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Abstract
Let X be a rearrangement-invariant space on [0, 1]. It is known that its Zippin indices βX , βX

and its inclusion indices γX , δX are related as follows: 0 ≤ βX ≤ 1/γX ≤ 1/δX ≤ βX ≤ 1.

We show that given β, β ∈ [0, 1] and γ, δ ∈ [1,∞] satisfying β ≤ 1/γ ≤ 1/δ ≤ β, there

exists a rearrangement-invariant space X such that βX = β, βX = β and γX = γ , δX = δ.

Keywords Rearrangement-invariant Banach function space · Lorentz spaces · Zippin
indices · Inclusion indices · Embedding

Mathematics Subject Classification 46E30

1 Introduction

Indices associated to quasiconcave functions are an important tool for studying
rearrangement-invariant (r.i. in short) spaces and the operators acting on them. An upper-
most example are the Boyd indices of a r.i. space X , αX and αX , which in general satisfy
0 ≤ αX ≤ αX ≤ 1 and characterize the boundedness of the Hilbert transform acting on X ,
i.e., when 0 < αX ≤ αX < 1; see [2, Ch. 3, Section 5]. Related, and simpler, indices are the
Zippin indices, βX and βX (see bellow for the definition), which satisfy

0 ≤ αX ≤ βX ≤ βX ≤ αX ≤ 1.
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R.i. spaces X satisfying αX = βX and βX = αX are known as spaces of fundamental type.
The class of r.i. spaces of fundamental type include most of the classical r.i. spaces; see [5].

The study of the fine spectra of the finite Hilbert transform acting on a r.i. space X over
(−1, 1) depends in a relevant way on the following inclusion indices

γX := inf
{
p ∈ [1,∞] : L p ↪→ X

}
, δX := sup

{
p ∈ [1,∞] : X ↪→ L p} .

In particular, the condition that the Boyd indices, the Zippin indices, and the inverse of the
inclusion indices all coincide allows giving a full description of the fine spectra, see [4,
Theorem 7.2]. The Zippin indices and the inverse of the inclusion indices satisfy

0 ≤ βX ≤ 1/γX ≤ 1/δX ≤ βX ≤ 1, (1)

see [4, Lemma 6.1(a)].
The inclusion indices appear in the study by Hernández and Rodríguez-Salinas of Orlicz

spaces having a sublattice lattice isomorphic to L p , see [9, p. 185], [10, p. 192], [11, p. 11].
García del Amo, Hernández, Sánchez, and Semenov have used them to study disjoint strict
singularity of inclusions between r.i. spaces [8, p. 249]. The incluson indices have been
specifically studied by Fernández-Cabrera [6, 7]; Fernández-Cabrera, Cobos, Hernández
and Sánchez [7]; Cobos, Fernández-Cabrera, Manzano and Martínez [3].

The aim of this paper is to discuss the distribution of values in inequalities (1). Hernández
and Rodríguez-Salinas in [9, Theorem A] proved that given a triple α, β, p satisfying 0 <

α < p ≤ β < ∞ there exist an Orlicz space having the Zippin indices 1/β and 1/α and
a sublattice which is lattice isomorphic to L p . Further, they proved in [10, Theorem 1] that
for a triple α, β, γ satisfying 0 < α ≤ γ ≤ β < ∞, there exists an Orlicz space with the
upper inclusion index γ and the Zippin indices 1/β and 1/α. This implies that the second
inequality in (1) may be strict. By a duality argument based on formulae (2) and (4) below,
this fact yields that the penultimate inequality in (1) also may be strict.

In this regard we establish the following result.

Theorem 1 Given β, β ∈ [0, 1] and γ, δ ∈ [1,∞] satisfying
β ≤ 1/γ ≤ 1/δ ≤ β,

there exists a quasiconcave function ϕ : [0, 1] → [0,∞) such that for every r.i. space X
with the fundamental function equivalent to ϕ one has

βX = β, βX = β, γX = γ, δX = δ.

Note that, by [12, Ch. II, Theorem 4.2], a function ϕ : [0, 1] → [0,∞) is a fundamen-
tal function of an r.i. space if and only if it is quasiconcave. If ϕ is quasiconcave, then the
Marcinkiewicz space Mϕ is an r.i. space whose fundamental function coincides with ϕ. Fur-
ther, let ϕ̃ be the least concavemajorant of the quasiconcave functionϕ. Then the fundamental
function of the Lorentz space �ϕ̃ is equal to ϕ̃ and ϕ̃/2 ≤ ϕ ≤ ϕ̃ (see Sect. 2 below).

A consequence of the above theorem is the following.

Corollary 2 If p ∈ (1,∞), then there exists an r.i. space X such that for every ε ∈ (0, p−1),

L p+ε,∞ ↪→ X ↪→ L p−ε,1,

and its Zippin indices are trivial, that is, βX = 0 and βX = 1.

The paper is organised as follows. In Sect. 2, we collect necessary definitions. Section3
contains the proofs of Theorem 1 and its Corollary 2.
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2 Preliminaries

Let L0 be the space of all equivalence classes of complex-valued Lebesgue measurable
functions on [0, 1] and letm denote the Lebesguemeasure on [0, 1]. The distribution function
of f ∈ L0 is defined by

d f (y) := m{t ∈ [0, 1] : | f (t)| > y}, y > 0.

