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Abstract
In 1976, Nickolas showed that for each natural n, the free topological group F(Xn) is topo-
logically isomorphic to a subgroup of F(X) provided X is a compact space or,more generally,
a kω-space. We complement the Nickolas’ embedding theorem by showing that it remains
true for every topological space X such that all finite powers of X are pseudocompact. For
example, all pseudocompact k-spaces enjoy this property. Also, we extend the embedding
theorem to the class of NCω-spaces that includes, in particular, the kω-spaces and the well-
ordered spaces of ordinals [0, α), for every ordinal α. Our results are quite sharp because we
present a first example of a Tychonoff space Z such that F(Z) does not contain an isomorphic
copy of the group F(Z2). In addition, our space Z is countably compact, separable, and its
square Z2 is not pseudocompact.

Keywords Free topological group · C-embedding · Pseudocompact space · Countably
compact space

Mathematics Subject Classification 22A05 (primary) · 54C45 · 54D20 (secondary)

1 Introduction

All topological spaces under consideration are assumed to be Tychonoff.
Free topological groups were introduced in 1941 by Markov in the short note [15]. The

complete construction appeared 4 years later (see [16]), where certain basic properties of free
topological groups F(X) and A(X) over a Tychonoff space X were established. Specifically,
Markov responded negatively to Kolmogorov’s question regarding whether every Hausdorff
topological group is a normal space. An explicit description of the topology of the free
topological group on a compact space was given in the late 1940s by Graev (see [6]). A
construction of the free locally convex space L(X) on a space X is presented in [23].
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Definition 1.1 [15] Let X be a Tychonoff space. A topological group F(X) is called the
(Markov) free topological group over X if F(X) satisfies the following conditions:

(i) there is a continuous mapping γ : X → F(X) such that γ (X) algebraically generates
F(X);

(ii) if f : X → G is a continuous mapping to a topological group G, then there exists a
continuous homomorphism f̄ : F(X) → G such that f = f̄ ◦ γ .

Replacing in Definition 1.1 ‘topological group’ with ‘topological abelian group’, one
obtains the free abelian topological group A(X) on the space X . In both cases, the mapping
γ is a topological embedding [16].

In a similar way, one can define free locally convex spaces:

Definition 1.2 (See [15, 23]) Let X be a Tychonoff space. The free locally convex space
L(X) on X is a pair consisting of a locally convex space L(X) and a continuous mapping
γ : X → L(X) such that γ (X) forms a Hamel basis for L(X), and every continuous
mapping f from X to a locally convex space E extends to a unique continuous linear operator
f̄ : L(X) → E with f = f̄ ◦ γ .

The free topological groups F(X), A(X) as well as the free locally convex space L(X)

always exist and are unique up to isomorphism. In what follows we identify X with its
homeomorphic copy γ (X).

A topological space X is called a k-space whenever A ⊂ X is closed if and only if the
intersection A ∩ K is closed in K for every compact set K ⊂ X . A topological space X
is called a kω-space if X is the union of an increasing sequence {Xn : n ∈ ω} of compact
subspaces, with the property that a subset A ⊂ X is closed if and only if the intersection
A ∩ Xn is closed in Xn for each n ∈ ω. In this case, the representation X = ⋃

n∈ω Xn is
called a kω-decomposition for X . Every locally compact σ -compact space is a kω-space. In
particular, all open and all closed subsets of a Euclidean space are kω-spaces.

Given a subset Y of a space X and an integer n ≥ 0, we denote by Fn(Y , X) and An(Y , X)

the subsets of F(X) and A(X), respectively, consisting of words of length at most n with
letters from the set Y . If Y is closed in X , then Fn(Y , X) and An(Y , X) are closed in the
respective groups F(X) and A(X), for each integer n ≥ 0 (one can combine Theorems 7.1.13
and 7.4.5 in [1]).

Topological groups F(X) and A(X) are never compact, but if X is a kω-space, so are the
groups F(X) and A(X) (see [1, Theorem 7.4.1]):

Theorem 1.3 Let X be a kω-space with a kω-decomposition X = ⋃
n∈ω Xn. Then both F(X)

and A(X) are kω-spaces with the corresponding kω-decompositions F(X) = ⋃
n∈ω Fn(Xn)

and A(X) = ⋃
n∈ω An(Xn).

Denote by I the closed unit interval [0, 1]. The following results obtained in [12] are
relevant for our paper.

Theorem 1.4 (See [12]) For a Tychonoff space X, the following are equivalent:

(i) A(X) is topologically isomorphic to a subgroup of A(I);
(ii) F(X) is topologically isomorphic to a subgroup of F(I);
(iii) X is a kω-space such that every compact subspace of X is finite-dimensional and

metrizable.

Theorem 1.5 (See [12]) Let X be a finite-dimensional compact metrizable space. Then L(X)

isomorphically embeds into L(I).
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So, as an easy corollary, we have the following assertion: for every finite-dimensional
compact metrizable space X containing a homeomorphic copy of the segment I, and every
integer n ≥ 1, the groups A(Xn) and F(Xn) are topologically isomorphic to subgroups of
A(X) and F(X), respectively; and, similarly, L(Xn) is topologically isomorphic to a linear
subspace of L(X).

