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Abstract
The main purpose of this paper is to provide a novel approach to deriving formulas for
the p-adic q-Volkenborn integral including the Volkenborn integral and p-adic fermionic
integral. By applying integral equations and these integral formulas to the falling factorials,
the rising factorials and binomial coefficients, we derive some various identities, formulas
and relations related to several combinatorial sums, well-known special numbers such as the
Bernoulli and Euler numbers, the harmonic numbers, the Stirling numbers, the Lah numbers,
the Harmonic numbers, the Fubini numbers, the Daehee numbers and the Changhee numbers.
Applying these identities and formulas, we give some new combinatorial sums. Finally, by
using integral equations, we derive generating functions for new families of special numbers
and polynomials. By using generating functions, we give relations between the Lah numbers,
the Bernoulli numbers, the Euler numbers and the Laguerre polynomials.We also give further
comments and remarks on these functions, numbers and integral formulas related to q-type
operators potentially used to solve problems in the areas such as physics, quantummechanics,
quantum systems and the others. In addition, we provide some tables containing some of the
p-adic integral formulas obtained in this paper.

Keywords p-adic q-integrals · Generating function · Bernoulli numbers and polynomials ·
Euler numbers and polynomials · Stirling numbers · Lah numbers · Harmonic numbers ·
Fubini numbers · Combinatorial numbers and sums

Mathematics Subject Classification 11S80 · 11B68 · 05A15 · 05A19 · 11M35 · 30C15 ·
26C05 · 12D10 · 33C45

1 Introduction

This paper deals with comprehensive study of analytic objects linked to theory of the Volken-
born integral, the fermionic p-adic integral, and the generating functions for special numbers
and polynomials. The p-adic integral and generating functions have been used in mathemat-
ics, in mathematical physics and in others sciences. Especially the p-adic integral and p-adic
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numbers are used in the theory of ultrametric calculus, the p-adic quantum mechanics and
the p-adic mechanics.

In this paper, by using Volkenborn and fermionic integrals with their integral equations,
we present generating functions for special numbers and polynomials in terms of these
integrals. By applying these integrals to the falling factorial and the rising factorial with
their identities and relations, we derive both the standard and new p-adic integral formulas,
identities and relations closely related to the Volkenborn integral, the fermionic integral,
combinatorial sums and special numbers. These formulas in particular will allow us to solve
and compute efficiently such those integrals including the falling and rising factorials, and
other differentiable functions.

We believe that in the light of the studies in this paper so many applied areas especially
mathematics and physics will have various new p-adic integral formulas, combinatorial sums
and identities including special numbers and polynomials. In fact those formulas getting so
much interest specially for researchers who work in ultrametric calculus and the theory of
p-adic integrals. It is inevitable that integral formulas, combinatorial sums and identities
elaborated by the p-adic integrals formulas will illuminate into the areas of combinatorial
physics, quantum physics and mathematics and statistics. For the fundamentals of p-adic
integrals in which some of them will be mentioned briefly in the next, we may refer the
references [2, 20, 23, 24, 40, 50, 51]; and the references cited therein.

In this paper we use the following notations:
Let N, Z, Q, R and C denote the set of natural numbers, the set of integers, the set of

rational numbers, the set of real numbers and the set of complex numbers, respectively.
N0 = N∪ {0}. Let n, k ∈ Z. If n < 0 or k > n or k < 0, then(

n

k

)
= n!

k!(n − k)! = 0

(cf. [1–52]).
The rising factorial is defined by

x (n) = x(x + 1)(x + 2) . . . (x + n − 1), (1)

where n ∈ N and

x (0) = 1,

and the falling factorial is defined by

x(n) = x(x − 1)(x − 2) . . . (x − n + 1),

where n ∈ N and

x(0) = 1,

(cf. [11, 13, 14, 47]).
In order to give our results, we need the following properties and definitions for generating

functions of the special numbers and polynomials. In addition, p-adic integrals and their
properties, which have many valuable applications in almost all areas of mathematics as
well as mathematical physics, engineering and other areas of science, are given. New p-adic
integral formulas and generating functions are also given with the help of these integrals.

The Apostol-Bernoulli polynomials Bn(x; λ) are defined by

FA(t, x; λ) = t

λet − 1
etx =

∞∑
n=0

Bn(x; λ)
tn

n! . (2)
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Substituting x = 0 into (2), we have

λB1(1; λ) = 1 + B1(λ)

and for n ≥ 2,

λBn(1; λ) = Bn(λ)

(cf. [3]).
Substituting x = 1 into (2), we have the following Apostol-Bernoulli numbers:

Bn(1, λ) =
n∑
j=0

(
n

j

)
Bn(λ),

where

Bn(λ) = Bn(0, λ)

and

B0(λ) = 0

(cf. [3], for detail, see also [24, 35, 48]).Whenλ = 1 in (2),we have theBernoulli polynomials
of the first kind

Bn(x) = Bn(x; 1)
and also Bn = Bn(0) denotes the Bernoulli numbers of the first kind ( cf. [4–52]; see also
the references cited in each of these works).

The λ-Bernoulli polynomials (Apostol-type Bernoulli) polynomialsBn(x; λ) are defined
by means of the following generating function:

FB(t, x; λ) = log λ + t

λet − 1
etx =

∞∑
n=0

Bn(x; λ)
tn

n! , (3)

(cf. [30]; see also [46–48]).
TheApostol-Euler polynomials of first kind En(x, λ) are defined bymeans of the following

generating function:

FP1(t, x; k, λ) = 2

λet + 1
etx =

∞∑
n=0

En(x, λ)
tn

n! , (4)

(cf. [4–48]. Substituting x = 0 into (4), we have the Apostol-Euler numbers of the first kind:

En(λ) = En(0, λ).

Setting λ = 1 into (4), we have the Euler numbers of the first kind:

En = E(1)
n (1)

(cf. [4–48]; see also the references cited in each of these earlier works).
Let u be a complex numbers with u �= 1. The Frobenius–Euler numbers Hn(u) are defined

by means of the following generating function:

Ff (t, u) = 1 − u

et − u
=

∞∑
n=0

Hn(u)
tn

n! . (5)
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Substituting u = −1 into (5), we have

En = Hn(−1)

(cf. [30, Theorem 1, p. 439], [34, 48]; see also the references cited in each of these earlier
works).

By using (2) and (4), we have the following well-know relation between the polynomials
Bn(x; λ) and En(x, λ)

Bn(x; λ) = −n

2
En−1(x,−λ)

(cf. [47]).
The Euler numbers of the second kind E∗

n are given by

E∗
n = 2n En

(
1

2

)

(cf. [39, 47]; see also the references cited in each of these earlier works).
The Fubini numbers wg(n) are defined by means of the following generating functions:

FFu(t) = 1

2 − et
=

∞∑
n=0

wg(n)
tn

n! , (6)

(cf. [16]).
The Fubini numbers of order k are defined by the following generating function:

FFu(t, k) = 1

(2 − et )k
=

∞∑
n=0

w(k)
g (n)

tn

n! , (7)

(cf. [21]).
The Stirling numbers of the first kind S1(n, k) the number of permutations of n letters

which consist of k disjoint cycles, are defined bymeans of the following generating function:

FS1(t, k) = (log(1 + t))k

k! =
∞∑
n=0

S1(n, k)
tn

n! . (8)

These numbers have the following properties:

S1(0, 0) = 1,

S1(0, k) = 0 if k > 0,

S1(n, 0) = 0 if n > 0,

S1(n, k) = 0 if k > n,

and

S1(n + 1, k) = −nS1(n, k) + S1(n, k − 1) (9)

(cf. [4, 10, 11, 39, 41, 43]; and see also the references cited in each of these earlier works).
A relation between falling factorial and Stirling numbers of the first kind is given by

x(n) =
n∑

k=0

S1(n, k)xk (10)

(cf. [11, 13, 14, 47]).
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The unsigned Stirling numbers of the first kind are defined by

C(n, k) = |S1(n, k)|
(cf. [11, 13, 14, 47]). The numbers C(n, k) are also defined as follows:

x (n) =
n∑

k=0

C(n, k)xk (11)

(cf. [12]).
The Bernoulli polynomials of the second kind bn(x) are defined bymeans of the following

generating function:

Fb2(t, x) = t

log(1 + t)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n! (12)

(cf. [39, pp. 113–117]; see also the references cited in each of these earlier works).
The Bernoulli numbers of the second kind bn(0) are defined by means of the following

generating function:

Fb2(t) = t

log(1 + t)
=

∞∑
n=0

bn(0)
tn

n! . (13)

The Bernoulli polynomials of the second kind are defined by

bn(x) =
∫ x+1

x
u(n)du.

Substituting x = 0 into the above equation, one has

bn(0) =
∫ 1

0
u(n)du. (14)

The numbers bn(0) are also so-called the Cauchy numbers (i.e. Bernoulli numbers of the
second kind) (cf. [39, p. 116], [32, 44]; see also the references cited in each of these earlier
works).

The λ-array polynomials Snk (x; λ) are defined by the following generating function:

FA(t, x, k; λ) =
(
λet − 1

)k
k! etx =

∞∑
n=0

Snk (x; λ)
tn

n! , (15)

where k ∈ N0 and λ ∈ C (cf. [41], for detail see also [4, 10, 43]). Substituting x = 0 into (15),
we have the λ-Stirling numbers S2(n, k; λ), which are defined by the following generating
function:

FS(t, k; λ) =
(
λet − 1

)k
k! =

∞∑
n=0

S2(n, k; λ)
tn

n! , (16)

where k ∈ N0 and λ ∈ C (cf. [35, 47], see also [41]).
Substituting λ = 1 into (16), then we get the Stirling numbers of the second kind, the

number of partitions of a set of n elements into k nonempty subsets,

S2(n, k) = S2(n, k; 1).
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The Stirling numbers of the second kind are also given by the following generating function
including falling factorial:

xn =
n∑

k=0

S2(n, k)x(k), (17)

(cf. [2–48]; see also the references cited in each of these earlier works).
The Schlomilch formula, associated with the Stirling numbers of the first and the second

kind, is given by

S1(n, k) =
n−k∑
j=0

(−1) j
(
n + j − 1

k − 1

)(
2n − k

n − k − j

)
S2(n − k + j, j)

(cf. [12, p. 115], [11, p. 290, Eq. (8.21)]).
The associated Stirling numbers of the second kind are defined by means of the following

generating function:

FS2(t, k; λ) =
(
et − 1 − t

)k
k! =

∞∑
n=0

S22(n, k)
tn

n! , (18)

where k ∈ N0. By using (18), we have

S2(n, k) =
k∑
j=0

(
k

j

)
S22(n − j, k − j)

and S22(n, k) = 0 if k > n
2 (cf. [12, pp. 123–127]). Using (18), we give the following

functional equation:

FS2(t, v; λ) = 1

k!
k∑
j=0

(−1)k− j
(
k

j

)
j !FS(t, j; 1)uk− j .

Using the above functional equation, we have the following well-known identity:

S22(n, k) = 1

k!
k∑
j=0

(−1)k− j
(
k

j

)
j !S2(n, j)uk− j

(cf. [12, pp. 123–127]).
The associated Stirling numbers of the first kind are defined by means of the following

generating function:

FS12(t, k; λ) = (log (1 + t) − t)k

k! =
∞∑
n=0

S12(n, k)
tn

n! ,

where k ∈ N0,

S1(n, k) =
k∑
j=0

(
k

j

)
S12(n − j, k − j)

and S12(n, k) = 0 if k > n
2 (cf. [12, pp. 123–127]).

TheLahnumberswas discovered by IvoLah in 1955 (cf. [11, 12, 14, 37, 38]). The unsigned
Lah numbers have an interesting meaning especially in combinatorics. These numbers count
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the number of ways a set of n elements can be partitioned into k nonempty linearly ordered
subsets. These numbers are related to some well-known special numbers such as the Stirling
numbers of the first and the second kind, and the Laguerre polynomials.