Functions f , g ∈ L0 are called equimeasurable if d f = dg . The nonincreasing
rearrangement of f is given by

f ∗(t) = sup{y > 0 : d f (y) > t} = inf{y > 0 : d f (y) ≤ t}.
Following Semenov [15], a Banach subspace X of L0 is called a symmetric space if

(a) for any g ∈ L0 equimeasurable to f ∈ X , one has g ∈ X and ‖g‖X = ‖ f ‖X ;
(b) for every g ∈ L0 and f ∈ X the inequality | f | ≤ |g| a.e. implies that g ∈ X and

‖g‖X ≤ ‖ f ‖X .
Lebesgue spaces L p with p ∈ [1,∞], Orlicz spaces L
, and Lorentz spaces L p,q (see below)
are the most widely used examples of symmetric spaces.

If X is symmetric, then the function ϕX (t) := ‖χE‖X , where E ⊂ [0, 1] is a measurable
set with m(E) = t , is well defined and is called the fundamental function of X .

The associate space X ′ of X consists of all functions g ∈ L0 satisfying
∫ 1

0
| f (x)g(x)| dx < ∞

for all f ∈ X . It is equipped with the norm

‖g‖X ′ := sup

{∫ 1

0
| f (x)g(x)| dx : ‖ f ‖X ≤ 1

}
.

Semenov proved [15, Theorem 2] (see also [12, Ch. II, Theorem 4.1]), that if X is symmet-
ric, then L∞ ↪→ X ↪→ L1, where ↪→ denotes a continuous embedding. A symmetric space
X is said to have the Fatou property if for every sequence { fn} in X such that 0 ≤ fn ↑ f a.e.,
one has either f ∈ X and ‖ fn‖X ↑ ‖ f ‖X , or ‖ fn‖X ↑ ∞. Symmetric spaces with the Fatou
property are usually called rearrangement-invariant Banach function spaces (or, shortly, r.i.
spaces), see [2, Ch. 1–2].

A function ϕ : [0, 1] → [0,∞) is said to be quasiconcave if ϕ(t) = 0 precisely when
t = 0, the functionϕ(t) is increasing and the functionϕ(t)/t is decreasingon (0, 1]. Following
[14, Section 2], for a quasiconcave, and hence measurable, function ϕ : [0, 1] → [0,∞),
one can define its dilation function

Mϕ(x) := sup
s∈(0,min{1,1/x}]

ϕ(xs)

ϕ(s)
.

It follows from [12, Ch. II, Theorem 1.3] (see also [14, Theorem 1.2]) that

α(ϕ) := sup
0<x<1

logMϕ(x)

log x
= lim

x→0+
logMϕ(x)

log x
,

α(ϕ) := inf
x>1

logMϕ(x)

log x
= lim

x→∞
logMϕ(x)

log x
.
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If X is an r.i. space, then its fundamental function ϕX is quasiconcave (see, e.g., [15,
Theorem 1], [2, Ch. 2, Corollary 5.3]). The numbers

βX := α(ϕX ), βX := α(ϕX )

are called the Zippin (fundamental) indices of the r.i. space X (see [14, p. 27], [16], and also
[2, Ch. 3, Exercise 14]). It is well known that

0 ≤ βX ≤ βX ≤ 1, βX + βX ′ = 1, βX ′ + βX = 1 (2)

(see, e.g., [14, formulae (4.14)–(4.15)]).
The inclusion indices γX and δX can be expressed as follows:

δX = lim inf
t→0+

log t

logϕX (t)
, γX = lim sup

t→0+

log t

logϕX (t)
(3)

(see [8, p. 249] or [3, Theorems 1.1−1.2]). Since the fundamental functions of X and X ′
satisfy ϕX (t)ϕX ′(t) = 1 (see [2, Ch. 2, Theorem 5.2]), the following relation between the
inclusion indices of X and X ′ hold:

1

γX
+ 1

δX ′
= 1,

1

γX ′
+ 1

δX
= 1. (4)

It follows from (3) that the middle inequality in (1) becomes the equality if and only if the
limit

lim
t→0+

log t

logϕX (t)

exists (see, e.g., [6, p. 669] or [3, Corollary 1.3]).
Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. The Lorentz spaces L p,q consist of all measurable

functions f : [0, 1] → C such that ‖ f ‖(p,q) < ∞, where

‖ f ‖(p,q) :=

⎧
⎪⎪⎨

⎪⎪⎩

(∫ 1

0

{
t1/p f ∗∗(t)

}q dt

t

)1/q

, 1 ≤ q < ∞,

sup
0<t≤1

{
t1/p f ∗∗(t)

}
, q = ∞,

and

f ∗∗(t) = 1

t

∫ t

0
f ∗(y) dy.

The spaces L p,∞ are frequently called weak L p-spaces or Marcinkiewicz spaces. It fol-
lows from [2, Ch. 4, Theorem 4.6] that L p,q are rearrangement-invariant Banach function
spaces. In view of [2, Ch. 2, Theorem 5.13], the Lorentz space L p,1 and the Marcinkiewicz
space L p,∞ are respectively the smallest and the largest of all r.i. spaces having the same
fundamental function as L p .