Topological monomorphisms in Theorems 1.4 and 1.5 cannot be replaced by topological
isomorphisms since the existence of a topological isomorphism between F(X) and F(Y ),
for compact metrizable spaces X and Y , implies the equality dim X = dim Y , by a result
due to Graev [6]. This fact was generalized to arbitrary Tychonoff spaces X and Y by Pestov
[21].

Motivated by these results, one can ask the following question:

Question 1.6 Let G be any of the topological functors F, A, L. Is it true that for every
Tychonoff space X and every integer n ≥ 1, there exists a topological monomorphism of
G(Xn) into G(X)? What if X is a compact metrizable space?

For the functors G = A and G = L , Question 1.6 has been answered negatively for
compact metrizable spaces X in [11]. Denote the topological sum of two copies of a space
X by X ⊕ X . It is known that if X is a Cook continuum, then the free abelian topological
group A(X ⊕ X) does not embed into A(X) as a topological subgroup. Similarly, for this X ,
the free locally convex space L(X ⊕ X) does not embed into L(X) as a topological linear
subspace (for details, see [11, 13]). Since G(X2) contains a topological and isomorphic copy
of G(X ⊕ X) if X is a compact space with |X | ≥ 2 (see Corollary 3.3), we conclude that
G(X2) does not admit a topological monomorphism into G(X) if X is a Cook continuum
and G ∈ {A, L}.

The case of the (non-abelian) functor F is very different. For this functor, the positive
answer to the second part of Question 1.6 has long been known.

Theorem 1.7 (Nickolas, see [18]) Let X be a kω-space. Then F(Xn) is topologically isomor-
phic to a subgroup of F(X), for each integer n ≥ 1. For the special case n = 2, a topological
monomorphism ϕ of F(X2) to F(X) restricted to the subspace X2 of F(X2) is given by
ϕ(x, y) = xyx for all x, y ∈ X.

In fact, the topological embedding in Theorem 1.7 is closed, so F(Xn) is topologically
isomorphic to a closed subgroup of F(X). This follows from the combination of Theorem 1.3
andGraev’s result stating that a Hausdorff topological group isWeil complete (hence, Raı̆kov
complete) provided it is a kω-space [7, Corollary 3]. One can also recall that the class of
kω-spaces is finitely productive.

Notably, the article [18] by P. Nickolas does not contain any comments on whether
Theorem 1.7 remains valid for all Tychonoff spaces.

Our goal in this paper is twofold: to extend the embedding Theorem 1.7 to wider classes
of spaces and to provide a negative answer to the first part of Question 1.6 for the functor F .

Adapting the arguments in the original proof of Theorem 1.7, we show in Theorem 3.5 that
the conclusion of the theorem remains true for any space X such that every finite power Xn is
pseudocompact. For example, all pseudocompact k-spaces enjoy this property. Afterwards,
in Theorem 4.12, we extend Theorem 1.7 to the class of NCω-spaces which contains as a
proper subclass all kω-spaces. Examples of NCω-spaces include the ordinal spaces [0, α) for
every ordinal α. We show that the class of NCω-spaces is invariant under basic topological
operations. The topological sum of countably many copies of the space [0, ω1) provides an
example of a NCω-space that is not a kω-space and is not pseudocompact.
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We give a negative answer to the first part of Question 1.6 for the functor G = F by
presenting a first example of a Tychonoff space Z such that F(Z2) is not topologically
isomorphic to a subgroup of F(Z) (Theorem 5.4). Since our space Z is countably compact,
this shows that the embedding Theorem 3.5 is nearly optimal.

Concluding Sect. 6 contains some additional remarks and open questions.

2 Preliminaries

For a given Tychonoff space X , there are at least three distinct ways to “complete” it, by taking
the Stone–Čech compactification βX of X , the Hewitt–Nachbin realcompactification υX of
X , and the Dieudonné completion μX of X , respectively. These completions are related by
the inclusions

X ⊆ μX ⊆ υX ⊆ βX .

We recall that μX is the completion of X with respect to the finest compatible uniformity
on X . A space X is Dieudonné complete if X = μX ; equivalently, X is homeomorphic to a
closed subspace of a product of metrizable spaces [5, 8.5.13].

A subspace X of a space Y is C-embedded (C∗-embedded) in Y if every continuous
(continuous bounded) function f : X → R extends to a continuous function f : Y → R.
The space υX is the biggest subspace Y of βX containing X such that X is C-embedded in
Y [5, Theorem 3.11.10]. A space X isHewitt–Nachbin complete or realcompact if X = υX ;
equivalently, X is homeomorphic to a closed subspace of a power of the real line R. If there
are no uncountable measurable cardinals, then the equality μX = υX holds for every space
X . A more exact version of this result states that if every discrete family of open sets in X
has a non-measurable cardinality, then μX = υX [5, 8.5.13(h)].

