristic function of a non-measurable set X , so F is not sup-measurable. In
particular, F is non-zero. ��
Theorem 5 Assume (A). Then the family of all non-measurable sup-measurable functions is
strongly 2c-algebrable.

Proof Let f and fα , α < c, be as in (A). By {hξ : ξ < 2c} we denote a set of free generators
of an algebra in Rc. For ξ < c we define

Fξ (x, y) =
∑

α<c

hξ (α)χ fα (x, y).

For ξ1 < ξ2 < · · · < ξk and polynomial P in k variables without constant term we have

F := P(Fξ1 , Fξ2 , . . . , Fξk ) =
∑

α<c

P(hξ1(α), hξ2(α), . . . , hξk (α))χ fα

Since P(hξ1(β), hξ2(β), . . . , hξk (β)) is non-zero for some β < c, we have

fβ ⊆ F−1(P(hξ1(β), hξ2(β), . . . , hξk (β))) ⊆ f .

Therefore F−1(P(hξ1(β), hξ2(β), . . . , hξk (β))) has positive outer measure and null vertical
sections (as a subset of a graph of a function), so, by Fubini’s Theorem, it is non-measureable.
In particular, F is non-zero.

Let g : R → R be a continuous function. Note that if F(y, g(y)) �= 0, then y ∈ {x ∈
R : f (x) = g(x)}, which is a null set. So x �→ F(x, g(x)) is measurable, and consequently
F is sup-measurable. ��
Theorem 6 Assume (A). Then the family of all weakly sup-measurable functions that are
neither sup-measurable nor measurable is strongly 2c-algebrable.

Proof Let f and fα , α < c, be as in (A). Let {hξ : ξ < 2c} be a set of free generators of an
algebra inRc. Let {pξ : ξ < 2c} be a set of free generators spanning an algebra inAPES∪{0}
(in fact, we could replace APES by any strongly 2c-algebrable family of non-measurable
functions). Let h : R → R be a continuous nowhere approximately differentiable function.
For ξ < 2c we define Gξ : R2 → R as follows

Gξ (x, y) =
∑

α<c

hξ (α)χ fα\h(x, y) + pξ (x)χh(x, y).

For ξ1 < ξ2 < · · · < ξk and polynomial P in k variables without constant term we have

G := P(Gξ1 , . . . , Gξk ) =
∑

α<c

P(hξ1(α), . . . , hξk (α))χ fα\h + P(pξ1 (x), . . . , pξk (x))χh(x, y).
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Weneed to show thatG isweakly sup-measurable, non-measurable and is not sup-measurable
(then clearly G is also non-zero).

We already know that F := ∑
α<c P(hξ1(α), hξ2(α), . . . , hξk (α))χ fα is non-measurable

– see the proof ofTheorem5.Note that {(x, y) ∈ R
2 : F(x, y) �= G(x, y)} ⊆ {(x, h(x)) : x ∈

R}. Since the graph of h has measure zero, then G is also non-measurable.
Let us show that G is not sup-measurable. Consider Gh(x) = G(x, h(x)) = p(x)

where p(x) := P(pξ1(x), . . . , pξk (x)) is almost perfectly everywhere surjective. As we have
noticed in Section 2.9, almost perfectly everywhere surjective functions are non-measurable.
Therefore G is not sup-measurable.

To finish the proof we need to check that G is weakly sup-measurable. To do this, we fix
a continuous almost everywhere differentiable function g. Then

Gg(x) =
{

Fg(x) if h(x) �= g(x),

p(x) if h(x) = g(x).

Consider the set E := {x ∈ R : g(x) = h(x)}. As we have noticed in Section 2.10, E is a null
set. This shows that Gg and Fg are equal on a set of full measure. We have shown in the proof
of Theorem 5 that Fg is measurable, and so is Gg . Therefore G is weakly sup-measurable. ��
Corollary 7 Assume (A). The family of all weakly sup-measurable functions that are not
sup-measurable is strongly 2c-algebrable.

Theorem 8 The family of all non-measurable separately measurable functions is strongly
2c-algebrable.

Proof Let {hξ : ξ < 2c} denote a set of free generators of an algebra in Rc. Let {Aα : α < c}
be a family described in Lemma 1 (for Y = R

2). Let A = ⋃
α<c Aα . For ξ < 2c we define

Fξ : R2 → R as follows

Fξ (x, y) =
∑

α<c

hξ (α)χAα (x, y).