The Lah numbers are defined by means of the following generating function:

FL(t, k) = 1

k!
(

t

1 − t

)k

=
∞∑
n=k

L(n, k)
tn

n! (19)

(cf. [38, p. 44], [5, 37], and the references cited therein). By using this equation, we have

L(n, k) = (−1)n
n!
k!
(
n − 1

k − 1

)
. (20)

The unsigned Lah numbers are defined by

|L(n, k)| = n!
k!
(
n − 1

k − 1

)
, (21)

where n, k ∈ N with 1 ≤ k ≤ n.
Two recurrence relations of these numbers are given by

L(n + 1, k) = −(n + k)L(n, k) − L(n, k − 1)

with the initial conditions

L(n, 0) = δn,0

and

L(0, k) = δ0,k,

for all k, n ∈ N and

L(n, k) =
n∑
j=0

(−1) j S1(n, j)S2( j, k)

(cf. [38, p. 44], [37]).
Another definition of the Lah numbers are related to the falling factorial and the rising

factorial. Let n ∈ N0. Since

(−1)n (−x)(n) = (x + n − 1)(n) = x (n), (22)

we have the following well-known formulas:

(−x)(n) =
n∑

k=1

L(n, k)x(k) (23)

so that

x(n) =
n∑

k=1

L(n, k) (−x)(k)

and

x (n) =
n∑

k=1

|L(n, k)| x(k). (24)
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(cf. [11, 12, 14, 37, 38]).
The Daehee numbers of the first kind and the second kind are defined by means of the

following generating functions, respectively:

log(1 + t)

t
=

∞∑
n=0

Dn
tn

n! (25)

and

(1 + t) log(1 + t)

t
=

∞∑
n=0

D̂n
tn

n! ,

(cf. [38, p. 45], [15, 27]). Using (25), we have

Dn = (−1)n
n!

n + 1

(cf. [27]).
The Changhee numbers of the first kind and the second kind are defined by means of the

following generating functions:

2

t + 1
=

∞∑
n=0

Chn
tn

n! (26)

and

2(1 + t)

t + 2
=

∞∑
n=0

Ĉhn
tn

n! ,

(cf. [31]). Using (26), we have

Chn =
n∑

k=0

S1(n, k)Ek = (−1)n
n!
2n

(cf. [31]).
The Peters polynomials sk(x; λ,μ) are defined by means of the following generating

function:

1(
1 + (1 + t)λ

)μ (1 + t)x =
∞∑
n=0

sk(x; λ,μ)
tn

n! (27)

(cf. [19, 39]).
If we substitute μ = 1 into (27), then we have the Boole polynomials. If we substitute

λ = 1 and μ = 1 into (27), then we have the Changhee polynomials (cf. [28, 39]).
This paper have exactly 13main sections including introduction.We summarize as follows:
In Sect. 2, we give some properties of the p-adic q-integrals and the p-adic fermionic

integral with their integral equations. Using these equations, we give generating functions
for special numbers and polynomials, some identities and formulas including combinatorial
sums.

In Sect. 3, we give some applications of the Volkenborn integral to the falling and rising
factorials. We define sequences of the Bernoulli numbers related to these applications. We
give some integral formulas including the Bernoulli numbers and polynomials, the Euler
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numbers and polynomials, the Stirling numbers, the Lah numbers and the combinatorial
sums.

In Sect. 4, we give some formulas for the sequence of the Bernoulli numbers. By using
the Volkenborn integral and its integral equations, we give some formulas and identities
of the Bernoulli numbers sequence. We also give some integral formulas including falling
factorials.

In Sect. 5, we give some computation formulas for the sequence including the Bernoulli
numbers. Using the Volkenborn integral, we also derive some formulas and identities of this
sequence and some integral formulas related to rising factorials.

In Sect. 6, we give various integral formulas for the Volkenborn integral associated with
the falling factorials, the combinatorial sums, the special numbers including the Bernoulli
numbers, the Stirling numbers and the Lah numbers.

In Sect. 7, we give various integral formulas for the fermionic p-adic integral including the
falling factorial and the rising factorial with their identities and relations, the combinatorial
sums, the special numbers such as the Euler numbers, the Stirling numbers and the Lah
numbers.

In Sect. 8, we give some applications of the p-adic fermionic integral associated with
falling factorial and rising factorial. We define two kinds of sequences related to the Euler
numbers and the Euler polynomials and also the Stirling numbers, the Lah numbers and the
combinatorial sums.

In Sect. 9, by using the fermionic integral and its integral equations, we derive some
formulas for the sequence of the Euler numbers and the p-adic fermionic integral formulas
related to the falling factorials.

In Sect. 10, using the fermionic integral, we give some interesting formulas for the Euler
numbers sequence and the p-adic fermionic integral including the raising factorial.

In Sect. 11, We give some novel identities for combinatorial sums including special num-
bers associated with the Bernoulli numbers, the Euler numbers, the Stirling numbers, the
Eulerian numbers, the Fubini numbers and the Lah numbers.

In Sect. 12, we conclude this paper by providing some observations on our results.
In Section A, we finalize this paper along with an appendix of some tables containing

p-adic integral formulas obtained in this paper.

2 Integral equations for p-adic q-integrals

In this section, we give some properties of p-adic q-integrals. We study integral equations for
these integrals. By using these integral equations, we derive generating functions for special
numbers and polynomials. Using these generating functions, some identities and formulas
including these numbers and polynomials and also combinatorial sums are given.

To state the p-adic q-Volkenborn integral, it is useful to firstly introduce the following
notations.

LetZp be a set of p-adic integers. LetK be a fieldwith a complete valuation andC1(Zp →
K) be a set of functions which have continuous derivative (see, for detail, [40]).

By taking into account the set of p-adic rational numbers Qp having the algebraic closure
Cp , Kim [23] defined the following p-adic q-integral:
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Let f ∈ C1(Zp → K) and q ∈ Cp with |1 − q|p < 1. Then we have

Iq( f (x)) =
∫
Zp

f (x)dμq(x) = lim
N→∞

1

[pN ]q
pN−1∑
x=0

f (x)qx , (28)

where

[x] = [x : q] =
{

1−qx

1−q , q �= 1
x, q = 1

and

μq(x) = μq

(
x + pNZp

)

denotes q-distribution on Zp , which is defined by

μq

(
x + pNZp

)
= qx[

pN
]
q

,

(cf. [23]). For a compact-open subset X of Qp , a p-adic distribution μ on X is a Qp-linear
vector space homomorphism from the Qp -vector space of locally constant functions on X

to Qp (cf. [40]).
Observe that if q → 1, then (28) reduces to the following well-knownVolkenborn integral

(bosonic integral), which is denoted by I1( f (x)):

lim
q→1

Iq( f (x)) = I1( f (x)) =
∫
Zp

f (x) dμ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) , (29)

where

μ1 (x) = μ1

(
x + pNZp

)
= 1

pN

denotes the Haar distribution (cf. [2, 20, 40, 50, 51]); see also the references cited in each of
these earlier works). The above integral has many applications not only in mathematics, but
also in mathematical physics. By using this integral and its integral equations, various family
of generating functions associated with Bernoulli-type numbers and polynomials have been
constructed (cf. [2–52]).

If q → −1, then (28) reduces to the following well-known fermionic p-adic integral,
which is denoted by I−1( f (x)):

lim
q→−1

Iq( f (x)) = I−1( f (x)) =
∫
Zp

f (x) dμ−1 (x) = lim
N→∞

pN−1∑
x=0

(−1)x f (x) (30)

(cf. [24]).
By using p-adic fermionic integral and its integral equations, various different generating

functions including Euler-type numbers and polynomials and Genocchi-type numbers and
polynomials have been constructed (cf. [2–52]).

We also note that p-adic q-integrals are related to the theory of the generating functions,
ultrametric calculus, the quantum groups, cohomology groups, q-deformed oscillator and
p-adic models (cf. [20, 50]).
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2.1 Some properties of the Volkenborn integral

Here, we give some properties of the Volkenborn integral.
The Volkenborn integral is given in terms of the Mahler coefficients as follows:

∫
Zp

f (x) dμ1 (x) =
∞∑
n=0

(−1)n

n + 1
an,

where

f (x) =
∞∑
n=0

an

(
x
j

)
∈ C1(Zp → K).

(cf. [40, p. 168-Proposition 55.3]).
Let f : Zp → K be an analytic function and

f (x) =
∞∑
n=0

anx
n

with x ∈ Zp .
The Volkenborn integral of this analytic function is given by

∫
Zp

( ∞∑
n=0

anx
n

)
dμ1 (x) =

∞∑
n=0

an

∫
Zp

xndμ1 (x)

and
∫
Zp

( ∞∑
n=0

anx
n

)
dμ1 (x) =

∞∑
n=0

an Bn

where

Bn =
∫
Zp

xndμ1 (x) ,

which is known as the Witt’s formula for the Bernoulli numbers (cf. [23, 24, 40]; see also
the references cited in each of these earlier works).

Integral equation for the Volkenborn integral is given as follows:

∫
Zp

Em [ f (x)] dμ1 (x) =
∫
Zp

f (x)dμ1 (x) +
m−1∑
x=0

d

dx
{ f (x)} (31)

where

Em [ f (x)] = f (x + m)

(cf. [23, 24, 40]; see also the references cited in each of these earlier works).
Using (28), the following integral equation was given by Kim [26]:

q
∫
Zp

E [ f (x)] dμq(x) =
∫
Zp

f (x)dμq(x) + q − 1

log q
f

′
(0) + (q − 1) f (0), (32)

123



   92 Page 12 of 52 Y. Simsek

where

f
′
(0) = d

dx
{ f (x)} |x=0 .

As usual, exponential function is defined as follows:

et =
∞∑
n=0

tn

n! .

The above series convergences in region E , which subset of field K with char(K) = 0 (cf.
[40, p. 70]). Let k be residue class field of K. If char(k) = p, then

E =
{
x ∈ K : |x | < p

1
1−p

}

and if char(k) = 0, then

E = {x ∈ K : |x | < 1} .

Let f ∈ C1(Zp → K). Kim [26, Theorem 1] gave the following integral equation:

qn
∫
Zp

En [ f (x)] dμq (x) −
∫
Zp

f (x) dμq (x)

= q − 1

log q

⎛
⎝n−1∑

j=0

q j f
′
( j) + log q

n−1∑
j=0

q j f ( j)

⎞
⎠ , (33)

where n is a positive integer and

f
′
( j) = d

dx
{ f (x)} ∣∣x= j .

Observe that substituting n = 1 into (33), we arrive at (32).

Theorem 1 Let n ∈ N0. Then we have∫
Zp

(
x

n

)
dμ1 (x) = (−1)n

n + 1
. (34)

Theorem 1 was proved by Schikhof [40].
Combining

x(n) = n!
(
x

n

)
,

and (34) with (46), we have
∫
Zp

x(n)dμ1 (x) = (−1)nn!
n + 1

, (35)

(cf. [27]).
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By using (34), we have
∫
Zp

(
x + n − 1

n

)
dμ1 (x) =

n∑
m=0

(
n − 1

n − m

)∫
Zp

(
x

m

)
dμ1 (x)

=
n∑

m=1

(−1)m
(
n − 1

m − 1

)
1

m + 1

=
n∑

m=0

(−1)m
(
n − 1

n − m

)
1

m + 1
(36)

(cf. [27, 31, 43]). By using (36), we obtain
∫
Zp

(x + n − 1)(n) dμ1 (x) = n!
n∑

m=0

(−1)m
(
n − 1

n − m

)
1

m + 1
. (37)

2.2 Generating functions with help of integral equation of (32)

Here, we give generating functions with help of integral equation of (32). By using these
functions, we give new families of special numbers and polynomials includingBernoulli-type
numbers and polynomials.

Let λ ∈ Zp . We define

f (x) = λxaxt . (38)

Substituting (38) into (32), we get∫
Zp

λxaxt dμq(x) = q − 1

log q

(
t log a + log λ + log q

λqat − 1

)
, (39)

where

a ∈ C
+
p = {x ∈ Cp : |1 − x |p < 1

}
and a �= 1.