The notion of pseudocompactness is central to this article. A Tychonoff space X is called
pseudocompact if every continuous real-valued function on X is bounded. One of the equiv-
alent internal characterizations of pseudocompactness is as follows: a Tychonoff space X is
pseudocompact if and only if every locally finite family of open sets in X is finite. A clas-
sical result states that every pseudocompact Dieudonné complete space is compact, so for a
pseudocompact space X , μX = υX = βX holds. The reader may consult the monograph
[10] for a systematic study of pseudocompact spaces.

Given a subset X of a space B, we denote by F(X , B) the subgroup of F(B) algebraically
generated by X . It is known that if X is closed in B, then F(X , B) is a closed subgroup of
F(B) [1, Theorem 7.4.5]. However, the canonical continuous monomorphism of F(X) to
F(B) that maps F(X) onto F(X , B) is not necessarily a topological embedding [29]. We
manage to overcome this obstacle.

For our purposes in this paper the space X will frequently be viewed as a dense subspace
of one of the aforementioned completions βX , υX orμX . As one of the main technical tools,
we use repeatedly the following results which are due to Nummela and Pestov (see [20, 22]
or [1, Theorem 7.7.3, Corollary 7.7.5]).

Theorem 2.1 (E. Nummela, V. Pestov) Let X be a dense subspace of a space B. Then the
subgroup F(X , B) of F(B) is topologically isomorphic to the free topological group F(X) if
and only if X ⊆ B ⊂ μX, that is, every continuous pseudometric on X admits a continuous
extension over B.

The next corollary of Theorem 2.1 explains why pseudocompactness plays a crucial role
throughout our paper.
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Corollary 2.2 (E. Nummela, V. Pestov) The subgroup F(X , βX) of F(βX) is topologically
isomorphic to the free topological group F(X) if and only if X is pseudocompact.

3 Extending the embedding theorem

It is known that the free topological group F(X) is Raı̆kov complete for every kω-space X [1,
Theorem 7.4.11], so Theorem 1.7 provides a topological isomorphism between F(Xn) and
a closed subgroup of F(X), for each n ∈ N. If the space X is Dieudonné complete, a similar
argument guarantees that any topological monomorphism of F(Xn) to F(X), if it exists, is
closed (apply [25, Theorem 1]).

We show below that Theorem 1.7 remains true for any space X such that all finite powers
of X are pseudocompact, maintaining the embedding to be closed. This is an important matter
since we usually deal with spaces that are not Dieudonné complete.

Theorem 3.1 Let X and Y be spaces such that the product X × Y is pseudocompact. Then
the free topological group F(X ⊕ Y ) contains a closed subgroup topologically isomorphic
to F(X × Y ).

Proof Denote the topological sum X ⊕ Y by Z . Then the space Z is pseudocompact and
βZ = βX⊕βY .Hence, byCorollary 2.2, F(Z) canbe identifiedwith the subgroup F(Z , βZ)

of F(βZ) algebraically generated by the subset Z of βZ . Let K = βX × βY . Again, since
X × Y is pseudocompact, the group F(X × Y ) is topologically isomorphic to the subgroup
F(X × Y , K ) of F(K ).

Similarly to [18, Proposition 1], we consider the continuous mapping ϕ : K → F(βZ)

defined by the rule

ϕ(x, y) = xyx, for all x ∈ βX and y ∈ βY .

Then ϕ is a topological embedding—a simple verification shows that the arguments from
[18] remain valid in this more general situation. Furthermore, the subgroup G of F(βZ)

generated by ϕ(K ) is algebraically the free group on the compact set ϕ(K ). Again, this
follows from [18, Lemma 1].

Themapping ϕ extends to a continuous homomorphism ϕ̂ : F(K ) → F(βZ). Since ϕ(K )

is a free set of generators for the group G, we see that ϕ̂ is a monomorphism. Applying [18,
Lemma 1] once again we obtain the inclusion G ∩ Fn(βZ) ⊆ 〈ϕ(K )〉n for each n ∈ ω,
where 〈ϕ(K )〉n is the set of elements of G that have length at most n with respect to the
algebraic basis ϕ(K ). According to [14, Corollary 2], the latter implies that G is the free
topological group on K , so ϕ̂ is a topological isomorphism of F(K ) onto G (the result
formulated in Corollary 2 of [14] refers to the Graev free topological groups, but its proof
works without changes for Markov free topological groups as well). Hence, the restriction of
ϕ̂ to the subgroup F(X × Y , K ) of F(K ) is a topological monomorphism of F(X × Y , K )

to F(βZ). It is also clear from our choice of ϕ and ϕ̂ that ϕ̂
(
F(X × Y , K )

) ⊂ F(Z , βZ).
To see that ϕ̂(F(X ×Y , K )) ∼= F(X ×Y ) is closed in F(Z , βZ) ∼= F(Z) = F(X ⊕Y ) it

suffices to note that the groups F(K ) and ϕ̂(F(K )) are Raı̆kov complete and that the equality

ϕ̂
(
F(X × Y , K )

) = ϕ̂(F(K )) ∩ F(Z , βZ)

is valid. ��
If K is a nonempty compact subset of a pseudocompact space X , then the product X × K

is also pseudocompact. By applying Theorem 3.1 we can conclude that the group F(X × K )
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is topologically isomorphic to a closed subgroup of F(X ⊕ K ). In the following proposition
we refine this result and show that, actually, F(X × K ) is topologically isomorphic to a
closed subgroup of F(X) in this case.