For ξ1 < ξ2 < · · · < ξk and polynomial P in k variables without constant term we have

F := P(Fξ1 , Fξ2 , . . . , Fξk ) =
∑

α<c

P(hξ1(α), hξ2(α), . . . , hξk (α))χAα .

Let us show the F is non-measurable. There exists β < c such that
P(hξ1(β), hξ2(β), . . . , hξk (β)) �= 0. Then

Aβ ⊆ F−1(P(hξ1(β), hξ2(β), . . . , hξk (β))) ⊆ A.

Therefore F−1(P(hξ1(β), . . . , hξk (β))) has positive outer measure (as a superset of Aβ )
and null vertical sections (as a subset of A), so, by Fubini’s Theorem, it is non-measureable.
Consequently, F is non-measurable. In particular, F is non-zero.

Since each vertical and horizontal section of A has at most one element and
{(x, y) : F(x, y) �= 0} ⊆ A, then, using what we observed in Sect. 2.3, we get that F is
separately measurable. ��
Theorem 9 The family of all non-measurable functions F : R2 → R whose all vertical and
horizontal sections are Darboux Baire one is strongly c-algebrable.
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Proof Here we follow the notation from Sect. 2.11. Let {Aα : α < c} be a family described
in Lemma 1 for Y = B × B Let h : X → (0, 1] be defined as follows

h(x, y) =
∑

α<c

rαχAα ,

where {rα : α < c} is a one-to-one enumeration of (0, 1]. We will show that the composition
f ◦ F[h] with any exponential like function f is a non-measurable function with Darboux
Baire one sections, which implies strong c-algebrability of the considered family (see Sect.
2.12).

Indeed, let y ∈ R and f be any exponential like function. Note that

( f ◦ F[h])(·, y) = f ◦ (F[h](·, y)).

Therefore ( f ◦ F[h])(·, y) is a Darboux Baire one as a composition of F[h](·, y) with a
continuous function. Similarly for vertical sections.

Now choose β < c such that f (rβ) �= f (0). This can be done because an exponential like
function is not constant on any open interval, by the identity theorem for analytic functions.
Then Aβ ⊆ ( f ◦ F[h])−1( f (rβ)) ∩ B × B ⊆ ⋃

α<c Aα , so ( f ◦ F[h])−1( f (rβ)) ∩ B × B
has full outer measure (in B × B) and null sections. According to Fubini’s Theorem, this set
is non-measurable. So f ◦ F[h] is non-measurable. ��

A natural question is whether the above result (or [18, Theorem 13]) can be strengthened
in the following way.

Question 1 Is the family of all non-measurable functions F : R2 → R whose all vertical
and horizontal sections are Darboux Baire one strongly 2c-algebrable (or 2c-lineable)?

Theorem 10 Assume cov(N ) = add(N ). Then the family of all non-measurable functions
having all vertical sections approximately continuous and all horizontal sections measurable,
is strongly 2c-algebrable.

Proof Let κ = cov(N ) = add(N ), and let R = ⋃
α<κ Cα , where Cα are null sets. For every

α < κ , the set Dα := ⋃
β≤α Cβ has measure zero. There is an approximately continuous

gα : R → [0, 1] such that g−1
α (0) is a null cover of Dα and R \ g−1

α (1) has measure less than
1 (see Sect. 2.5). By {hξ : ξ < 2c} we denote a set of free generators of an algebra in Rc. Let
{Bα : α < c} be a family of pairwise disjoint Bernstein sets (see Sect. 2.9). For each r ∈ R

let α(r) denote the first ordinal α with r ∈ Cα . We define

Fξ (x, y) = gα(x)(y)
∑

β<c

hξ (β)χBβ (x).

Fix x ∈ R. If x /∈ ⋃
β<c Bβ , then Fξ (x, ·) is approximately continuous as a constant zero

function. If x ∈ Bβ for some β < c, then Fξ (x, ·) = hξ (β)gα(x), so Fξ (x, ·) is approximately
continuous. Fix y ∈ R and assume that x /∈ ⋃

β<α(y) Cβ . Then α(x) ≥ α(y) and gα(x)

vanishes at

Dα(x) =
⋃

β≤α(x)

Cβ ⊇
⋃

β≤α(y)

Cβ ⊇ Cα(y) � y.

So F(·, y) = 0 almost everywhere. For ξ1 < ξ2 < · · · < ξk and polynomial P in k variables
without constant term, let F = P(Fξ1 , Fξ2 , . . . , Fξk ). Since the sum and the product of two
approximately continuous functions is approximately continuous, then, by simple induction,
F(x, ·) is approximately continuous.
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Since F(·, y) = 0 almost everywhere for every y ∈ R, then
∫

R

(∫

R

F(x, y)dx

)

dy = 0.