Substituting t = 1 and q → 1 into (39), we have∫
Zp

λxaxdμ1(x) = log λ + log(a)

λa − 1
.

Substituting λ = 1 into the above equation, we arrive at the Exercise 55A-1 of [40, p. 170]
as follows: ∫

Zp

axdμ1(x) = log(a)

a − 1
,

where a ∈ C
+
p with a �= 1.

Remark 1 Substituting a = e, λ = 1 and q → 1 into (39), we arrive at the equation (3).
Substituting a = e and q → 1 into (39), we get the Exercise 55A-2 of [40, p. 170], which
gives us the generating function for the Bernoulli numbers Bn as follows:∫

Zp

etxdμ1(x) = t

et − 1
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where t ∈ E with t �= 0.

By using (39), we define the following generating function for special numbers
Sn(a; λ, q):

H1(t; λ; a, q) = q − 1

log q

(
t log a + log(λq)

λqat − 1

)
=

∞∑
n=0

Sn(a; λ, q)
tn

n! . (40)

By using (39), we define the following generating function for special numbersSn(a; λ, q):

H2(t, x; λ; a, q) = atx H1(t; λ; a, q) =
∞∑
n=0

Sn(x, a; λ, q)
tn

n! . (41)

Observe that

Sn(a; λ, q) = Sn(0, a; λ, q).

Combining (40) with (41), we get

∞∑
n=0

Sn(x, a; λ, q)
tn

n! =
∞∑
n=0

(x ln a)n
tn

n!
∞∑
n=0

Sn(a; λ, q)
tn

n! .

Therefore
∞∑
n=0

Sn(x, a; λ, q)
tn

n! =
∞∑
n=0

n∑
j=0

(
n

j

)
(x ln a)n− j Sn(a; λ, q)

tn

n! .

Comparing the coefficients of tn
n! onboth sides of the above equation,we arrive at the following

theorem:

Theorem 2 Let n ∈ N0. Then we have

Sn(x, a; λ, q) =
n∑
j=0

(
n

j

)
(x ln a)n− j Sn(a; λ, q). (42)

Remark 2 Substituting λ = 1 into (40), we have

sn(a, q) = Sn(a; λ, q)

(cf. [33]). Substituting q → 1 and a = e into (40), we have

Bn(λ) = Sn(e; λ, 1)

and

Bn−1(λ) =
(
log λ

n

)
Bn(λ) + Bn−1(λ).

By using (39), we give p-adic integral representation of the special numbersSn(a; λ, q)

by the following theorem:

Theorem 3 Let n ∈ N0. Then we have

Sn(a; λ, q) =
∫
Zp

λx (x log a)n dμq(x). (43)
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Remark 3 Using (43), we have the following well-known theWitt’s formula for the Bernoulli
numbers, Bn : ∫

Zp

xndμ1 (x) = Bn, (44)

(cf. [40]). We also easily see that the Bernoulli polynomials are defined by
∫
Zp

(z + x)n dμ1 (x) = Bn(z) (45)

(cf. [23, 24, 40]; see also the references cited in each of these earlier works).

Kim et al. [27] defined Witt-type identities for the Daehee numbers of the first kind by
the following integral representation as follows:

Dn =
∫
Zp

t(n)dμ1 (t) . (46)

and

∫
Zp

x(n)dμ1 (x) =
n∑

l=0

S1(n, l)Bl . (47)

Kim et al. [27] defined the Daehee numbers of the second kind as follows:

D̂n =
∫
Zp

t (n)dμ1 (t) . (48)

Kim et al. [27] defined the Daehee polynomials of the first and second kind, respectively,
as follows:

Dn(x) =
∫
Zp

(x + t)(n) dμ1 (t) (49)

and

D̂n(x) =
∫
Zp

(x + t)(n) dμ1 (t) . (50)

2.3 Some properties of the fermionic p-adic integral

Here, we give some properties of the fermionic p-adic integral. By using integral equa-
tions of the fermionic p-adic integral, we give generating functions for special numbers and
polynomials. Using these generating functions, some identities and formulas including these
numbers and polynomials and also combinatorial sums are given. We also give interpolation
function for these numbers.
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Let f ∈ C1(Zp → K). Kim [25] gave the following integral equation for the fermionic
p -adic integral on Zp:

∫
Zp

En [ f (x)] dμ−1 (x) + (−1)n+1
∫
Zp

f (x) dμ−1 (x) = 2
n−1∑
j=0

(−1)n−1− j f ( j), (51)

where n is a positive integer.
Substituting n = 1 into (51), we have the following very useful integral equation, which is

used to construct generating functions associated with Euler-type numbers and polynomials:∫
Zp

f (x + 1) dμ−1 (x) +
∫
Zp

f (x) dμ−1 (x) = 2 f (0) (52)

(cf. [25]).
By using (30) and (52), the well-known Witt’s formula for the Euler numbers and poly-

nomials are given as follows, respectively:

En =
∫
Zp

xndμ−1 (x) (53)

and

En(z) =
∫
Zp

(z + x)n dμ−1 (x) (54)

(cf. [24]; see also the references cited in each of these earlier works).

Theorem 4 Let n ∈ N0. Then we have∫
Zp

(
x

n

)
dμ−1 (x) = (−1)n2−n . (55)

Theorem 4 was proved by Kim et al. [31, Theorem 2.3].
Substituting x(n) = n!(xn) into (55), we have the following well-known identity:

∫
Zp

x(n)dμ−1 (x) = (−1)n2−nn! (56)

(cf. [31]).
Recently, by using the fermionic p-adic integral on Zp , Kim et al. [31] defined the fol-

lowing Changhee numbers of the first and second kind, respectively:

Chn =
∫
Zp

x(n)dμ−1 (x) (57)

and

Ĉhn =
∫
Zp

x (n)dμ−1 (x) . (58)
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Kim et al. [31] defined the first and second kind Changhee polynomials, respectively, as
follows:

Chn(x) =
∫
Zp

(x + t)(n) dμ−1 (t) (59)

or

Ĉhn(x) =
∫
Zp

(x + t)(n) dμ−1 (t) . (60)

Therefore, by using Theorem 4, we have
∫
Zp

(
x + n − 1

n

)
dμ−1 (x) =

n∑
m=0

(
n − 1

n − m

)∫
Zp

(
x

m

)
dμ−1 (x)

=
n∑

m=1

(−1)m
(
n − 1

m − 1

)
2−m

=
n∑

m=0

(−1)m
(
n − 1

n − m

)
2−m (61)

(cf. [27, 31, 43]). By using (61), we have
∫
Zp

(x + n − 1)(n) dμ−1 (x) = n!
n∑

m=0

(−1)m
(
n − 1

n − m

)
2−m . (62)

By using (51), Kim [26] modified (30). He gave the following integral equation:

qd
∫
Zp

Ed f (x) dμ−q (x) +
∫
Zp

f (x) dμ−q (x) = [2]
d−1∑
j=0

(−1) j q j f ( j), (63)

where d is an positive odd integer.

2.4 Generating functions with help of integral equation of the fermionic p-adic
q-integral onZp

Here, we give generating functions with help of integral equation of the fermionic p-adic
q-integral on Zp . By using these functions, we give new families of special numbers and
polynomials including Euler-type numbers and polynomials.

Combining (38) with (63), we get the following integral equation.

∫
Zp

(
λat
)x

dμ−q (x) = [2]

(λqat )d + 1

d−1∑
j=0

(−1) j
(
λqat

) j
. (64)

Byusing (64),wedefine the followinggenerating function for special numbersNn(a; q, λ, d):

F1(t, a; q, λ, d) = [2]

(λqat )d + 1

d−1∑
j=0

(−1) j
(
λqat

) j =
∞∑
n=0

Nn(a; q, λ, d)
tn

n! . (65)
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We define the following generating function for special polynomialsNn(x, a; q, λ, d):

F2(t, x, a; q, λ, d) = atx F1(t, a; q, λ, d) =
∞∑
n=0

Nn(x, a; q, λ, d)
tn

n! . (66)

Observe that

Nn(a; q, λ, d) = Nn(0, a; q, λ, d).

Combining (66) with (65), we get

∞∑
n=0

Nn(x, a; q, λ, d)
tn

n! =
∞∑
n=0

(x ln a)n
tn

n!
∞∑
n=0

Nn(a; q, λ, d)
tn

n! .

Therefore
∞∑
n=0

Nn(x, a; q, λ, d)
tn

n! =
∞∑
n=0

n∑
j=0

(
n

j

)
(x ln a)n− j Nn(a; q, λ, d)

tn

n! .

Comparing the coefficients of tn
n! onboth sides of the above equation,we arrive at the following

theorem:

Theorem 5 Let n ∈ N0. Then we have

Nn(x, a; q, λ, d) =
n∑
j=0

(
n

j

)
(x ln a)n− j Nn(a; q, λ, d). (67)

Substituting q → 1 and a = e into (65), we have

2

λdetd + 1

d−1∑
j=0

(−1) j
(
λet
) j =

∞∑
n=0

Nn(e; 1, λ, d)
tn

n! .

Remark 4 Combining (65) with (4), we have

Nn(e; 1, λ, d) = dn
d−1∑
j=0

(−1) jλ jEn
(
j

d
, λd
)

.

3 Integral formulas for the Volkenborn integral

In this section, we give some integral formulas for the Volkenborn integral including the
falling factorial and the rising factorial with their identities and relations, the combinatorial
sums, the special numbers such as the Bernoulli numbers, the Stirling numbers and the Lah
numbers.

Lemma 1 Let n ∈ N0. Then we have∫
Zp

xx(n)dμ1 (x) = (−1)n+1 n!
n2 + 3n + 2

. (68)
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Proof Since

xx(n) = x(n+1) + nx(n). (69)

By applying the Volkenborn integral to the both sides of the above equation, and using (34),
we arrive at the desired result. ��

By combining (69) with (10), we have

xx(n) =
n∑

k=0

(S1(n + 1, k) + nS1(n, k)) xk + xn+1. (70)

By combining the above equation with (9), and using S1(n, k) = 0 if k < 0, we get

xx(n) =
n∑

k=1

S1(n, k − 1)xk + xn+1.

By applying the Volkenborn integral to the both sides of the above equation, and using (44),
we also arrive at the following theorem:

Theorem 6 Let n ∈ N0. Then we have∫
Zp

xx(n)dμ1 (x) =
n∑

k=1

S1(n, k − 1)Bk + Bn+1. (71)

Theorem 7 Let n ∈ N. Then we have∫
Zp

xx (n) dμ1 (x) =
n∑

k=1

(−1)k+1
(
n − 1

k − 1

)
n!

k2 + 3k + 2
. (72)

Proof Using (1) and (24), we get

xx (n) =
n∑

k=1

|L(n, k)| xx(k). (73)

By applying the Volkenborn integral to the above equation and using (68), after some ele-
mentary calculations, we get the desired result. ��
Theorem 8 Let n ∈ N0. Then we have∫

Zp

xx (n) dμ1 (x) =
n∑

k=1

C(n, k)Bk+1. (74)

Proof By applying the Volkenborn integral to the following equation

xx (n) =
n∑

k=1

C(n, k)xk+1, (75)

we get
∫
Zp

xx (n) dμ1 (x) =
n∑

k=1

C(n, k)
∫
Zp

xk+1 dμ1 (x) .

By combining the above equation with (44), we get the desired result. ��
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Theorem 9 Let n ∈ N0. Then we have∫
Zp

x(n+1)

x
dμ1 (x) =

n∑
k=0

(−1)nn(n−k)
k!

k + 1
.

Proof In order to prove this theorem, we need the following identity:

x(n+1) = x
n∑

k=0

(−1)n−kn(n−k)x(k) (76)

(cf. [39, p. 58]). By applying the Volkenborn integral to the both sides of the above equation,
and using (46), we arrive at the desired result. ��

By applying the Volkenborn integral to (76), we have

∫
Zp

x(n+1)dμ1 (x) =
n∑

k=0

(−1)n−kn(n−k)

∫
Zp

xx(k)dμ1 (x) .