Proposition 3.2 Let K1, . . . , Km be nonempty compact subsets of a space X and K = K1 ×
· · ·×Km,wherem ∈ N. If X is either pseudocompact or a kω-space, then the group F(X×K )

is topologically isomorphic to a closed subgroup of F(X).

Proof The product of a pseudocompact (or kω-) space with a compact space is again a
pseudocompact (or kω-) space. Therefore, it suffices to consider the case m = 1 and then
apply induction on m.

We assume first that X is a kω-space. Then X × X is also a kω-space and X × K is its
closed subset. By [14, Theorem 3], the group F(X × K ) is topologically isomorphic to the
closed subgroup F(X ×K , X ×X) of F(X ×X). According to Theorem 1.7, the latter group
is topologically isomorphic to a closed subgroup of F(X). Hence, F(X×K ) is topologically
isomorphic to a closed subgroup of F(X).

Next we consider the case where X is pseudocompact. We cannot apply Theorem 3.1
directly because the product X2 is not necessarily pseudocompact. Therefore, we adapt the
arguments from the proof of the theorem.

Let βX be the Stone-Čech compactification of X . Since the spaces X and Y = X × K
are pseudocompact, it follows from [4, Theorem 3.1] that βY can be naturally identified
with the product P = βX × K . Also, by Corollary 2.2, F(Y ) is topologically isomorphic
to the subgroup F(Y , P) of F(P) algebraically generated by the dense C-embedded subset
Y of P . We denote by jY the topological monomorphism of F(Y ) to F(P) extending the
identity embedding of Y to P . Also, since P is a closed subset of the compact space βX ×
βX , the identity embedding iP : P → βX × βX extends to a topological monomorphism
jP : F(P) → F(βX×βX). Hence, the composition jP ◦ jY is a topological monomorphism
of F(Y ) to F(βX ×βX). Notice that the restriction of jP ◦ jY to Y is the identity embedding
of Y to βX × βX , so jP ◦ jY is a topological isomorphism of F(Y ) onto the subgroup
F(Y , βX × βX) of the group F(βX × βX).

Let ϕ : F(βX × βX) → F(βX) be the closed topological monomorphism described in
Theorem 1.7 for n = 2. Then we have the inclusions

ϕ
(
F(Y , βX × βX)

) ⊂ ϕ
(
F(X × X , βX × βX)

) ⊂ F(X , βX) ∼= F(X).

Since the above inclusions are topological monomorphisms, we see that F(Y ) ∼= F(Y , βX×
βX) is topologically isomorphic to a subgroup of F(X). It remains to verify that ϕ ◦ jP ◦
jY : F(Y ) → F(X) is a closed embedding. This follows from the equality

ϕ
(
F(Y , βX × βX

) = ϕ
(
F(P, βX × βX)

) ∩ F(X , βX)

and the facts that F(P, βX × βX) is a closed subgroup of F(βX × βX) and that ϕ is a
closed embedding of F(βX × βX) to F(βX). ��
Corollary 3.3 Let X be a space with |X | ≥ 2. If X is either pseudocompact or a kω-space,
then the group F(X ⊕ X) is topologically isomorphic to a closed subgroup of F(X).

Proof It suffices to consider the case of a pseudocompact space X . Take distinct points
a, b ∈ X and identify X ⊕ X with the closed subspace Y = X × K of the product X × X ,
where K = {a, b}. Since K is evidently a compact subset of X , we can apply Proposition 3.2
to conclude that F(X × K ) is topologically isomorphic to a closed subgroup of F(X). ��
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Theorem 3.4 Let X be a space such that X×X is pseudocompact. Then the group F(X×X)

is topologically isomorphic to a closed subgroup of F(X).

Proof Firstly, since the product X × X is pseudocompact, taking Y = X in Theorem 3.1
we obtain that F(X × X) is topologically isomorphic to a closed subgroup of F(X ⊕ X).
Secondly, by Corollary 3.3, F(X ⊕ X) admits a topological isomorphism onto a closed
subgroup of F(X). Therefore, F(X) contains a closed isomorphic copy of F(X × X). ��

Finally, we extend the above theorem to F(Xn) for every natural n.

Theorem 3.5 Let X be a space such that all finite powers of X are pseudocompact. Then for
every integer n ≥ 1, F(X) contains a closed subgroup topologically isomorphic to F(Xn).