As usual, two functions φ,ψ : [0, 1] → [0,∞) are said to be equivalent if there exist
constants c,C ∈ (0,∞) such that

cφ(t) ≤ ψ(t) ≤ Cφ(t), t ∈ [0, 1].
For a quasiconcave function ϕ : [0, 1] → [0,∞), let Mϕ be the Marcinkiewicz space

consisting of measurable functions f : [0, 1] → C satisfying

‖ f ‖Mϕ := sup
0<t≤1

{
ϕ(t) f ∗∗(t)

}
< ∞.
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Then Mϕ is an r.i. space whose fundamental function coincides with ϕ (see, e.g., [2, Ch. 2,
Proposition 5.8] or [12, formula (4.28)]).

For each quasiconcave functionϕ : [0, 1] → [0,∞), its least concavemajorant ϕ̃ satisfies

ϕ̃(t)/2 ≤ ϕ(t) ≤ ϕ̃(t), t ∈ [0, 1]
(see, e.g., [2, Ch. 2, Proposition 5.10]). The Lorentz space �ϕ̃ consists of all measurable
functions f : [0, 1] → C such that

‖ f ‖�ϕ̃ :=
∫ 1

0
f ∗(t) dϕ̃(t) < ∞.

It is well known that �ϕ̃ is an r.i. space whose fundamental function is ϕ̃ (see, e.g., [2, Ch. 2,
Theorem 5.13] or [12, formula (4.28)]).

3 Proofs

Inequalities (1) were proved in [4, Lemma 6.1(a)] under the assumption that the Boyd indices
of X are non-trivial. For completeness, we include a proof of them.

3.1 Proof of inequalities (1)

Inequality 1/γX ≤ 1/δX follows immediately from equalities (3).
It follows from [13, Lemma 4.2] that if βX < 1/p, then X ↪→ L p . Hence

1/βX = sup{p ∈ [1,∞] : βX < 1/p} ≤ sup{p ∈ [1,∞] : X ↪→ L p} = δX ,

which implies that 1/δX ≤ βX .
Let p′ := p/(p − 1). It follows from (2) that βX ′ < 1/p′ if and only if βX > 1/p. By

[2, Ch. 1, Proposition 2.10], X ′ ↪→ L p′
if and only if L p ↪→ X . So, if βX > 1/p, then

L p ↪→ X . Hence

1/βX = inf{p ∈ [1,∞] : βX > 1/p} ≥ inf{p ∈ [1,∞] : L p ↪→ X} = γX .

Therefore, βX ≤ 1/γX .
�


3.2 The case of coinciding inclusion indices

In this subsection, we will prove Theorem 1 in the case where the inclusion indices coincide.
The proof will follow from the theorem below.

Theorem 3 Let p ∈ [1,∞] and β, β ∈ [0, 1] be such that β ≤ 1/p ≤ β, and let ρ : [0, 1] →
[0, 1] be an increasing continuous function such that ρ(t) = 0 precisely when t = 0. Then
there exists a quasiconcave function ϕ : [0, 1] → [0,∞) such that

t1/pρ(t) ≤ ϕ(t) ≤ t1/p/ρ(t), t ∈ (0, 1], (5)

and
α(ϕ) = β, α(ϕ) = β. (6)
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Proof Our construction is inspired by the construction presented in [1, p. 261], and it works
as follows. It requires three sequences {ak}k∈N, {bk}k∈N, {ck}k∈N, whose terms satisfy

0 < ak+1 < ck < bk < ak ≤ 1, k ∈ N,

and a continuous function ϕ : [0, 1] → [0,∞) satisfying

ϕ(t)

tβ
is constant on [bk, ak) ,

ϕ(t)

tβ
is constant on [ck, bk) ,

ϕ(t)

t
1
p

is constant on
[
ak+1, ck) . (7)

The terms bk should be defined so that the intervals [bk, ak) are large enough for the first
condition in (7) to ensure that the first equality in (6) holds. Similarly, the terms ck should
be defined so that the intervals [ck, bk) are large enough for the second condition in (7) to
ensure that the second equality in (6) holds. Finally, the sequence {ak}k∈N should converge

to 0 sufficiently rapidly so that, via the third condition in (7), it is guaranteed that ϕ(t)/t
1
p is

constant “most of the time", which leads to (5).
Following the above, for any sequence {ak}k∈N with the terms in (0, 1], set

bk := ak
k

, ck := bk
k

= ak
k2

, k ∈ N.

Choose a sequence {ak} so that

ak+1 < ck, ρ(ak) ≤ k
−k(k+1)

(
1
p −β

)

, ρ(bk) ≤ k
−k(k+1)

(
β− 1

p

)

, (8)

and set a0 := 1. Let

ϕ(t) := t
1
p , t ∈ [a1, 1].

Suppose we have defined ϕ on [ak, 1] with k ≥ 1 in such a way that

t
1
p ρ(t)1−

1
k ≤ ϕ(t) ≤ t

1
p

ρ(t)1− 1
k

, t ∈ [ak, ak−1). (9)

Let us define ϕ on [ak+1, ak). We start with

ϕ(t) := ϕ(ak)

(
t

ak

)β

, t ∈ [bk, ak) . (10)

It follows from (9) with t = ak and the second inequality in (8) that for all t ∈ [bk, ak),

ϕ(t) ≤ a
1
p
k

ρ(ak)1−
1
k

(
t

ak

)β

= a
1
p
k

ρ(ak)1−
1
k

(
t

ak

)β− 1
p
(

t

ak

) 1
p

≤ a
1
p
k

ρ(ak)1−
1
k

(
bk
ak

)β− 1
p
(

t

ak

) 1
p = k

1
p −β

ρ(ak)1−
1
k

t
1
p ≤ ρ(ak)

− 1
k(k+1)

ρ(ak)1−
1
k

t
1
p

= t
1
p

ρ(ak)
1− 1

k+1

≤ t
1
p

ρ(t)1−
1

k+1

.