By combining (35), (82) and (68) with the above equation, we arrive the at the following
combinatorial sum:

Theorem 10 Let n ∈ N0. Then we have

n∑
k=0

n(n−k)
k!

k2 + 3k + 2
= (n + 1)!

n + 2
.

Applying the Volkenborn integral to the following equation:

(x + 1)(n+1) = xx(n) + x(n), (77)

we obtain ∫
Zp

(x + 1)(n+1) dμ1 (x) =
∫
Zp

xx(n)dμ1 (x) +
∫
Zp

x(n)dμ1 (x) .

Combining the above equation with (68) and (109), we get∫
Zp

(x + 1)(n+1) dμ1 (x) = (−1)n+1 n!
n2 + 3n + 2

+ (−1)n

n + 1
n!.

After some elementary calculations in the above equation, we arrive at the following result:

Corollary 1 Let n ∈ N0. Then we have∫
Zp

(x + 1)(n+1) dμ1 (x) = (−1)n

n + 2
n!.

Remark 5 By (112), we have

n∑
k=0

(
x

k

)(
m

n − k

)
=
(
x + m

n

)
.
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By applying the Volkenborn integral to the above equation, we get the following formula:
∫
Zp

(
x + m

n

)
dμ1 (x) =

n∑
m=0

(−1)k
(

m

n − k

)
1

k + 1
.

By applying the Volkenborn integral with respect to x and y to (112), we have
∫
Zp

∫
Zp

n∑
k=0

(
x

k

)(
y

n − k

)
dμ1 (y) dμ1 (y)

=
∫
Zp

∫
Zp

(
x + y

n

)
dμ1 (y) dμ1 (y) . (78)

By combining the following identity with the above equation:
(
x + y

n

)
= 1

n! (x + y)(n) = 1

n!
n∑

k=0

(
n

k

)
x(k)y(n−k), (79)

and using (46) and (110), we also get the following lemma:

Lemma 2 Let n ∈ N0. Then we have∫
Zp

∫
Zp

(
x + y

n

)
dμ1 (y) dμ1 (y) =

n∑
k=0

(−1)n
1

(k + 1)(n − k + 1)
. (80)

By combining (78) with the following identity:
(
x + y

n

)
= 1

n! (x + y)(n) = 1

n!
n∑

k=0

S1(n, k) (x + y)k ,

and using (46) and (110), we also get the following lemma:

Lemma 3 Let n ∈ N0. Then we have

∫
Zp

∫
Zp

(
x + y

n

)
dμ1 (y) dμ1 (y) = 1

n!
n∑

k=0

k∑
j=0

(
k

j

)
S1(n, k)Bj Bk− j . (81)

Lemma 4 Let n ∈ N0. Then we have∫
Zp

(
x + 1

n

)
dμ1 (x) = (−1)n+1

n2 + n
. (82)

Proof In [40], Schikhof gave the following integral formula:

∫
Zp

f (x + n)dμ1 (x) =
∫
Zp

f (x)dμ1 (x) +
n−1∑
k=0

f ′(k), (83)

where

f ′(x) = d

dx
{ f (x)} .
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By substituting

f (x) =
(
x

n

)

into (83), we get∫
Zp

(
x + 1

n

)
dμ1 (x) =

∫
Zp

(
x

n

)
dμ1 (x) + d

dx

{(
x

n

)}
|x=0 ,

where

d

dx

{(
x

n

)}
|x=0 =

{
1

n! (x)n
n−1∑
k=0

1

x − k

}
|x=0

= (−1)n−1 1

n
.

Therefore ∫
Zp

(
x + 1

n

)
dμ1 (x) = (−1)n

n + 1
+ (−1)n−1 1

n
.

After some elementary calculations, we get the desired result. ��
Remark 6

�

(
x

n

)
=
(

x

n − 1

)

and

�

(
x

n

)
=
(
x + 1

n

)
−
(
x

n

)
.

Therefore (
x + 1

n

)
=
(
x

n

)
+
(

x

n − 1

)
(84)

(cf. [19, p. 69, Eq. (7)]). By applying the Volkenborn integral to the above well-known
identities, we also get another proof of (83).

Theorem 11 Let n ∈ N0. Then we have∫
Zp

(x + 1)(n) dμ1 (x) = (−1)n+1 n!
n2 + n

.

Proof Since

�x(n) = (x + 1)(n) − x(n), (85)

we have

(x + 1)(n) = x(n) + nx(n−1) (86)

(cf. [39, p. 58]). By applying the Volkenborn integral to the above equation and combining
with (109), we get the desired result. ��
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By applying the Volkenborn integral to the equation (85) and combining with (109), we
arrive at the following corollary:

Corollary 2 Let n ∈ N. Then we have∫
Zp

�x(n)dμ1 (x) = (−1)n+1 (n − 1)!.

By applying the Volkenborn integral to the equation (23), we obtain

∫
Zp

(−x)(n) dμ1 (x) =
n∑

k=0

L(n, k)
∫
Zp

x(k)dμ1 (x) ,

where n ∈ N0. By using (109), we get

∫
Zp

(−x)(n) dμ1 (x) =
n∑

k=0

(−1)k
k!L(n, k)

k + 1
.

Substituting (20) into the above equation, we arrive at the following theorem:

Theorem 12 Let n ∈ N. Then we have
∫
Zp

(−x)(n) dμ1 (x) =
n∑

k=1

(−1)k+n
(
n − 1

k − 1

)
n!

k + 1
.

Corollary 3 Let n ∈ N0. Then we have∫
Zp

(
x + 1

n + 1

)
dμ1 (x) = (−1)n

n2 + 3n + 2
. (87)

Proof By applying the Volkenborn integral to (77) and using (68) and (108), we get the
desired result. ��

Remark 7 Replacing n by n + 1 in (82), we also get (87).

In [36], Osgood and Wu gave the following identity:

(xy)(k) =
k∑

l,m=1

C (k)
l,m(x)l(x)m (88)

where

C (k)
l,m =

k∑
j=1

(−1)k− j S1(k, j)S2( j, l)S2( j,m)

C (k)
l,m = C (k)

m,l , C
(1)
1,1 = 1, C (2)

1,1 = 0, C (3)
1,2 = 0 = C (3)

2,1. By applying the Volkenborn integral to
the equation (88) with respect to x and y, we arrive at the following lemma:
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Lemma 5 Let k ∈ N0. Then we have

∫
Zp

∫
Zp

(xy)(k)dμ1 (x) dμ1 (y) =
k∑

l,m=1

Dl DmC
(k)
l,m

or
∫
Zp

∫
Zp

(xy)(k)dμ1 (x) dμ1 (y) =
k∑

l,m=1

(−1)l+m l!m!
(l + 1)(m + 1)

C (k)
l,m . (89)

Lemma 6 Let k ∈ N0. Then we have

∫
Zp

∫
Zp

(xy)(k)dμ1 (x) dμ1 (y) =
k∑

m=0

S1(k,m) (Bm)2 . (90)

Proof By using (17), we get

(xy)(k) =
k∑

m=0

S1(k,m)xm ym (91)

By applying the Volkenborn integral to (91) with respect to x and y, and using (44), we get
the desired result. ��
Theorem 13 Let n ∈ N0. Then we have∫

Zp

x

(
x − 2

n − 1

)
dμ1 (x) = (−1)n

n∑
k=1

k

k + 1
.

Proof Gould [18, Vol. 3, Eq. (4.20)] defined the following identity:

(−1)nx

(
x − 2

n − 1

)
=

n∑
k=1

(−1)k
(
x

k

)
k.

By applying the Volkenborn integral to the above equation, and using (34), we get the desired
result. ��
Theorem 14 Let n ∈ N0. Then we have∫

Zp

(
n − x

n

)
dμ−1 (x) = (−1)nHn,

where Hn denotes the harmonic numbers given by

Hn =
n∑

k=0

1

k + 1
.

Proof Gould [18, Vol. 3, Eq. (4.19)] defined the following identity:

(−1)n
(
n − x

n

)
=

n∑
k=0

(−1)k
(
x

k

)
.

By applying the Volkenborn integral to the above integral, and using (34), we get the desired
result. ��
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Theorem 15 Let m ∈ N and n ∈ N0. Then we have

∫
Zp

(
mx

n

)
dμ1 (x) =

n∑
k=0

(−1)k

k + 1

k∑
j=0

(−1) j
(
k

j

)(
mk − mj

n

)
.

Proof Gould [17, Eq. (2.65)] gave the following identity:

(
mx

n

)
=

n∑
k=0

(
x

k

) k∑
j=0

(−1) j
(
k

j

)(
mk − mj

n

)
. (92)

By applying the Volkenborn integral to the above equation, and using (34), we arrive at the
desired result. ��
Theorem 16 Let n, r ∈ N0. Then we have

∫
Zp

(
x

n

)r
dμ1 (x) =

nr∑
k=0

(−1)k

k + 1

k∑
j=0

(−1) j
(
k

j

)(
k − j

n

)r
. (93)

Proof Gould [17, Eq. (2.66)] gave the following identity:

(
x

n

)r
=

nr∑
k=0

(
x

k

) k∑
j=0

(−1) j
(
k

j

)(
k − j

n

)r
. (94)

By applying the Volkenborn integral to the above equation, and using (34), we arrive at the
desired result. ��
Remark 8 Substituting r = 1 into (93), since

(k− j
n

) = 0 if k − j < n, we arrive at the
equation (34).

Theorem 17 Let n ∈ N with n > 1. Then we have∫
Zp

{
x

(
x − 2

n − 1

)
+ x (x − 1)

(
n − 3

n − 2

)}
dμ1 (x) = (−1)n

n∑
k=0

k2

k + 1
.

Proof In [17, Eq. (2.15)], Gould gave the following identity for n > 1:

x

(
x − 2

n − 1

)
+ x (x − 1)

(
n − 3

n − 2

)
=

n∑
k=0

(−1)k
(
x

k

)
k2, (95)

where n ∈ N with n > 1. By applying the Volkenborn integral to the above equation, and
using (34), we arrive at the desired result. ��
Theorem 18 Let n ∈ N0. Then we have

∫
Zp

(
x + n

n

)
dμ1 (x) =

n∑
k=0

(−1)k

k + 1

k∑
j=0

(−1) j
(
k

j

)(
k − j + n

n

)
(96)

and ∫
Zp

(
x + n

n

)
dμ1 (x) =

n∑
k=0

Bk

n∑
j=0

(
n

j

)
S1( j, k)

j ! . (97)
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Proof In [17, Eq. (2.64) and Eq. (6.17)], Gould gave the following identities:

(
x + n

n

)
=

n∑
k=0

(
x

k

) k∑
j=0

(−1) j
(
k

j

)(
k − j + n

n

)
(98)

and (
x + n

n

)
=

n∑
k=0

xk
n∑
j=0

(
n

j

)
S1( j, k)

j ! . (99)

By applying the Volkenborn integral to the above equations, and using (34) and (44),
respectively, we arrive at the desired result. ��
Theorem 19 Let n ∈ N0. Then we have∫

Zp

(
x + n + 1

2
n

)
dμ1 (x) =

(
2n

n

) n∑
k=0

(−1)k
(
n

k

)
22k−2n (2n + 1)

(k + 1) (2k + 1)
(2k
k

) .

Proof Gould [18, Vol. 3, Eq. (6.26)] defined the following identity:
(
x + n + 1

2
n

)
= (2n + 1)

(
2n

n

) n∑
k=0

(
n

k

)(
x

k

)
22k−2n

(2k + 1)
(2k
k

) .
By applying the Volkenborn integral to the above integral, and using (34), we get the desired
result. ��
Theorem 20 Let m, n ∈ N0. Then we have

∫
Zp

xmx(n)dμ1 (x) =
n∑

k=0

S1(n, k)Bk+m .