Proof According to Theorem 3.4, F(X2) is topologically isomorphic to a closed subgroup of
F(X). This result applied to X2 in place of X shows that F(X4) is topologically isomorphic
to a closed subgroup of F(X2). Thus, F(X) contains a closed copy of F(X4). Continuing the
argument, we see that F(X) contains a closed isomorphic copy of F(X2k ), for each natural
k. Finally, for arbitrary natural numbers n and m with 1 ≤ n < m, there exists a continuous
open retraction of Xm onto Xn , so [1, Exercise 7.7.a] implies that F(Xn) is topologically
isomorphic to a closed subgroup of F(Xm). For every n ≥ 1, choose k ∈ N such that n < 2k ,
and the required conclusion follows. ��

Given a Tychonoff space X , we call it an FP-space if all finite powers of X are pseu-
docompact. Not every pseudocompact (nor even countably compact) space is an FP-space
[19, 27]. Clearly, all compact spaces are FP-spaces. However, the class of FP-spaces is
considerably wider than the class of compact spaces. It is known that the product of any
family of pseudocompact k-spaces is pseudocompact [10, Theorem 1.4.9]. Therefore, any
product of pseudocompact k-spaces is an FP-space.

Corollary 3.6 Let X be a pseudocompact k-space (for instance, a pseudocompact locally
compact space or a pseudocompact sequential space). Then for each integer n ≥ 1, F(X)

contains a closed subgroup topologically isomorphic to F(Xn).

The following two examples give more information on the class of FP-spaces and its
permanence properties.

Example 3.7 (a) Every Isbell–Mrówka 	-space is locally compact and pseudocompact (see
[10, Chapter 8]), hence it is an FP-space.

(b) Let X be a closed subset of a 
-product of any family of compact spaces [5, 2.7.14].
Then X is an ω-bounded space, i.e. the closure of every countable subset in X is compact,
and therefore X is an FP-space.

Example 3.8 Later, in Proposition 5.1 we present two FP-spaces X and Y such that their
topological sum X ⊕ Y is not an FP-space.

4 Free topological groups on NC!-spaces

In order to extend Theorem 1.7 to a class of spaces strictly wider than the class of kω-spaces,
we follow [1, Section 7.8].

Let us say that X is an NC-space if Xn is normal and countably compact for each natural
n. Given a space Y and a family F = {Yn : n ∈ ω} of subspaces of Y with Y = ⋃

n∈ω Yn ,
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we also say that Y is the direct limit of the family F if a subset C of Y is closed in Y if and
only if C ∩ Yn is closed in Yn for each n ∈ ω.

The following result is proved in [1, Theorem 7.8.8].

Theorem 4.1 If X is an NC-space, then the groups F(X) and A(X) are direct limits of the
respective families {Fn(X) : n ∈ ω} and {An(X) : n ∈ ω}.

If the group G(X), where G ∈ {F, A}, satisfies the conclusion of Theorem 4.1, we say
that G(X) has the direct limit property.

Definition 4.2 A space X is called an NCω-space if there exists an increasing sequence
{Xn : n ∈ ω} of closed NC-subspaces of X such that X = ⋃

n∈ω Xn and X is the direct
limit of this sequence.

It is clear that every kω-decomposition of a space is an NCω-decomposition, whence it
follows that every kω-space is an NCω-space. The converse is false because the space [0, ω1)

of countable ordinals with the order topology is an NC-space (hence, NCω-space) that is not
σ -compact and thus is not a kω-space. It is also clear that a closed subspace of an NCω-space
is an NCω-space. The following lemma provides additional information in this direction.

Lemma 4.3 Every ordinal space X = [0, α) with the topology generated by the natural
well-ordering is an NCω-space.

Proof If α is a successor ordinal, i.e., α = β + 1, then the space X = [0, β] is compact and
there is nothing to prove. If c f (α) > ω, then X is an NC-space (see [1, Lemma 7.8.14]).
Finally, if c f (α) = ω, take a strictly increasing sequence {αn : n ∈ ω} of ordinals such
that α = supn∈ω αn . Then X = ⋃

n∈ω[0, αn] is a kω-decomposition for X and, hence, a
NCω-decomposition for X . ��
Corollary 4.4 Theproduct [0, ω1)×ω, whereω carries the discrete topology, is an NCω-space
which is neither a kω-space nor pseudocompact.

To analyze the free topological groups on NCω-spaces, it is necessary to establish a
number of crucial topological properties of this class of spaces.

Lemma 4.5 Every NCω-space X is normal.

Proof Let A and B be nonempty closed disjoint subsets of X . Let also X = ⋃
n∈ω Xn be an

NCω-decomposition for X .
Take n0 ∈ ω such that both sets An0 = A ∩ Xn0 and Bn0 = B ∩ Xn0 are nonempty.