123



On the full range of Zippin... Page 7 of 17    93 

On the other hand, it follows from (9) with t = ak and (10) that for t ∈ [bk, ak),

ϕ(t) ≥ a
1
p
k ρ(ak)

1− 1
k

(
t

ak

)β

≥ a
1
p
k ρ(ak)

1− 1
k

(
t

ak

) 1
p = ρ(ak)

1− 1
k t

1
p ≥ t

1
p ρ(t)1−

1
k .

So,

t
1
p ρ(t)1−

1
k ≤ ϕ(t) ≤ t

1
p

ρ(t)1−
1

k+1

, t ∈ [bk, ak). (11)

Now, take

ϕ(t) := ϕ(bk)

(
t

bk

)β

, t ∈ [ck, bk) . (12)

It follows from (11) with t = bk and the third inequality in (8) that for all t ∈ [ck, bk),

ϕ(t) ≥ b
1
p
k ρ(bk)

1− 1
k

(
t

bk

)β

= b
1
p
k ρ(bk)

1− 1
k

(
t

bk

)β− 1
p
(

t

bk

) 1
p

≥ b
1
p
k ρ(bk)

1− 1
k

(
ck
bk

)β− 1
p
(

t

bk

) 1
p = ρ(bk)

1− 1
k k

1
p −β t

1
p

≥ ρ(bk)
1− 1

k ρ(bk)
1

k(k+1) t
1
p = ρ(bk)

1− 1
k+1 t

1
p ≥ ρ(t)1−

1
k+1 t

1
p .

On the other hand, it follows from (11) with t = bk and (12) that for all t ∈ [ck, bk),

ϕ(t) ≤ b
1
p
k

ρ(bk)
1− 1

k+1

(
t

bk

)β

≤ b
1
p
k

ρ(bk)
1− 1

k+1

(
t

bk

) 1
p = t

1
p

ρ(bk)
1− 1

k+1

≤ t
1
p

ρ(t)1−
1

k+1

.

So, combining the above two inequalities with inequality (11), we arrive at

t
1
p ρ(t)1−

1
k+1 ≤ ϕ(t) ≤ t

1
p

ρ(t)1−
1

k+1

, t ∈ [ck, ak). (13)

Finally, let

ϕ(t) := ϕ(ck)

(
t

ck

) 1
p

, t ∈ [
ak+1, ck) . (14)

Then it follows from (13) with t = ck that for all t ∈ [
ak+1, ck),

ϕ(t) ≤ c
1
p
k

ρ(ck)
1− 1

k+1

(
t

ck

) 1
p = t

1
p

ρ(ck)
1− 1

k+1

≤ t
1
p

ρ(t)1−
1

k+1

,

ϕ(t) ≥ c
1
p
k ρ(ck)

1− 1
k+1

(
t

ck

) 1
p = t

1
p ρ(ck)

1− 1
k+1 ≥ t

1
p ρ(t)1−

1
k+1 .

So, the above two inequalities and (13) imply that

t
1
p ρ(t)1−

1
k+1 ≤ ϕ(t) ≤ t

1
p

ρ(t)1−
1

k+1

, t ∈ [ak+1, ak)

(cf. (9)). Since ρ(t) ∈ (0, 1], this inequality implies (5).
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For k ∈ N, let

I1,k := [bk, ak], I2,k := [ck, bk], I3,k := [ak+1, ck]
and

β1 := β, β2 := β, β3 = 1

p
.

The above inductive argument produces a continuous function on (0, 1] satisfying (5) and
such that ϕ(t) = t1/p for t ∈ [a1, 1],

ϕ(t) = const j,k t
β j , t ∈ I j,k, j = 1, 2, 3, k ∈ N. (15)

Set ϕ(0) = 0. It is clear that ϕ is quasiconcave. Since logϕ is continuous and piecewise
smooth, it follows from (15) that if x > 1 and 0 < s ≤ 1/x , then

logϕ(xs) − logϕ(s) =
∫ xs

s
(logϕ(t))′ dt ≤

∫ xs

s
β
dt

t
= β log x,

and hence
ϕ(xs)

ϕ(s)
≤ xβ . (16)

Similarly, if x, s ∈ (0, 1), then

logϕ(s) − logϕ(xs) =
∫ s

xs
(logϕ(t))′ dt ≥

∫ s

xs
β
dt

t
= −β log x,

and
ϕ(xs)

ϕ(s)
≤ xβ . (17)

Take any x > 1 and choose k > x , k ∈ N. Then xck ∈ [ck, bk) and it follows from (12)
that

Mϕ(x) = sup
0<s≤1/x

ϕ(xs)

ϕ(s)
≥ ϕ(xck)

ϕ(ck)
= xβ .