Proof Multiplying both sides of the equation (10) by xm , we get

xmx(n) =
n∑

k=0

S1(n, k)xm+k

By applying the Volkenborn integral to the above integral, and using (44), we get the desired
result. ��

In order to give a formula for the following integral∫
Zp

x(m)x(n)dμ1 (x) ,

we need the following well-known identity

x(m)x(n) =
m∑

k=0

(
m

k

)(
n

k

)
k!x(m+n−k), (100)

where the coefficients of x(n+n−k) are called connection coefficients and they have a combi-
natorial interpretation as the number of ways to identify k elements each from a set of size
m and a set of size n (cf. [49]).
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By using (10), we have

x(m)x(n) =
n∑
j=0

m∑
l=0

S1(n, k)S1(m, l)x j+l .

By applying the Volkenborn integral to the above equation, and using (44), we get the fol-
lowing lemma:

Lemma 7 Let m, n ∈ N0. Then we have∫
Zp

x(n)x(m)dμ1 (x) =
n∑
j=0

m∑
l=0

S1(n, k)S1(m, l)Bj+l . (101)

By combining (100) with (10), we get

x(m)x(n) =
m∑

k=0

(
m

k

)(
n

k

)
k!

m+n−k∑
l=0

S1(m + n − k, l)xl .

By applying the Volkenborn integral to the above equation, we get the following lemma:

Lemma 8 Let m, n ∈ N0. Then we have

∫
Zp

x(n)x(m)dμ1 (x) =
m∑

k=0

(
m

k

)(
n

k

)
k!

m+n−k∑
l=0

S1(m + n − k, l)Bl . (102)

4 Application of the Volkenborn integral to the falling factorial and
rising factorial

In this section, we give some applications of the Volkenborn integral on Zp to the falling fac-
torial and rising factorial.With the aid of these applications, we derive some integral formulas
including the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the
Stirling numbers, the Lah numbers and the combinatorial sums.

By using the same spirit of the Bernoulli polynomial of the second kind which are also
called Cauchy numbers of the first kind, by applying the Volkenborn integral to the rising
factorial and the falling factorial, respectively,we derive various formulas, identities, relations
and combinatorial sums including the Bernoulli numbers, the Stirling numbers, the Lah
numbers, the Daehee numbers and the Changhee numbers.

In [46], similar to the Cauchy numbers defined by aid of the Riemann integral, we studied
the Bernoulli numbers sequences by using p -adic integral.

LetY1(0 : B) = B0 = 1 andY1(1 : B) = B1 = − 1
2 . Let n ∈ Nwith n > 1.Assuming that

x j ∈ Z and j ∈ {1, 2, . . . , n − 1}. We define the following sequence (Y1(n : B)) associated
with the Bernoulli numbers:

Y1(n : B) = Bn +
n−1∑
j=1

(−1) j x j Bn− j . (103)

Combining (103) with (46), we get a relation between the sequence of (Y1(n : B)) and
the Daehee numbers given as follows:

Y1(n : B) = Dn . (104)
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Few values of (103) are computed by (46) as follows:

Y1(2 : B) = B2 − B1,

Y1(3 : B) = B3 − 3B2 + 2B1,

Y1(4 : B) = B4 − 6B3 + 11B2 − 6B1, . . . .

Therefore, we have

Y1(2 : B) = B2 − x1B1 = 2

3
,

Y1(3 : B) = B3 − x1B2 + x2B1 = −3

2
,

Y1(4 : B) = B4 − x1B3 + x2B2 − x3B1 = 24

5
, . . . .

Due to the work of Kim et al. [27], we see that the coefficients x j are computed by the Stirling
numbers of the first kind.

Let Y2(0 : B) = B0 and Y2(1 : B) = B1. Let n ∈ N with n > 1. Assuming that x j ∈ Z

and j ∈ {1, 2, . . . , n − 1}. We define the following sequence (Y2(n : B)) associated with the
Bernoulli numbers as follows:

Y2(n : B) = Bn +
n−1∑
j=1

x j Bn− j , (105)

Combining (105) with (48), a relation between the sequence of (Y2(n : B)) and the Daehee
numbers (of the second kind) given as follows:

Y2(n : B) = D̂n .

Few values of (105) are computed by (48) as follows:

Y2(2 : B) = B2 + B1,

Y2(3 : B) = B3 + 3B2 + 2B1,

Y2(4 : B) = B4 + 6B3 + 11B2 + 6B1, . . . .

Therefore, we have

Y2(2 : B) = B2 + x1B1 = −1

3
,

Y2(3 : B) = B3 + x1B2 + x2B1 = −1

2
,

Y2(4 : B) = B4 + x1B3 + x2B2 + x3B1 = −6

5
, . . . .

Let Y1(x, 0 : B(x)) = Y2(x, 0 : B(x)) = B0(x) = 1 and Y1(x, 1 : B(x)) = Y2(x, 1 :
B(x)) = B1(x) = x − 1

2 . Let n ∈ N with n > 1. Assuming that x j ∈ Z and j ∈
{1, 2, . . . , n − 1}. We now define the following sequences associated (Y1(x, n : B(x))) and
(Y2(x, n : B(x))) with the Bernoulli polynomials, respectively:

Y1(x, n : B(x)) = Bn(x) +
n−1∑
j=1

(−1) j x j Bn− j (x) (106)
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and

Y2(x, n : B(x)) = Bn(x) +
n−1∑
j=1

x j Bn− j (x). (107)

Few values of (106) are given as follows:

Y1(x, 2 : B(x)) = B2(x) − x1B1(x) = x2 − 2x + 2

3
,

Y1(x, 3 : B(x)) = B3(x) − x1B2(x) + x2B1(x) = x3 − 9

2
x2 + 11

2
x − 3

2
,

Y1(x, 4 : B(x)) = B4(x) − x1B3(x) + x2B2(x) − x3B1(x) = x4 − 8x3 − x2 − 14x

+24

5
, . . .

Few values of (107) are given as follows:

Y2(x, 2 : B(x)) = B2(x) + x1B1(x) = x2 − 1

3
,

Y2(x, 3 : B(x)) = B3(x) + x1B2(x) + x2B1(x) = x3 + 3

2
x2 − 1

2
x − 1

2
,

Y2(x, 4 : B(x)) = B4(x) + x1B3(x) + x2B2(x) + x3B1(x) = x4 + 4x3 + 3x2 − 2x

−6

5
, . . .

Observe that setting x = 0 into the above equations, we have

Y1(n : B) = Y1(0, n : B(0))

and

Y2(n : B) = Y2(0, n : B(0)).

5 Formulas for the sequence Y1(n : B)
Touse theVolkenborn integral and its integral equations,we give some formulas and identities
for the sequence (Y1(n : B)). We also gives some p-adic integral formulas including falling
factorial.

An explicit formula for the sequence (Y1(n : B)) is given by the following theorem, which
was proved by different methods (cf. [15, 27], [38, p. 117], [45, 46]).

Theorem 21 Let n ∈ N0. Then we have

Y1(n : B) = (−1)n
n!

n + 1
. (108)

Proof By (104), we know that the sequence (Y1(n : B)) is related to the numbers Dn . We
now briefly give the proof. Since

x(n) = n!
(
x

n

)
,
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by using (34), we get ∫
Zp

x(n)dμ1 (x) = n!
∫
Zp

(
x

n

)
dμ1 (x)

= (−1)n

n + 1
n! = Y1(n : B). (109)

Thus, we get the desired result. ��
Remark 9 By combining (109), (46) and (47), we have

n∑
l=0

S1(n, l)Bl = (−1)n

n + 1
n! (110)

where n ∈ N0. Note that the proof of (110) is also given by Riordan [38, p. 117]. See also
(cf. [15, 27, 45, 46]). That is, the equation (104) holds true.

Two kinds of recurrence relations for the numbers Y1(n : B) are given by the following
theorem:

Theorem 22 Let n ∈ N0. Then we have

Y1(n + 1 : B) + nY1(n : B) =
n∑

k=1

S1(n, k − 1)Bk + Bn+1

and

Y1(n + 1 : B) + nY1(n : B) = (−1)n+1 n!
n2 + 3n + 2

. (111)

Proof By applying the Volkenborn integral to the both sides of equation (69) and using (46),
(68) and ( 71), after some elementary calculations, we arrive at the desired result. ��
Theorem 23 Let n ∈ N0. Then we have∫

Zp

Y1(y, n : B(y))dμ1 (y) = (−1)n
n∑

k=0

n!
(k + 1)(n − k + 1)

.

Proof The well-known Chu-Vandermonde identity is defined as follows:

n∑
k=0

(
x

k

)(
y

n − k

)
=
(
x + y

n

)
. (112)

By applying the Volkenborn integral with respect to x and y to the left hand side (LHS) of
the equation (112), and using (34), we get

LHS = (−1)n
n∑

k=0

1

(k + 1)(n − k + 1)
. (113)

By applying the Volkenborn integral with respect to x and y to the right hand side (RHS) of
the equation (112), and using (49) and (50), we obtain

RHS = 1

n!
∫
Zp

Y1(y, n : B(y))dμ1 (y) . (114)
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Combining (113) with (114), after some elementary calculations, we arrived at the desired
result. ��

By applying the Volkenborn integral to the equation (100), and using (46), (68) and (108),
we get the following lemma:

Lemma 9 Let m, n ∈ N0. Then we have
∫
Zp

x(m)x(n)dμ1 (x) =
m∑

k=0

(
m

k

)(
n

k

)
k!Y1(m + n − k : B) (115)

and
∫
Zp

x(m)x(n)dμ1 (x) =
m∑

k=0

(−1)m+n−k
(
m

k

)(
n

k

)
k!(m + n − k)!
m + n − k + 1

. (116)

Remark 10 Since Dn = Y1(n : B), we rewrite the equation (115) as follows:

∫
Zp

x(m)x(n)dμ1 (x) =
m∑

k=0

(
m

k

)(
n

k

)
k!Dm+n−k .

6 Formulas for the sequence Y2(n : B)
To use the Volkenborn integral and its integral equations, here we give some formulas and
identities for the sequence (Y2(n : B)). We give some p-adic integral formulas including
raising factorial.

A computation formula for the sequence Y2(n : B) is given by the following theorems:
By using (10) and (22), we have the following well-known relation:

(x + n − 1)(n) =
n+1∑
m=0

(−1)m+n S1(n,m)xm . (117)

Byapplying theVolkenborn integral to the equation (117), andusing (44),weget the following
identities:

∫
Zp

(x + n − 1)(n)dμ1 (x) =
n+1∑
m=0

(−1)m+n S1(n,m)Bm (118)

and
∫
Zp

(−x)(n)dμ1 (x) =
n+1∑
m=0

(−1)mS1(n,m)Bm .

By using (36), we also have

∫
Zp

(
x + n − 1

n

)
dμ1 (x) =

n∑
m=0

(−1)m
(
n − 1

n − m

)
1

m + 1
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and ∫
Zp

(x + n − 1)(n)dμ1 (x) =
n∑

m=0

(−1)m
(
n − 1

n − m

)
n!

m + 1
. (119)

Therefore

Y2(n : B) =
∫
Zp

x (n)dμ1 (x)

which is associated with the Daehee numbers of the second kind. Thus we get the following
theorem:

Theorem 24 Let n ∈ N. Then we have

Y2(n : B) = 1

n!
n∑

m=1

(−1)m
(
n − 1
n − m

)
1

m + 1
.