Since Xn0 is normal, there exist disjoint open sets Un0 and Vn0 in Xn0 such that An0 ⊆ Un0 ,
Bn0 ⊆ Vn0 andUn0 ∩ V n0 = ∅. Assume that for some n ≥ n0 we have defined open setsUn

and Vn in Xn such that An = A ∩ Xn ⊆ Un , Bn = B ∩ Xn ⊆ Vn and Un ∩ V n = ∅. Then
A∗
n+1 = (A∩ Xn+1)∪Un and B∗

n+1 = (B∩ Xn+1)∪V n are closed disjoint subsets of Xn+1.
Hence, there exist open sets Un+1 and Vn+1 in Xn+1 such that A∗

n+1 ⊆ Un+1, B∗
n+1 ⊆ Vn+1

andUn+1 ∩ V n+1 = ∅. This completes our construction of the sequences {Un : n ≥ n0} and
{Vn : n ≥ n0}.

Let U = ⋃
n≥n0 Un and V = ⋃

n≥n0 Vn . Then the sets U ∩ Xn = ⋃
k≥n(Uk ∩ Xn) and

V ∩ Xn = ⋃
k≥n(Vk ∩ Xn) are open in Xn for each n ∈ ω. Since X is the direct limit of the

subspaces Xn , we conclude that U and V are open in X . It is clear from the choice of the
sets Un and Vn that A ⊆ U , B ⊆ V and U ∩ V = ∅. Hence, X is normal. ��
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Corollary 4.6 Every open Fσ -set in an NCω-space is also an NCω-space.

Proof Let O be a nonempty open Fσ -set in an NCω-space X . Denote O = ⋃
n∈ω Fn , where

each Fn is closed in X .We can assume that Fn ⊆ Fn+1 for each n ∈ ω. Let also X = ⋃
n∈ω Xn

be an NCω-decomposition for X . For every n ∈ ω, we put Kn = Fn∩Xn . Clearly, each Kn is
an NC-space. Using the normality of X (see Lemma 4.5), one can verify that O = ⋃

n∈ω Kn

is an NCω-decomposition for the space O . ��
Lemma 4.7 Let X = ⋃

n∈ω Xn be an NCω-decomposition for a space X. Then for each
integer k ≥ 1, Xk is an NCω-space with NCω-decomposition Xk = ⋃

n∈ω Xk
n. Hence, every

finite power of an NCω-space is again an NCω-space.

Proof Since the class of NCω-spaces is closed hereditary, it suffices to verify that X2 is an
NCω-space with NCω-decomposition X2 = ⋃

n∈ω X2
n . Notice that each summand X2

n is a
closed NC-subspace of X2.

Assume that F is a nonempty subset of X2 such that F ∩ X2
n is closed in X2

n for each
n ∈ ω. We claim that X2\F is open in X2, so F is closed. Take an arbitrary point x0 ∈ X2\F
and choose an integer n0 ≥ 0 such that x0 ∈ X2

n0 and Fn0 = F ∩ X2
n0 �= ∅. Since Fn0 is

closed in X2
n0 and the space X2

n0 is normal, there exist open sets Un0 and Vn0 in Xn0 such
that x0 ∈ Un0 × Vn0 and (Un0 × Vn0) ∩ Fn0 = ∅.

Assume that we have defined sets Un0 , . . . ,Un and Vn0 , . . . , Vn for some n ≥ n0 such
thatUk and Vk are open in Xk and (Uk ×V k)∩(F∩ X2

k ) = ∅ if n0 ≤ k ≤ n andUk ⊆ Uk+1,
V k ⊆ Vk+1 if k < n. Let Fn+1 = F ∩ X2

n+1. Since the space X2
n+1 is normal and the closed

subsets Un × V n and Fn+1 of X2
n+1 are disjoint, we can find open sets Un+1 and Vn+1 in

Xn+1 such that Un ⊆ Un+1, V n ⊆ Vn+1 and (Un+1 × V n+1) ∩ Fn+1 = ∅. This completes
our construction of the sequences {Un : n0 ≤ n < ω} and {Vn : n0 ≤ n < ω}.

Let U = ⋃
n≥n0 Un and V = ⋃

n≥n0 Vn . Then the sets U and V are open in X . Clearly,
x0 ∈ U0 × V0 ⊆ U × V . It also follows from our construction that (Un × Vn) ∩ Fn = ∅ for
each n ≥ n0. Therefore, (U × V ) ∩ F = ∅. This proves that the set X2 \ F is open in X2,
as claimed. Hence, X2 = ⋃

n∈ω X2
n is an NCω-decomposition for X2. ��

Combining Lemmas 4.5 and 4.7 we deduce the following result.

Corollary 4.8 Every finite power of an NCω-space is normal.

We have to warn the reader that the product of two NCω-spaces or even NC-spaces can
fail to be normal. To see this, it suffices to take X = ω1 and Y = ω1 + 1, where both spaces
carry their usual order topology. Then X and Y are NC-spaces, but the product X × Y is not
normal, hence, not a NCω-space (see also Remark 6.2).

Proposition 4.9 Let f : X → Y be a continuous closed mapping of an NCω-space X onto
a Hausdorff space Y . Then Y is also an NCω-space.

Proof Let X = ⋃
n∈ω Xn be an NCω-decomposition for X . For every n ∈ ω, letYn = f (Xn).