Hence Mϕ(x) = xβ (see (16)), and

α(ϕ) = inf
x>1

logMϕ(x)

log x
= β.

Similarly, take any x < 1 and choose k ∈ N such that 1/k < x . Then xak ∈ [bk, ak) and
it follows from (10) that

Mϕ(x) = sup
0<s≤1

ϕ(xs)

ϕ(s)
≥ ϕ(xak)

ϕ(ak)
= xβ .

Hence Mϕ(x) = xβ (see (17)), and

α(ϕ) = sup
0<x<1

logMϕ(x)

log x
= β,

which completes the proof of (6). �
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Corollary 4 Given p ∈ [1,∞] and β, β such that 0 ≤ β ≤ 1/p ≤ β ≤ 1, there exists
a quasiconcave function ϕ : [0, 1] → [0,∞) such that for every r.i. space X with the
fundamental function equivalent to ϕ, its inclusion indices satisfy γX = δX = p and its
Zippin indices satisfy βX = β and β = βX .

Proof Take ρ(t) = 1/ log(e− 1+ 1/t), t ∈ (0, 1], and ρ(0) = 0. It follows from Theorem 3
that there exists a quasiconcave function ϕ : [0, 1] → [0,∞) such that

t1/p
1

log(e − 1 + 1/t)
≤ ϕ(t) ≤ t1/p log(e − 1 + 1/t), t ∈ (0, 1], (18)

and (6) holds.
Let X be an r.i. space such that ϕX is equivalent to ϕ. Then there exist constants c,C ∈

(0,∞) such that

cϕ(t) ≤ ϕX (t) ≤ Cϕ(t), t ∈ [0, 1].
Hence

δX = lim inf
t→0+

log t

logϕX (t)
= lim inf

t→0+
log t

logϕ(t)
,

γX = lim sup
t→0+

log t

logϕX (t)
= lim sup

t→0+

log t

logϕ(t)
.

Moreover, in view of (6), the Zippin indices of X satisfy

βX = β, βX = β.

It follows from (18), for t ∈ (0, 1], that
1

p
log t − log log(e − 1 + 1/t) ≤ logϕ(t) ≤ 1

p
log t + log log(e − 1 + 1/t).

Dividing by log t < 0, we get

1

p
+ log log(e − 1 + 1/t)

log t
≤ logϕ(t)

log t
≤ 1

p
− log log(e − 1 + 1/t)

log t
.

Since

lim
t→0+

log log(e − 1 + 1/t)

log t
= lim

t→0+
1

1/t

−1/t2

(e − 1 + 1/t) log(e − 1 + 1/t)

= lim
t→0+

−1

((e − 1)t + 1) log(e − 1 + 1/t)
= 0, (19)

we arrive at

δX = γX = p

(see (3)), which completes the proof. �


3.3 The case of distinct inclusion indices

In this subsection, we prove Theorem 1 in the case where the inclusion indices are distinct.
The proof will follow from the theorem below.
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Theorem 5 Let β, β ∈ [0, 1] and γ, δ ∈ [1,∞] be such that

β ≤ 1/γ < 1/δ ≤ β. (20)

Then there exists a quasiconcave function ψ : [0, 1] → [0,∞) such that

α(ψ) = β, α(ψ) = β, lim sup
t→0+

log t

logψ(t)
= γ, lim inf

t→0+
log t

logψ(t)
= δ. (21)

Proof We first outline the proof. We will choose p and ρ(t) such that 1/γ < 1/p < 1/δ
and ρ(t) decays to 0 sufficiently slowly as t → 0. Then Theorem 3 produces a quasiconcave
function ϕ such that

t
1
δ

ρ(t)
≤ ϕ(t) ≤ t

1
γ ρ(t), t ∈ (0, 1],

and the first two equalities in (21) (with ϕ in place of ψ) are satisfied while the last two are
not.

We need to modify ϕ on a part of [0, 1] to get the third and the fourth equalities in (21).
To achieve this, we construct inductively a subsequence {ak( j)} j∈N of the sequence {ak}k∈N
from the proof of Theorem 3. Take τ j ∈ (0, ak( j)] and set ψ(t) := const tβ , t ∈ [τ j , ak( j)],
where the constant is such that ψ(ak( j)) = ϕ(ak( j)). We can choose τ j in such a way that

ψ(τ j ) = τ
1
γ

j ρ(τ j ). (22)

This is because t
1
γ ρ(t)/tβ → 0 as t → 0+. Next, take υ j ∈ (0, τ j ] and setψ(t) := const tβ ,

t ∈ [υ j , τ j ), where the constant is such that ψ is continuous at τ j . We can choose υ j in such
a way that

ψ(υ j ) = υ
1
δ

j

ρ(υ j )
. (23)

This is because

tβ

t
1
δ /ρ(t)

→ 0 as t → 0+.

Finally, take ς j ∈ (0, υ j ] and set ψ(t) := const tβ , t ∈ [ς j , υ j ), where the constant is such
that ψ is continuous at υ j . We can choose ς j in such a way that

ψ(ς j ) = ϕ(ς j ).

This is because 0 ≤ ϕ(t)/tβ ≤ t
1
γ ρ(t)/tβ → 0 as t → 0+. We then choose k( j +1) in such

a way that ak( j+1)−1 ≤ ς j and keep

ψ(t) = ϕ(t) on [ak( j+1), ς j ] ⊇ [ak( j+1), ak( j+1)−1].
The last equality ensures that the first two equalities in (21) hold, while (22) and (23) allow
one to prove the last two equalities in (21). Details of the above argument are given below.