Theorem 25 Let n ∈ N0. Then we have

Y2(n : B) =
n∑

k=0

C(n, k)Bk . (120)

Proof By applying theVolkenborn integral to equation (11) and using (44), we get the desired
result. ��
Theorem 26 Let n ∈ N. Then we have

Y2(n : B) =
n∑

k=1

(−1)k
(
n − 1

k − 1

)
n!

k + 1
. (121)

Proof By applying the Volkenborn integral to the equation (24), we get

Y2(n : B) =
n∑

k=1

|L(n, k)|
∫
Zp

x(k)dμ1 (x)

By substituting (109) into the above equation, we get the desired result. ��
By applying theVolkenborn integral to the equation (24), we get a formula for the sequence

Y2(n : B) given by the following corollary:

Corollary 4 Let n ∈ N. Then we have

Y2(n : B) =
n∑

k=1

(−1)k
|L(n, k)| k!

k + 1
. (122)

Substituting (10) into (24), we have

x (n) =
n∑

k=1

|L(n, k)|
k∑
j=0

S1(k, j)x
j . (123)

By applying the Volkenborn integral to the above equation, we arrive a formula for the
numbers Y2(n : B) given by the following theorem:
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Theorem 27 Let n ∈ N0. Then we have

Y2(n : B) =
n∑

k=1

k∑
j=0

|L(n, k)| S1(k, j)Bj . (124)

By combining (110) and (47) with equation (124), we get the following corollary:

Corollary 5 Let n ∈ N. Then we have

Y2(n : B) =
n∑

k=1

|L(n, k)| Dk .

A recurrence relation of the sequence Y2(n : B) is given by the following theorem.

Theorem 28 Let n ∈ N. Then we have

Y2(n + 1 : B) − nY2(n : B) =
n∑

k=1

(−1)k+1
(
n − 1

k − 1

)
n!

k2 + 3k + 2
. (125)

Proof We set

(x + n)x (n) =
n∑

k=1

|L(n, k)| xx(k) + n
n∑

k=1

|L(n, k)| x(k).

From the above equation, we get

x (n+1) =
n∑

k=1

|L(n, k)| xx(k) + n
n∑

k=1

|L(n, k)| x(k)

By applying the Volkenborn integral to the above equation, and using (68), we get

Y2(n + 1 : B) =
n∑

k=1

(−1)k+1 |L(n, k)| k!
k2 + 3k + 2

+ nY2(n : B). (126)

Combining (126) with (21), we arrive at the desired result. ��

A relationship between the numbers Y1(n : B) and Y2(n : B) is given by the following
theorem:

Theorem 29 Let n ∈ N. Then we have

Y2(n : B) =
n∑

m=1

|L(n, k)| Y1(m : B).

Proof By applying the Volkenborn integral to the equation (23), and using (108) and (121),
we get the desired result. ��
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7 Integral formulas for the fermionic p-adic integral

In this section, we give some integral formulas for the fermionic p-adic integral including the
falling factorial and the rising factorial with their identities and relations, the combinatorial
sums, the special numbers such as the Euler numbers, the Stirling numbers and the Lah
numbers.

Theorem 30 Let n ∈ N. Then we have∫
Zp

xx(n)dμ−1 (x) = (−1)n
(n − 1)

2n+1 n!. (127)

Proof By applying the p-adic fermionic integral to the both sides of equation (69), we have∫
Zp

xx(n)dμ−1 (x) =
∫
Zp

x(n+1)dμ−1 (x) + n
∫
Zp

x(n)dμ−1 (x) .

Combining the above equation with (56), we arrive at the desired result. ��
Theorem 31 Let n ∈ N0. Then we have∫

Zp

xx (n) dμ−1 (x) =
n∑

k=1

(−1)k
(
n − 1

k − 1

)
(k − 1)

2k+1 n!. (128)

Proof By applying the p-adic fermionic integral to the both sides of equation (73), we have
∫
Zp

xx (n) dμ−1 (x) =
n∑

k=1

|L(n, k)|
∫
Zp

xx(k)dμ−1 (x) .

Combining the above equation with (127), we obtain
∫
Zp

xx (n) dμ−1 (x) =
n∑

k=1

(−1)k
(k − 1) |L(n, k)|

2k+1 k!.

Combining the above equation with (21), we arrive at the desired result. ��
Theorem 32 Let n ∈ N0. Then we have∫

Zp

(x + 1)(n) dμ−1 (x) = (−1)n+1 1

2n
n!. (129)

Proof By applying the p-adic fermionic integral to equation (86), we obtain∫
Zp

(x + 1)(n) dμ−1 (x) = n
∫
Zp

(x)(n−1) dμ−1 (x) +
∫
Zp

(x)(n) dμ−1 (x) .

Combining the above equation with (56), we get∫
Zp

(x + 1)(n) dμ−1 (x) = (−1)n−1n
(n − 1)!
2n−1 + (−1)n

n!
2n

.

After some elementary calculations, we arrive at the desired result. ��
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Theorem 33 Let n ∈ N0. Then we have∫
Zp

x(n+1)

x
dμ−1 (x) =

n∑
k=0

(−1)nn(n−k)
k!
2k

.

Proof By applying the p-adic fermionic integral to equation (76), and using (142), we arrive
at the desired result. ��
Remark 11 By applying the p-adic fermionic integral to equation (84) with (55), we get∫

Zp

(
x + 1

n

)
dμ−1 (x) = (−1)n+1 1

2n
.

By using the above equation, we also get another proof of (129).

By applying the p-adic fermionic integral to the equation (88) with respect to x and y, we
arrive at the following lemma:

Lemma 10 Let k ∈ N0. Then we have

∫
Zp

∫
Zp

(xy)(k)dμ−1 (x) dμ−1 (y) =
k∑

l,m=1

(−1)l+m2−m−l l!m!C (k)
l,m . (130)

Lemma 11 Let k ∈ N0. Then we have

∫
Zp

∫
Zp

(xy)(k)dμ−1 (x) dμ−1 (y) =
k∑

m=0

S1(k,m) (Em)2 . (131)

Proof By applying the p-adic fermionic integral to equation (91) with respect to x and y,
and using (53), we get the desired result. ��
Theorem 34 Let n ∈ N with n > 1. Then we have

∫
Zp

{
x

(
x − 2

n − 1

)
+ x (x − 1)

(
n − 3

n − 2

)}
dμ−1 (x) = (−1)n

n∑
k=0

k2

2k
.

Proof By applying the p-adic fermionic integral to the equation (95)with (55), we get desired
result. ��
Theorem 35 Let n ∈ N0. Then we have

∫
Zp

(
x + n

n

)
dμ−1 (x) =

n∑
k=0

(−1)k

2k

k∑
j=0

(−1) j
(
k

j

)(
k − j + n

n

)
(132)

and ∫
Zp

(
x + n

n

)
dμ−1 (x) =

n∑
k=0

Ek

n∑
j=0

(
n

j

)
S1( j, k)

j ! . (133)
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Proof By applying the p-adic fermionic integral to the equations (98) and (99) with (55) and
(53), we get desired result. ��
Theorem 36 Let m ∈ N and n ∈ N0. Then we have

∫
Zp

(
mx

n

)
dμ−1 (x) =

n∑
k=0

(−1)k

2k

k∑
j=0

(−1) j
(
k

j

)(
mk − mj

n

)
.

Proof By applying the p-adic fermionic integral to the equation (92)with (55), we get desired
result. ��
Theorem 37 Let n, r ∈ N0. Then we have

∫
Zp

(
x

n

)r
dμ−1 (x) =

nr∑
k=0

(−1)k

2k

k∑
j=0

(−1) j
(
k

j

)(
k − j

n

)r
. (134)

Proof By applying the p-adic fermionic integral to the equation (94)with (55), we get desired
result. ��
Remark 12 Substituting r = 1 into (134), since

(k− j
n

) = 0 if k − j < n, we arrive at the
equation (55).

Remark 13 By (112), we have

n∑
k=0

(
x

k

)(
m

n − k

)
=
(
x + m

n

)
.

By applying the fermionic integral to the above equation, we get the following formula:
∫
Zp

(
x + m

n

)
dμ−1 (x) =

n∑
m=0

(−1)k
(

m

n − k

)
2−k .

Theorem 38 Let n ∈ N. Then we have∫
Zp

x

(
x − 2

n − 1

)
dμ−1 (x) = (−1)n

n∑
k=1

k2−k .

Proof Gould [18, Vol. 3, Eq. (4.20)] defined the following identity:

(−1)nx

(
x − 2

n − 1

)
=

n∑
k=1

(−1)k
(
x

k

)
k.

By applying the p-adic fermionic integral to the above integral, and using (55), we get the
desired result. ��
Theorem 39 Let n ∈ N0. Then we have∫

Zp

(
n − x

n

)
dμ−1 (x) = (−1)n

n∑
k=1

2−k .
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Proof Gould [18, Vol. 3, Eq. (4.19)] gave the following identity:

(−1)n
(
n − x

n

)
=

n∑
k=1

(−1)k
(
x

k

)
.

By applying the p-adic fermionic integral to the above integral, and using (55), we get the
desired result. ��
Theorem 40 Let n ∈ N0. Then we have∫

Zp

(
x + n + 1

2
n

)
dμ−1 (x) = (2n + 1)

(
2n

n

) n∑
k=0

(−1)k
(
n

k

)
2k−2n

(2k + 1)
(2k
k

) .

Proof Gould [18, Vol. 3, Eq. (6.26)] defined the following identity:
(
x + n + 1

2
n

)
= (2n + 1)

(
2n

n

) n∑
k=0

(
n

k

)(
x

k

)
22k−2n

(2k + 1)
(2k
k

) .
By applying the p-adic fermionic integral to the above integral, and using (55), we get the
desired result. ��
Remark 14 By applying the p-adic fermionic integral to equation (22) after that combining
with (135), we have the following well-known identity:

∫
Zp

(x + n − 1)(n) dμ−1 (x) = n!
n∑

m=0

(−1)m
(
n − 1

n − m

)
2−m (135)

and ∫
Zp

x (n)dμ−1 (x) = (−1)n
∫
Zp

(−x)(n) dμ−1 (x)

= n!
n∑

m=0

(−1)m
(
n − 1

n − m

)
2−m (136)

(cf. [27, 31, 43]).

8 Application of the p-adic fermionic integral to the falling factorial
and rising factorial

In this section, we give some applications of the p-adic fermionic integral on Zp to falling
factorial and rising factorial. Here, we derive some integral formulas including the Euler
numbers and polynomials, the Stirling numbers, the Lah numbers and combinatorial sums.

By using Euler numbers of the first kind, we define the following sequences, which are
associated with p-adic fermionic integral. Let x j ∈ Z and j ∈ {1, 2, . . . , n − 1} with n > 1.
Let y1(0 : E) = y2(0 : E) = E0 = 1 and y1(1 : E) = y2(1 : E) = E1 = − 1

2 . We define
the sequences (y1(n : E)) and (y2(n : E)):

y1(n : E) = En +
n−1∑
j=1

(−1) j x j En− j , (137)
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and

y2(n : E) = En +
n−1∑
j=1

x j En− j . (138)

The sequences (y1(n : E)) and (y2(n : E)) can be computed by the first and the second
kind Changhee numbers. Combining (137) with (57 ) and (103) with (58), we easily give the
following relations for the general terms of the related sequences:

y1(n : E) = Chn

and

y2(n : E) = Ĉhn . (139)

Few values of (137) are computed by (57) as follows:

y1(2 : E) = E2 − E1,

y1(3 : E) = E3 − 3E2 + 2E1,

y1(4 : E) = E4 − 6E3 + 11E2 − 6E1, . . .

Therefore, we have

y1(2 : E) = E2 − x1E1 = 1

2
,

y1(3 : E) = E3 − x1E2 + x2E1 = −3

4
,

y1(4 : E) = E4 − x1E3 + x2E2 − x3E1 = 3

2
, . . .

Few values of (138) are computed by (58) as follows:

y2(2 : E) = E2 + E1,

y2(3 : E) = E3 + 3E2 + 2E1,

y2(4 : E) = E4 + 6E3 + 11E2 + 6E1, . . .

Therefore, we have

y2(2 : E) = E2 + x1E1 = −1

2
,

y2(3 : E) = E3 + x1E2 + x2E1 = −3

4
,

y2(4 : E) = E4 + x1E3 + x2E2 + x3E1 = −3

2
, . . .