Then Yn is closed in Y and Yn ⊆ Yn+1, for each n ∈ ω.
It is known that normality is invariant under continuous closed mappings [5, Theo-

rem 1.5.20]. So each Yn is an NC-space. Therefore, it suffices to verify that Y is the direct
limit of the sequence {Yn : n ∈ ω}.

Let K be a subset of Y such that Kn = K ∩ Yn is closed in Yn for each n ∈ ω. We claim
that the intersection F ∩ Xn is closed in X for each n ∈ ω, where F = f −1(K ). Indeed, we
have the equalities

f −1(Kn) ∩ Xn = f −1(K ) ∩ f −1(Yn) ∩ Xn = F ∩ Xn .
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Since Kn is closed in Y , we see that F ∩ Xn is closed in X . So F is closed in X because⋃
n∈ω Xn is an NCω-decomposition for X . This implies that K = f (F) is closed in Y .

Therefore,
⋃

n∈ω Yn is an NCω-decomposition for Y . ��
The following key result clarifies the relationship between NCω-spaces and kω-spaces.

Lemma 4.10 If X is an NCω-space with NCω-decomposition X = ⋃
n∈ω Xn, then the

Hewitt–Nachbin completion υX is a kω-space with kω-decomposition υX = ⋃
n∈ω Kn,

where Kn = clυX Xn for each n ∈ ω.

Proof Every closed subspace of a Hewitt–Nachbin complete space is Hewitt–Nachbin com-
plete [5, Theorem 3.11.4]. Since the closure of a pseudocompact subspace of a space
is pseudocompact and a pseudocompact Hewitt–Nachbin complete space is compact [5,
Theorem 3.11.1], we conclude that the closure of every pseudocompact subspace of a
Hewitt–Nachbin complete space is compact. Therefore, each Kn is a compact subset of
υX .

Let τ be the topology of the space υX , that is, the topology υX inherits from βX . Denote
by τ ∗ the finer topology on υX such that F is closed in X∗ = (X , τ ∗) iff F ∩ Kn is closed
in Kn for each n ∈ ω. In other words,

⋃
n∈ω Kn is a kω-decomposition for X∗. Then X∗

is a normal space, by Lemma 4.5 (every kω-space is an NCω-space). Clearly, X is a dense
subspace of X∗.

We claim that X isC-embedded in X∗. Indeed, consider a continuous real-valued function
f on X . The space X is normal, by Lemma 4.5. Since Xn is a closed subset of X and the
function fn = f �Xn is bounded on the countably compact space Xn , we see that Xn is C∗-
embedded in Kn and Kn ∼= βXn . Hence, fn extends to a continuous real-valued function gn
on Kn . Since the spaces Kn are Hausdorff, it follows that gn�Kk = gk whenever 0 ≤ k < n.
Denote by g the function on the set υX that extends each gn . Since gn is continuous for each
n ∈ ω, the function g is continuous on the space X∗. Hence, X is C-embedded in X∗, as
claimed.

Because X∗ is normal, hence Tychonoff, and X is a C-embedded subspace of X∗, we
conclude that X∗ is homeomorphic to the subspace υX of βX and so υX is a kω-space. This
completes the proof. ��

We also need a version of Lemma 4.10 for finite powers of X .

Lemma 4.11 Let X be an NCω-space. Then for each integer k ≥ 1, the identity mapping of
Xk onto itself extends to a homeomorphism of υ(Xk) onto (υX)k .

Proof For k = 1, the required conclusion follows from Lemma 4.10. So we assume that
k > 1. Let ik : Xk → (βX)k and jk : Xk → β(Xk) be natural topological embeddings. The
identity mapping of Xk onto itself extends to a continuous mapping fk : β(Xk) → (βX)k .
Then ik = fk ◦ jk . Let also X = ⋃

n∈ω Xn be an NCω-decomposition for X . In what follows
we identify υX and υ(Xk)with the corresponding subspaces of βX and β(Xk), respectively.
Lemma 4.10 implies that υX = ⋃

n∈ω clβX Xn and υ(Xk) = ⋃
n∈ω clβ(Xk )X

k
n . In the latter

two equalities, the closures in υX and υ(Xk) can be used interchangeably with the closures
in βX and β(Xk), respectively.

For every n ∈ ω, the closed subspace Xk
n of the normal space Xk isC∗-embedded, whence

it follows that clβ(Xk )X
k
n

∼= β(Xk
n). Since X

k
n is countably compact (hence, pseudocompact),

Glicksberg’s theorem [5, 3.12.21(c)] implies that β(Xk
n)

∼= (βXn)
k . We conclude that the

closure of Xk
n in β(Xk) can be identified with the subspace (βXn)

k of (βX)k . In fact, one can
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easily verify that the restriction of fk to clβ(Xk )X
k
n is a homeomorphism onto the subspace