Let

1

p
:= 1

2

(
1

δ
+ 1

γ

)
, κ := 1

4

(
1

δ
− 1

γ

)
= 1

2

(
1

δ
− 1

p

)
= 1

2

(
1

p
− 1

γ

)
> 0,
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and

ρ(t) := 1

logκ (e − 1 + 1/t)
, t ∈ (0, 1], ρ(0) := 0. (24)

Integrating the inequality

1

s2(e − 1 + 1/s)
<

1

s2
, 0 < s ≤ 1

between t ∈ (0, 1] and 1, one gets log(e − 1 + 1/t) − 1 ≤ 1/t − 1. Therefore

1

log(e − 1 + 1/t)
≥ t,

which implies that

1 ≥ ρ2(t) ≥ t2κ = t
1
δ
− 1

p = t
1
p − 1

γ , t ∈ (0, 1].
Hence

t
1
δ

ρ(t)
≤ t

1
p ρ(t) ≤ t

1
p

ρ(t)
≤ t

1
γ ρ(t), t ∈ (0, 1].

Let ϕ : [0, 1] → [0,∞) be the quasiconcave function constructed in the proof of
Theorem 3, which satisfies

t
1
δ

ρ(t)
≤ t

1
p ρ(t) ≤ ϕ(t) ≤ t

1
p

ρ(t)
≤ t

1
γ ρ(t), t ∈ (0, 1]. (25)

Below, we also use the notation ak from the proof of Theorem 3. Note that the sequence {ak}
is decreasing and ak → 0 as k → ∞ (see the first inequality in (8)).

Let

ψ(t) := ϕ(t) = t
1
p , t ∈ [a1, 1],

and k(1) := 1. In the next step, j = 1, but it is convenient for future reference to write it up
for a general j ∈ N.

It follows from the last two inequalities in (25) with t = ak( j) that

ϕ(ak( j)) ≤ a
1
p

k( j)

ρ(ak( j))
≤ a

1
γ

k( j)ρ(ak( j)), j ∈ N,

which implies that

1 ≤ a
1
γ

k( j)ρ(ak( j))

ϕ(ak( j))

(
ak( j)
ak( j)

)β
, j ∈ N. (26)

Since 1/γ − β ≥ 0 in view of (20), we have

t
1
γ

−β
ρ(t) → 0 as t → 0+. (27)

Then
t
1
γ ρ(t)

ϕ(ak( j))

(
t

ak( j)

)β
→ 0 as t → 0+, j ∈ N. (28)
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It follows from (26) and (28) that there exists τ j ∈ (0, ak( j)] such that

τ
1
γ

j ρ(τ j )

ϕ(ak( j))

(
τ j

ak( j)

)β
= 1, 1 ≤ t

1
γ ρ(t)

ϕ(ak( j))

(
t

ak( j)

)β
, t ∈ [τ j , ak( j)].

Hence

ϕ(ak( j))

(
τ j

ak( j)

)β

= τ
1
γ

j ρ(τ j ), ϕ(ak( j))

(
t

ak( j)

)β

≤ t
1
γ ρ(t), t ∈ [τ j , ak( j)]. (29)

Let

ψ(t) := ϕ(ak( j))

(
t

ak( j)

)β

, t ∈ [τ j , ak( j)). (30)

Then ψ is continuous at ak( j). It follows from (17) with s = ak( j) and x = t/ak( j) that

ϕ(t)

ϕ(ak( j))
≤

(
t

ak( j)

)β

, t ∈ [τ j , ak( j)).

Hence ϕ(t) ≤ ψ(t) for t ∈ [τ j , ak( j)]. Combining inequalities (25) with the above inequality,
the inequality in (29) and definition (30), we get

t
1
δ

ρ(t)
≤ ψ(t) ≤ t

1
γ ρ(t), t ∈ [τ j , ak( j)]. (31)

It follows from the first inequality in (31) with t = τ j that

1 ≤
ψ(τ j )

(
τ j

τ j

)β

τ
1
δ

j /ρ(τ j )

, j ∈ N. (32)

Since β − 1/δ ≥ 0 in view of (20), we have

tβ− 1
δ ρ(t) → 0 as t → 0+.

Then

ψ(τ j )

(
t

τ j

)β

t
1
δ /ρ(t)

→ 0 as t → 0+, j ∈ N. (33)

It follows from (32) and (33) that there exists υ j ∈ (0, τ j ] such that

ψ(τ j )

(
υ j

τ j

)β

υ
1
δ

j /ρ(υ j )

= 1, 1 ≤
ψ(τ j )

(
t

τ j

)β

t
1
δ /ρ(t)

, t ∈ [υ j , τ j ].

Hence

ψ(τ j )

(
υ j

τ j

)β

= υ
1
δ

j

ρ(υ j )
,

t
1
δ

ρ(t)
≤ ψ(τ j )

(
t

τ j

)β

, t ∈ [υ j , τ j ]. (34)
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Let

ψ(t) := ψ(τ j )

(
t

τ j

)β

, t ∈ [υ j , τ j ). (35)

Then ψ is continuous at τ j . It follows from the above definition and the second inequality in
(31) with t = τ j that

ψ(t) ≤ τ
1
γ

j ρ(τ j )

(
t

τ j

)β

≤ τ
1
γ

j ρ(τ j )

(
t

τ j

) 1
γ = ρ(τ j )t

1
γ ≤ t

1
γ , t ∈ [υ j , τ j ].