There exists β < c such that P(hξ1(β), hξ2(β), . . . , hξk (β)) �= 0. For each x ∈ Bβ we have
∫

R

F(x, y)dy =
∫

R\(gα(x))
−1(1)

F(x, y)dy +
∫

(gα(x))
−1(1)

P(hξ1(β), hξ2(β), . . . , hξk (β))dy.

Note that the absolute value of the first integral is not greater than

max{|P(hξ1(β)gα(x)(y), hξ2(β)gα(x)(y), . . . , hξk (β)gα(x)(y))| : 0 ≤ gα(x)(y) ≤ 1}
≤ max{|P(hξ1(β)t, hξ2(β)t, . . . , hξk (β)t)| : 0 ≤ t ≤ 1}

while the second integral is infinite and has the same sign as P(hξ1(β), hξ2(β), . . . , hξk (β)).
So

∫
R

F(x, y)dy is infinite for x’s from the Bernstein set Bβ . Therefore, the iterated integral∫
R

(∫
R

F(x, y)dy
)
dx is not zero, and, according to Fubini’s Theorem, F is non-measurable.

��

Theorem 11 The family of sup-Jones functions is 2c-lineable.

Proof Let Ln be the family of all non-zero linear functionals defined on Rn . Let

L =
⋃

n≥1

Ln × nω.

Note that the cardinality of L is continuum. Let K be a family of all partial real continuous
functionswith perfect domain andF be a family of all continuous functions fromR toR. Note
that the cardinality ofK×F ×L is continuum. LetK×F ×L = {(gα, fα, lα, pα) : α < c}.
Formally we should write (gα, fα, (lα, pα)) but we omit the inner parentheses for clarity. For
each α < c, let Kα be the domain of gα and let xα ∈ Kα \ ({ fξ (xξ ) : ξ < α} ∪ {xξ : ξ < α}).
For an element lα in Ln , we find −→xα ∈ R

n such that lα(
−→xα ) = gα(xα). Note that pα ∈ nω is

continuous (as a mapping between two discrete spaces), so we can consider its continuous
extension pα : βω → n.

For U ∈ βω we define a function FU : R2 → R in the following way:

FU (xα, fα(xα)) = FU ( fα(xα), xα) = −→xα ◦ pα(U ) = −→xα (pα(U ))

for α < c, and FU takes 0 at other points.
Let n ≥ 1 and take a continuous f : R → R, g ∈ K, l ∈ Ln and distinct

U0, U1, . . . , Un−1 ∈ βω.We canfind a partition {u0, u1, . . . , un−1} ofω such thatui ∈ Ui for
i = 0, 1, . . . , n − 1. We define a function p : ω → n by the formula p(k) = i ⇐⇒ k ∈ ui

for i = 0, 1, . . . , n − 1. Take α < c such that gα = g, fα = f , lα = l, pα = p. Then
pα(Ui ) = i for i = 0, 1, . . . , n − 1 (Lemma 3). Therefore

l(FU0 , FU1 , . . . , FUn−1)(xα, fα(xα)) = l(FU0 , FU1 , . . . , FUn−1)( fα(xα), xα) =
lα(FU0(xα, fα(xα)), . . . , FUn−1(xα, fα(xα))) = lα(

−→xα ◦ pα(U0), . . . ,
−→xα ◦ pα(Un−1)) =

lα(
−→xα (0), . . . ,−→xα (n − 1)) = lα(

−→xα ) = gα(xα).

So l(FU0 , . . . , FUn−1) is sup-Jones. This proves that sup-Jones functions are 2
c-lineable (as

|βω| = 2c, see e.g. [8]). ��
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Note that if F is sup-Jones, then F2 is not. Therefore the family of all sup-Jones functions
is not 1-algebrable. We can modify the definition of sup-Jones functions to obtain strong 2c-
algebrability. We say that F : R2 → R is almost sup-Jones function if for every continuous
function f : R → R and every continuous real valued function g defined on a perfect subset
of R, F f intersects g or −g and F f intersects g or −g. By replacing linear mappings by
polynomials without constant terms and sup-Jones functions by almost sup-Jones functions
in the proof of Theorem 11, we obtain the proof of the strong 2c-algebrability of the family
of all almost sup-Jones functions.
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