Let x j ∈ Z and j ∈ {1, 2, . . . , n − 1} with n > 1. Let y1(x, 0 : E (x)) = y2(x, 0 : E (x)) =
E0 (x) = 1 and y1(x, 1 : E (x)) = y2(x, 1 : E (x)) = E1 (x) = x − 1

2 . We define the
sequences (y1(x, n : E(x))) and (y2(x, n : E(x))), including the Euler polynomials, related
to the polynomials Chn(x) and Ĉhn(x) as follows:

y1(x, n : E(x)) = En(x) +
n−1∑
j=1

(−1) j x j En− j (x), (140)
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and

y2(x, n : E(x)) = En(x) +
n−1∑
j=1

x j En− j (x). (141)

Few values of (140) are given as follows:

y1(x, 2 : E) = E2 (x) − x1E1 (x) = x2 − 2x + 1

2
,

y1(x, 3 : E) = E3 (x) − x1E2 (x) + x2E1 (x) = x3 − 9

2
x2 + 5x,−3

4
,

y1(x, 4 : E) = E4 (x) − x1E3 (x) + x2E2 (x) − x3E1 (x) = x4 − 8x3 + 20x2 − 16x

+3

2
, . . .

Few values of (141) are given as follows:

y2(x, 2 : E) = E2 (x) + x1E1 (x) = x2 − 1

2
,

y2(x, 3 : E) = E3 (x) + x1E2 (x) + x2E1 (x) = x3 + 3

2
x2 − x − 3

4
,

y2(x, 4 : E) = E4 (x) + x1E3 (x) + x2E2 (x) + x3E1 (x) = x4 + 4x3 + 2x2 − 4x

−3

2
, . . .

Observe that when x = 0, the sequences (y1(x, n : E(x))) and (y2(x, n : E(x))) reduces to
the following sequences, respectively:

y1(n : E) = y1(0, n : E(0))

and

y2(n : E) = y2(0, n : E(0)).

9 Formulas for the sequence y1(n : E)
Using the p-adic fermionic integral and its integral equations, we give some formulas and
identities for the sequence (y1(n : E)). We also give some p-adic fermionic integral formulas
including the falling factorial.

Explicit formula for the sequence y1(n : E) is given by the following theorem, which was
proved by different method (see, for details, cf. [27, 31, 45, 46]).

Theorem 41 Let n ∈ N0. Then we have

y1(n : E) = (−1)n2−nn!.
Proof Weknow that the numbers forming the sequence (y1(n : E)) are related to the numbers
Chn . By using same computation of the numbers Chn , this theorem is also proved before.
By using different method, we now briefly give proof of the theorem. Since

x(n) = n!
(
x

n

)
,
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by using (55), we get ∫
Zp

x(n)dμ−1 (x) = n!
∫
Zp

(
x

n

)
dμ−1 (x)

= (−1)n

2n
n! = y1(n : E). (142)

Thus, we get the desired result. ��
We give a recurrence relation the sequence (y1(n : E)) by the following theorem:

Theorem 42 Let n ∈ N0. Then we have

y1(n + 1 : E) + ny1(n : E) = (−1)n
n!(n − 1)

2n+1 .

Proof By applying the p-adic fermionic integral to the both sides of the followingwell-known
equation

xx(n) = x(n+1) + nx(n),

and using (55) and (57), respectively, we get∫
Zp

xx(n)dμ−1 (x) = (−1)n
n!(n − 1)

2n+1 ,

and ∫
Zp

xx(n)dμ−1 (x) = y1(n + 1 : E) + ny1(n : E).

Combining the above equation with (127), we arrive at the desired result. ��

10 Formulas for the sequence y2(n : E)
By using the p-adic fermionic integral and its integral equations, we derive some formulas
and identities for the sequence (y2(n : E)). We also gives some p-adic fermionic integral
formulas including the raising factorial, combinatorial sums and special numbers.

Theorem 43 Let n ∈ N. Then we have

y2(n : E) =
n∑

k=1

(−1)k
|L(n, k)|

2k
k!. (143)

Proof By applying the p-adic fermionic integral to the equation (24), we get

y2(n : E) =
n∑

k=1

|L(n, k)|
∫
Zp

x(k)dμ−1 (x)

By substituting (56) into the above equation, we get the desired result. ��
Combining (21) with (143), we arrive at the following result:
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Corollary 6 Let n ∈ N. Then we have

y2(n : E) = n!
n∑

k=1

(−1)k
(
n − 1

k − 1

)
2−k .

By applying the p-adic fermionic integral to the equation (11) and using (53), we get the
following theorem, which is modified equation (139):

Theorem 44 Let n ∈ N0. Then we have

y2(n : E) =
n∑

k=1

C(n, k)Ek .

By applying the p-adic fermionic integral to the equation (123), and using (53), we arrive
at another formula for the numbers y2(n : E) by the following theorem:

Theorem 45 Let n ∈ N. Then we have

y2(n : E) =
n∑

k=1

k∑
j=0

|L(n, k)| S1(k, j)E j .

By applying the p-adic fermionic integral to the equation (117), and using (53), we get
the following identity:

∫
Zp

(x + n − 1)(n)dμ−1 (x) =
n+1∑
m=0

(−1)m+n S1(n,m)Em . (144)

By combining the above equation with (135), we get the following formula for the sequence
y2(n : E):

Theorem 46 Let n ∈ N0. Then we have

y2(n : E) =
n+1∑
m=0

(−1)m+n S1(n,m)Em .

We give a recurrence relation the sequence (y2(n : E)) by the following theorem:

Theorem 47 Let n ∈ N. Then we have

y2(n + 1 : E) − ny2(n : E) =
n∑

k=1

(−1)k
(
n − 1

k − 1

)
(k − 1)

2k+1 n!.

Proof Using (1), we have

x (n)

x (n+1)
= 1

x + n
.

Therefore, we have

x (n+1) = xx (n) + nx (n) . (145)

By applying the p-adic fermionic integral to (145), we get

y2(n + 1 : E) =
∫
Zp

xx (n) dμ−1 (x) + ny2(n : E).

Combining the above equation wit (128), we arrive at the desired result. ��
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11 Identities for combinatorial sums including special numbers

In this section, by using integral formulas, we derive many novel combinatorial sums includ-
ing the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Eulerian numbers,
the harmonic numbers and the Lah numbers.

Combining (116) and (101), we arrive at the following theorem:

Theorem 48 Let m, n ∈ N0. Then we have

n∑
j=0

m∑
l=0

S1(n, k)S1(m, l)Bj+l =
m∑

k=0

(−1)m+n−k
(
m

k

)(
n

k

)
k!(m + n − k)!
m + n − k + 1

. (146)

Combining (101) and (102), we arrive at the following theorem:

Theorem 49 Let m, n ∈ N0. Then we have

n∑
j=0

m∑
l=0

S1(n, k)S1(m, l)Bj+l =
m∑

k=0

(
m

k

)(
n

k

)
k!

m+n−k∑
l=0

S1(m + n − k, l)Bl . (147)

By combining (146) and (147), we get the following combinatorial sum by the following
the following corollary:

Corollary 7 Let m, n ∈ N0. Then we have

m∑
k=0

(
m

k

)(
n

k

)
k!

m+n−k∑
l=0

S1(m + n − k, l)Bl =
m∑

k=0

(−1)m+n−k
(
m

k

)(
n

k

)

×k!(m + n − k)!
m + n − k + 1

.

By combining (80) and (81), we arrive at the following theorem:

Theorem 50 Let n ∈ N0. Then we have

n∑
k=0

k∑
j=0

(
k

j

)
S1(n, k)Bj Bk− j =

n∑
k=0

(−1)n
n!

(k + 1)(n − k + 1)
.

Combining (68) with (71), we arrive at the following theorem:

Theorem 51 Let n ∈ N0. Then we have

n∑
k=1

S1(n, k − 1)Bk = (−1)n+1n!
n2 + 3n + 2

− Bn+1.

Substituting (120) into (125), we get we get

n+1∑
k=1

C(n + 1, k)Bk − n
n∑

k=1

C(n, k)Bk =
n∑

k=1

(−1)k+1 |L(n, k)| k!
k2 + 3k + 2

.

After some elementary calculation in the above equation, we arrive at the following theorem:
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Theorem 52 Let n ∈ N0. Then we have

n∑
k=1

(C(n + 1, k) − nC(n, k)) Bk =
n∑

k=1

(−1)k+1 |L(n, k)| k!
k2 + 3k + 2

− Bn+1.

Combining (118) with (119), we get the following theorem:

Theorem 53 Let n ∈ N. Then we have. Then we have

n∑
m=0

(−1)m
(
n − 1

n − m

)
n!

m + 1
=

n+1∑
m=0

(−1)mS1(n,m)Bm .

Combining (72)with (74) we arrive at the following theorem:

Theorem 54 Let n ∈ N. Then we have
n∑

k=1

C(n, k)Bk+1 =
n∑

k=1

(−1)k+1
(
n − 1

k − 1

)
n!

k2 + 3k + 2
.

By combining (96) with (97), we get

n∑
k=0

n∑
j=0

(
n

j

)
S1( j, k)Bk

j ! =
n∑

k=0

(−1)k

k + 1

k∑
j=0

(−1) j
(
k

j

)(
k − j + n

n

)
.

By substituting (108), into the above equation, we arrive at the following theorem:

Theorem 55 Let n ∈ N0. Then we have

n∑
k=0

n∑
j=0

(
n

j

)
S1( j, k)Bk

j ! =
n∑

k=0

k∑
j=0

(−1) j
(
k

j

)(
k − j + n

n

)
Y1(k : B)

k! .

By combining (89) with (90), we arrive at the following theorem:

Theorem 56 Let k ∈ N0. Then we have

k∑
l,m=1

C (k)
l,mDl Dm =

k∑
m=0

S1(k,m) (Bm)2

and

k∑
m=0

S1(k,m) (Bm)2 =
k∑

l,m=1

(−1)l+m l!m!
(l + 1)(m + 1)

C (k)
l,m .

By combining (130) with (131), we arrive at the following theorem:

Theorem 57 Let k ∈ N0. Then we have

k∑
l,m=1

(−1)l+ml!m!2−m−lC (k)
l,m =

k∑
m=0

S1(k,m) (Em)2 .

By combining (144) with (135), we obtain the following theorem:
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Theorem 58 Let n ∈ N. Then we have

n∑
m=0

(−1)m
(
n − 1

n − m

)
n!
2m

=
n+1∑
m=0

(−1)m+n S1(n,m)Em .

By combining left-hand side of (96) with (97), we get the following theorem:

Theorem 59 Let n ∈ N0. Then we have

n∑
k=0

n∑
j=0

(
n

j

)
S1( j, k)Bk

j ! =
n∑

k=0

k∑
j=0

(−1)k+ j
(
k

j

)(
k − j + n

n

)
1

k + 1
.

Theorem 60 Let n ∈ N. Then we have

Bn =
n∑
j=0

j !
n!

j∑
m=0

j∑
k=0

(−1) j+k+m
(
j − 1

j − m

)(
n + 1

j − k

)
kn

m + 1
.

Proof By applying the Volkenborn integral to the following identity, which derived from the
work of Golud [17, Eq. (4.1)]

xn =
n∑
j=0

(
x + j − 1

n

) j∑
k=0

(−1) j+k
(
n + 1

j − k

)
kn, (148)

we get

∫
Zp

xndμ1 (x) =
n∑
j=0

j∑
k=0

(−1) j+k
(
n + 1

j − k

)
kn
∫
Zp

(
x + j − 1

n

)
dμ1 (x) .

Combining the above equation with (37) and (44), we get

Bn =
n∑
j=0

j∑
k=0

(−1) j+k
(
n + 1

j − k

)
j !
n!k

n
j∑

m=0

(−1)m
(
j − 1

j − m

)
1

m + 1
.

Thus, proof of this theorem is completed. ��

By combining the left-hand side of (132) and (133), we get the following theorem:

Theorem 61 Let n ∈ N0. Then we have

n∑
k=0

n∑
j=0

(
n

j

)
S1( j, k)Ek

j ! =
n∑

k=0

k∑
j=0

(−1) j+k
(
k

j

)(
k − j + n

n

)
1

2k
.