Combining inequalities (31) with the above inequality, the inequality in (34) and definition
(35), we get

t
1
δ

ρ(t)
≤ ψ(t) ≤ t

1
γ , t ∈ [υ j , ak( j)]. (36)

It follows from definition (35), the equality in (34) and the first two inequalities in (25) that

ψ(υ j ) = υ
1
δ

j

ρ(υ j )
≤ υ

1
p
j ρ(υ j ) ≤ ϕ(υ j ),

which implies that

1 ≤ ϕ(υ j )

ψ(υ j )

(
υ j

υ j

)β
, j ∈ N. (37)

The last two inequalities in (25) and the asymptotic relation in (27) imply that

0 <
ϕ(t)

ψ(υ j )

(
t

υ j

)β
≤ t

1
γ ρ(t)

ψ(υ j )

(
t

υ j

)β
→ 0 as t → 0+, j ∈ N. (38)

It follows from (37) and (38) that there exists ς j ∈ (0, υ j ] such that
ϕ(ς j )

ψ(υ j )

(
ς j

υ j

)β
= 1, 1 ≤ ϕ(t)

ψ(υ j )

(
t

υ j

)β
, t ∈ [ς j , υ j ].

Hence

ψ(υ j )

(
ς j

υ j

)β

= ϕ(ς j ), ψ(υ j )

(
t

υ j

)β

≤ ϕ(t), t ∈ [ς j , υ j ]. (39)

Let

ψ(t) := ψ(υ j )

(
t

υ j

)β

, t ∈ [ς j , υ j ). (40)

Then ψ is continuous at υ j . It follows from the first inequality in (36) with t = υ j that

ψ(t) ≥ υ
1
δ

j

ρ(υ j )

(
t

υ j

)β

≥ υ
1
δ

j

ρ(υ j )

(
t

υ j

) 1
δ = t

1
δ

ρ(υ j )
≥ t

1
δ , t ∈ [ς j , υ j ].

The above inequality, definition (40), inequality in (39), and the last two inequalities in (25)
imply that

t
1
δ ≤ ψ(t) ≤ ϕ(t) ≤ t

1
γ ρ(t), t ∈ [ς j , υ j ].
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Combining these inequalities with inequalities (36), we get

t
1
δ ≤ ψ(t) ≤ t

1
γ , t ∈ [ς j , ak( j)]. (41)

Let

k( j + 1) := 1 + min
{
k ∈ N : ak ≤ ς j

}

and
ψ(t) := ϕ(t), t ∈ [ak( j+1), ς j ). (42)

It follows from the equality in (39) and definition (40) that ψ(ς j ) = ϕ(ς j ). Hence ψ is
continuous at ς j . Inequalities (25), (41), and definition (42) imply that

t
1
δ ≤ ψ(t) ≤ t

1
γ , t ∈ [ak( j+1), ak( j)].

Above, we had j = 1. Repeating the same procedure for j = 2, 3, . . . , we get a continuous
function ψ : (0, 1] → (0,∞) such that

ψ(t) = ϕ(t), t ∈ [ak( j), ak( j)−1], j ∈ N (43)

(note that [ak( j), ak( j)−1] ⊂ [ak( j), ς j−1]), and
t
1
δ ≤ ψ(t) ≤ t

1
γ , t ∈ (0, 1]. (44)

It follows from definition (30) and the equality in (29) that

ψ(τ j ) = τ
1/γ
j ρ(τ j ), j ∈ N. (45)

Analogously, it follows from definition (35) and the equality in (34) that

ψ(υ j ) = υ
1/δ
j

ρ(υ j )
, j ∈ N. (46)

Finally, there is a partition ∪l∈N[ηl+1, ηl) = (0, 1) such that

ψ(t) = constl t
βl , t ∈ [ηl+1, ηl), βl ∈

{
β, β, 1/p

}
, l ∈ N. (47)

Set ψ(0) = 0. It follows from (47) and the continuity of ψ that ψ is quasiconcave and (16)
and (17) remain true with ψ in place of ϕ. Hence

Mψ(x) = sup
0<s≤1/x

ψ(xs)

ψ(s)
≤ xβ, x ∈ (1,∞), (48)

Mψ(x) = sup
0<s≤1

ψ(xs)

ψ(s)
≤ xβ, x ∈ (0, 1). (49)

Let the sequences bk = ak/k and ck = bk/k be as in the proof of Theorem 3. Take any x > 1
and choose j ∈ N so that k( j) − 1 > x . Then xck( j)−1 ∈ [ck( j)−1, bk( j)−1) and it follows
from (43) and (12) that

Mψ(x) = sup
0<s≤1/x

ψ(xs)

ψ(s)
≥ ψ(xck( j)−1)

ψ(ck( j)−1)
= xβ .