Theorem 62 Let n ∈ N0. Then we have

En =
n∑
j=0

j !
n!

j∑
m=0

j∑
k=0

(−1) j+k+m
(
j − 1

j − m

)(
n + 1

j − k

)
kn

2m
.
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Proof By applying the p-adic fermionic integral to equation (148), we obtain

∫
Zp

xndμ−1 (x) =
n∑
j=0

j∑
k=0

(−1) j+k
(
n + 1

j − k

)
kn
∫
Zp

(
x + j − 1

n

)
dμ−1 (x) .

Combining the above equation with (62) and (53), we get

En =
n∑
j=0

j∑
k=0

(−1) j+k
(
n + 1

j − k

)
j !
n!k

n
j∑

m=0

(−1)m
(
j − 1

j − m

)
1

2m
.

Thus, proof of this theorem is completed. ��
Theorem 63 Let n ∈ N0. Then we have

n∑
m=0

S2(n,m)L(n, k) =
n∑

m=0

(
n

m

)
S2(n − m, k)w(k)

g (m).

Proof Substituting t = et − 1 into (19), and combining with equation (16) and (7), we get
the following functional equation:

FL(et − 1, k) = FS(t, k; 1)FFu(t, k). (149)

By using (149), we get

∞∑
n=0

L(n, k)

(
et − 1

)n
n! =

∞∑
n=k

S2(n, k)
tn

n!
∞∑
n=0

w(k)
g (n)

tn

n! .

By using the Cauchy product rule from the above equation, we obtain

∞∑
n=0

(
n∑

m=0

S2(n,m)L(n, k)

)
tn

n! =
∞∑
n=0

(
n∑

m=0

(
n

m

)
S2(n − m, k)w(k)

g (m)

)
tn

n! .

Comparing the coefficients of tn
n! on both sides of the above equation, we get the desired

result. ��
Remark 15 Substituting k = 1 into equation (7), we arrive at equation (6).

Theorem 64 Let n ∈ N0. Then we have
n∑

k=0

C(n, k)Bk =
n∑

k=1

(−1)k
n!

k + 1

(
n − 1

k − 1

)
.

Proof Combining (121) with (120), we derived the desired result. ��
Theorem 65 Let n ∈ N0. Then we have

n∑
j=0

[
n− j
2

]
∑
k=0

(
n

j

)
S12(n − j, k)Bk+ j = (−1)n

n!
n + 1

,

n∑
j=0

[
n− j
2

]
∑
k=0

(
n

j

)
S12(n − j, k)Bk+ j =

n∑
j=0

s1(n, j)Bj ,
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and

n∑
j=0

[
n− j
2

]
∑
k=0

(
n

j

)
S12(n − j, k)Ek+ j = (−1)n

n!
2n

.

Proof In order to prove the assertions of the theorem, we apply the Volkenborn integral and
the p-adic fermionic integral to the following identity ( cf. [12, p. 123]):

t(n) =
n∑
j=0

[
n− j
2

]
∑
k=0

(
n

j

)
S12(n − j, k)t j+k, (150)

after some elementary evaluations, we get the desired result. ��
Integrating both sides of (150) from 0 to 1 (with the Riemann integral sense) and using the

definition of the Bernoulli numbers of the second kind, we arrive at the following corollary:

Corollary 8 Let n ∈ N0. Then we have

bn(0) =
n∑
j=0

[
n− j
2

]
∑
k=0

(
n

j

)
S12(n − j, k)

j + k + 1
.

Theorem 66 Let n ∈ N0. Then we have

n∑
j=0

S1(n, k)Bk = (−1)nn!
n + 1

,

and
n∑
j=0

S1(n, k)Ek = (−1)nn!
2n

.

Proof In [17, Vol. 7, Eq. (5.59)], Gould gave the following identity:
(
x

n

)
=

n∑
j=0

S1(n, k)

n! xk . (151)

Applying the Volkenborn integral and the p-adic fermionic integral to the above identity with
the Riemann integral (from 0 to 1), respectively, we get the assertions of the theorem. ��
Remark 16 Different proofs of the Theorem 66 were given by Kim et al. [31] and [27].

Applying the Riemann integral to the equation (151) from 0 to 1, and using (14), we also
arrive at the following well-known identity:

bn(0) =
n∑
j=0

1

k + 1
S1(n, k). (152)

Remark 17 Equation (152) has been proved by means of the different methods. For example,
see [39].
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By applying the Volkenborn integral to the falling factorial, we have the following well-
known theorem:

Theorem 67 Let n ∈ N. Then we have

Bn =
n−1∑
k=0

(−1)k
k!

k + 1
S2(n, k). (153)

Proof We modify (17) as follows

xn =
n∑

k=0

S2(n, k)
(
xx(k−1) − (k − 1)x(k−1)

)
.

By applying the Volkenborn integral to the above equation, and using (44), we get

Bn =
n∑

k=0

S2(n, k)

⎛
⎜⎝
∫
Zp

xx(k−1)dμ1 (x) − (k − 1)
∫
Zp

x(k−1)dμ1 (x)

⎞
⎟⎠ . (154)

By substituting (109) and (68) into the above equation, after some elementary calculations,
we arrive at the desired result. ��

Remark 18 Equation (153) has been proved by various different methods, see, for detail (cf.
[6], [12, p. 117], [38, 47]).

By substituting (109) into (153), we get a relation between the Bernoulli numbers and the
numbers Y1(n : B) and the Daehee numbers by the following corollary:

Corollary 9 Let n ∈ N. Then we have

Bn =
n−1∑
k=0

Y1(k : B)S2(n, k)

and

Bn =
n−1∑
k=0

DkS2(n, k).

Theorem 68 Let n ∈ N0. Then we have

Bn =
n∑

k=0

S2(n, k)
k−1∑
j=0

S1(k, j)Bj +
n∑

k=0

S2(n, k)Bk .

Proof By combining (9) and (70) with (154), we get

Bn =
n∑

k=0

S2(n, k)

⎛
⎜⎝

k−1∑
j=0

S1(k − 1, k − 1)Bj + Bk − (k − 1)
∫
Zp

x(k−1)dμ1 (x)

⎞
⎟⎠ .
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By substituting (46) into the above equation, we obtain

Bn =
n∑

k=0

S2(n, k)

⎛
⎝k−1∑

j=0

S1(k − 1, k − 1)Bj + Bk − (k − 1)
k−1∑
j=0

S1(k − 1, j)Bj

⎞
⎠

=
n∑

k=0

S2(n, k)
k−1∑
j=0

(S1(k − 1, j − 1) − (k − 1)S1(k − 1, j)) Bj +
n∑

k=0

S2(n, k)Bk .

By combining the above equation with (9), after some elementary calculations, we arrive at
the desired result. ��

12 Conclusion

The methods of the present paper are two-folds. The first is to use the methods of generating
functions for special numbers and polynomials and their relationships between each others.
By using the generating function method, various properties of these numbers and polyno-
mials are investigated. Due to presence of novel applications of the generating functions in
mathematics, mathematical physics, and the other areas, some results of present paper can
be used by not only mathematicians, but also physicists and engineers. The second is to use
the p-adic q-integrals and their integral equations. By applying these integrals equations
to some special functions and polynomials, we derive various useful and elegant formulas
including combinatorial sums and the p-adic q-integrals.With the help of those formulas and
necessary comparisons, we find new and novel relations, identities, combinatorial sums and
formulas covering many important numbers and polynomials such as the Bernoulli numbers
and polynomials, the Euler numbers and polynomials, the Frobenius–Euler numbers and
polynomials, the Stirling numbers, the Harmonic numbers, the Lah numbers and the others.
It is possible to say that due to presence of applications of the p-adic q-integrals and their
integral equations in ultrametric calculus, combinatorial physics, quantum physics, physical
models and the other areas, some of our results may contribute to not only mathematics and
applied physics, but also theoretical physics, and also other related areas. We also give appli-
cations related to the Lah numbers and the Laguerre polynomials. We give relations between
the Laguerre polynomials, the Lah numbers, the Bernoulli numbers and the Euler numbers.
It is well-known that these the Laguerre polynomials and the Laguerre differential equa-
tions have been many applications both in mathematics and in physics. Additionally, special
functions, special numbers and special polynomials, studied in this paper, form the basis of
the studies of mathematicians, physicists and other scientists because special numbers and
special polynomials are used in modeling, making algorithms, coding theory, combinatorics
problems, partition theory, approximation theory and estimation etc.

Details of the conclusion about this paper and its applications may be summarized as
follows:

By applying the p-adic q-integrals to differentiable functions, novel p -adic integral
formulas, significant relations and results have been obtained.

By applying the Volkenborn integral to falling and rising factorial polynomials, new
number sequences containing the Bernoulli numbers and polynomials have been constructed.
The recurrence relations of these number sequences and their relation to the special numbers
are given. In addition, a great number of (p-adic) Volkenborn integral formulas including
falling and rising factorial polynomials have been obtained thanks to this technique. With the
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help of these integral formulas, a large number of identities, combinatorial sums and relations
were obtained.

Similarly, another new number sequences containing Euler numbers and polynomials
were defined with the aid of p-adic fermionic integral. By applying similar methods to
Euler numbers and polynomials, the recurrence relation of these sequences and the relations
with the special numbers were given. By applying fermionic integral to falling and rising
factorial polynomials, many fermionic integral formulas including the Euler numbers, the
Lah numbers, the Bernoulli numbers and the Stirling numbers have been obtained.

By taking the different combinations of these formulas, not only new identities, but also
elegant combinatorial sums containing the Lah numbers, the Stirling numbers, the Bernoulli
numbers, the Euler numbers, the harmonic numbers and the other special numbers have been
obtained.

It is worth to note that these integral formulas will contribute to primarily ultrametric
calculus, and thenmany areas of physics such as especially combinational physics,q-quantum
mechanic, q-quantum model. This paper’s formulas, identities, relations and combinatorial
sums will shed light on the fields of researchers working in both theoretical and applied
sciences.

Appendix A Some Some tables containing p-adic integral formulas

Here, we finalize this paper along with an appendix of some tables containing p-adic integral
formulas obtained in this paper.

Table 1 Some Volkenborn integral formulas containing falling factorials

∫
Zp

(x + n − 1)(n)dμ1 (x) =
n∑

m=0

(−1)m
(
n − 1

n − m

)
n!

m + 1
.

∫
Zp

(x + 1)(n) dμ1 (x) = (−1)n+1 n!
n2 + n

.

∫
Zp

(−x)(n) dμ1 (x) =
n∑

k=1

(−1)k+n
(
n − 1

k − 1

)
n!

k + 1
.

∫
Zp

(mx)(n) dμ1 (x) =
n∑

k=0

(−1)k

k + 1

k∑
j=0

(−1) j
(
k

j

)
(mk − mj)(n) .

∫
Zp

x(m)x(n)dμ1 (x) =
m∑

k=0

(−1)m+n−k
(
m

k

)(
n

k

)
k!(m + n − k)!
m + n − k + 1

.

∫
Zp

(
x(n)

)r dμ1 (x) =
nr∑
k=0

(−1)k

k + 1

k∑
j=0

(−1) j
(
k

j

) (
(k − j)(n)

)r
.
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Table 2 Some fermionic p-adic integral formulas containing falling factorials

∫
Zp

(x + n − 1)(n) dμ−1 (x) = n!
n∑

m=0

(−1)m
(
n − 1

n − m

)
2−m .

∫
Zp

(mx)(n) dμ−1 (x) =
n∑

k=0

(−1)k

2k

k∑
j=0

(−1) j
(
k

j

)
(mk − mj)(n) .

∫
Zp

(
x(n)

)r dμ−1 (x) =
nr∑
k=0

(−1)k

2k

k∑
j=0

(−1) j
(
k

j

) (
(k − j)(n)

)r
.
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