Hence Mψ(x) = xβ (see (48)), and

α(ψ) = inf
x>1

logMψ(x)

log x
= β.
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Similarly, take any x < 1 and choose j ∈ N so that 1/(k( j) − 1) < x . Then xak( j)−1 ∈
[bk( j)−1, ak( j)−1) and it follows from (43) and (10) that

Mψ(x) = sup
0<s≤1

ψ(xs)

ψ(s)
≥ ψ(xak( j)−1)

ψ(ak( j)−1)
= xβ .

Hence Mψ(x) = xβ (see (49)), and

α(ψ) = sup
0<x<1

logMψ(x)

log x
= β.

So, the first two equalities in (21) hold.
Estimates (44) imply

lim sup
t→0+

log t

logψ(t)
≤ γ, lim inf

t→0+
log t

logψ(t)
≥ δ. (50)

Since 0 < ak( j+1) < υ j ≤ τ j ≤ ak( j) for all j ∈ N and ak → 0 as k → ∞, we conclude
that υ j → 0 and τ j → 0 as j → ∞. Finally, it follows from (45)–(46), (24), and (19) that

lim sup
t→0+

log t

logψ(t)
≥ lim

j→∞
log τ j

logψ(τ j )
= lim

j→∞
log τ j

1
γ
log τ j + log ρ(τ j )

= lim
j→∞

1
1
γ

− κ
log log(e−1+1/τ j )

log τ j

= γ,

lim inf
t→0+

log t

logψ(t)
≤ lim

j→∞
log υ j

logψ(υ j )
= lim

j→∞
log υ j

1
δ
log υ j + log ρ(υ j )

= lim
j→∞

1
1
δ

− κ
log log(e−1+1/υ j )

log υ j

= δ.

Combining the above inequalities with (50), we arrive at

lim sup
t→0+

log t

logψ(t)
= γ, lim inf

t→0+
log t

logψ(t)
= δ,

which completes the proof of the last two equalities in (21). �

Corollary 6 Let β, β ∈ [0, 1] and γ, δ ∈ [1,∞] satisfy β ≤ 1/γ < 1/δ ≤ β. Then there
exists a quasiconcave function ψ : [0, 1] → [0,∞) such that for every r.i. space X with the
fundamental function equivalent to ψ one has

βX = β, βX = β, γX = γ, δX = δ.

This result follows from Theorem 5 and (3).
Theorem 1 immediately follows form Corollaries 4 and 6.

3.4 Inclusion indices in terms of Lorentz andMarcinkiewicz spaces

The following fact was observed in the case of r.i. spaces with nontrivial Boyd indices in [4,
formulae (3.5)–(3.6) and (6.1)–(6.2)].

Lemma 7 Let X be an r.i. space. If 1 < δX ≤ γX < ∞, then

γX = inf
{
p ∈ (1,∞) : L p,∞ ↪→ X

}
, δX = sup

{
p ∈ (1,∞) : X ↪→ L p,1} .
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Proof Since 1 < δX ≤ γX < ∞, we have

γX = inf
{
p ∈ (1,∞) : L p ↪→ X

}
, δX = sup

{
p ∈ (1,∞) : X ↪→ L p} .

Set

γ ∞
X := inf

{
p ∈ (1,∞) : L p,∞ ↪→ X

}
, δ1X := sup

{
p ∈ (1,∞) : X ↪→ L p,1} .

Since L p,1 ↪→ L p ↪→ L p,∞ for every p ∈ (1,∞), we have

γX ≤ γ ∞
X , δ1X ≤ δX .

If γX < γ ∞
X , then there exist p1, p2 such that γX < p1 < p2 < γ ∞

X . It follows from the
definitions of γX and γ ∞

X that L p1 ↪→ X and L p2,∞ �↪→ X . Since L p2,∞ ↪→ L p1 (see, e.g.,
[2, p. 217]), the absence of inclusion of L p2,∞ into X is impossible. Then γX ≥ γ ∞

X . The
proof of δ1X ≥ δX is similar. Thus γX = γ ∞

X and δX = δ1X . �


3.5 Proof of Corollary 2

It follows from Corollary 4 with β = 0 and β = 1 that there exists an r.i. space X such that
its inclusion indices are γX = δX = p and its Zippin indices are trivial, that is, βX = 0

and βX = 1. Since γX = δX = p, in view of Lemma 7, for every ε ∈ (0, p − 1), one has
L p+ε,∞ ↪→ X ↪→ L p−ε,1, which completes the proof. �
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J. Szűcs (1982)

13. Maligranda, L.: A generalization of the Shimogaki theorem. Studia Math. 71(1):69–83, (1981/82)
14. Maligranda, L.: Indices and interpolation. Dissertationes Math. (Rozprawy Mat.) 234, 49 (1985)
15. Semenov, E.M.: Embedding theorems for Banach spaces of measurable functions. Dokl. Akad. Nauk

SSSR 156, 1292–1295 (1964). (in Russian)
16. Zippin, M.: Interpolation of operators of weak type between rearrangement invariant function spaces. J.

Funct. Anal. 7, 267–284 (1971)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	On the full range of Zippin and inclusion indices of rearrangement-invariant spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Proofs
	3.1 Proof of inequalities (1)
	3.2 The case of coinciding inclusion indices
	3.3 The case of distinct inclusion indices
	3.4 Inclusion indices in terms of Lorentz and Marcinkiewicz spaces
	3.5 Proof of Corollary 2

	Acknowledgements
	References