(βXn)
k of (βX)k —this is just a more precise form of the aforementioned Glicksberg’s

theorem. Hence, fk maps υ(Xk) onto the subspace (υX)k of (βX)k in a one-to-one fashion.
Take a closed subset F of υ(Xk). Then Fn = F∩clβ(Xk )X

k
n is closed in the compact space

clβ(Xk )X
k
n , so Fn is compact. Hence fk(F)∩ (cl(βX)k X

k
n) = fk(Fn) is closed in cl(βX)k X

k
n =

(clβX Xn)
k , for each n ∈ ω. Since, by Lemmas 4.7 and 4.10, (υX)k = ⋃

n∈ω(clβX Xn)
k is

the kω-decomposition for (υX)k , we see that the image fk(F) is closed in (υX)k . We have
thus proved that the restriction of fk to υ(Xk) is a closed continuous bijection of υ(Xk) onto
(υX)k . Therefore, this restriction is a homeomorphism and the spaces υ(Xk) and (υX)k are
homeomorphic. ��

Now we can present one of the main results of this section, which extends Theorem 1.7 to
the broader class of NCω-spaces and complements its conclusion by making an embedding
of F(Xn) to F(X) closed. It is worth noting in this respect that neither NC-spaces nor
NCω-spaces need to be Dieudonné complete, so the free topological group F(X) on an
NCω-space X is not necessarily Raı̆kov complete. In fact, the group F(X) on an NCω-space
X is Raı̆kov complete if and only if X is a kω-space. This follows from the facts that the
Raı̆kov completeness of F(X) implies the Dieudonné completeness of X (see [29, p. 659])
and that every Dieudonné complete NCω-space is a kω-space (apply Lemma 4.10 and the
equality υX = μX , where μX is the Dieudonné completion of an NCω-space X ).

Theorem 4.12 Let X be an NCω-space. Then for every integer n ≥ 1, F(X) contains a
closed subgroup topologically isomorphic to F(Xn).

Proof Making use of Lemma 4.10, consider X as a dense subspace of the kω-space υX . Note
that in a pseudocompact space, every discrete family of open subsets is finite. Hence, every
discrete family of open sets in X is countable. Also, X is C-embedded in υX . Hence, all the
requirements of the Uspenskij’s criterion in [29, Theorem 2] are met, and we deduce that
F(X) is topologically isomorphic to the subgroup F(X , υX) of F(υX) generated by X .

One applies the same argument along with Lemma 4.11 to conclude that for each integer
k ≥ 1, F(Xk) is topologically isomorphic to the subgroup F

(
Xk, (υX)k

)
of F((υX)k). In

particular, F(X2) is topologically isomorphic to the subgroup F
(
X2, (υX)2

)
of F((υX)2).

As in the proof of Theorem 3.5, it suffices to verify that F(X2) is topologically iso-
morphic to a closed subgroup of F(X). Let ϕ : F((υX)2) → F(υX) be a continuous
homomorphism extending the mapping f : (υX)2 → F(υX), f (x, y) = xyx . Since υX
and (υX)2 are kω-spaces, it follows fromTheorem 1.7 that ϕ is a topological monomorphism.
It also follows from the choice of f and ϕ that ϕ

(
F(X2, (υX)2)

) ⊂ F(X , υX). Therefore,
ϕ
(
F(X2, (υX)2)

)
is a topological and isomorphic copy of the group F(X2) in F(X , υX).

Finally, since the group F((υX)2) is Raı̆kov complete, the equality

ϕ
(
F(X2, (υX)2)

) = ϕ
(
F((υX)2)

) ∩ F(X , υX)

implies that this copy is closed in F(X , υX) ∼= F(X). ��

5 The embedding theorem fails for a countably compact space

The main result of this section is Theorem 5.4 stating that the free topological group F(Z)

does not contain an isomorphic topological copy of F(Z2) for some countably compact space
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Z . Its proof makes use of the spaces S and T from the following simple proposition that has
its roots in [3, Theorem 1] and [9, Example 8].

Proposition 5.1 There exist countably compact separable Tychonoff spaces S and T without
isolated points such that the product S × T is not pseudocompact.

Proof Let X and Y be subspaces of βω such that |X | = |Y | = c, X ∩ Y = ω, and the spaces
Xω, Yω are countably compact—one can take X and Y as in [9, Lemma 5]. It follows from
X ∩Y = ω that both X and Y are separable and that the product X ×Y is not pseudocompact
since the set {(n, n) : n ∈ ω} does not have accumulation points in X ×Y . The spaces X and
Y are zero-dimensional as subspaces of βω.

Let S = Xω and T = Yω. It is clear that the spaces S and T are countably compact,
separable, and do not have isolated points. Since X is a continuous image of S and Y is a
continuous image of T , we see that X × Y is a continuous image of S × T . Hence, the space
S × T cannot be pseudocompact. ��
Remark 5.2 One can easily verify that the spaces S in T in Proposition 5.1 have a stronger
property, namely, K × L is not pseudocompact whenever K and L are regular closed subsets
of S and T , respectively. Applying the construction of W. Comfort and J. van Mill in [3,
Theorem 1.1], one can obtain a weaker version of the latter fact, with pseudocompact spaces
S and T such that K × L is not pseudocompact for any nonempty regular closed subsets
K ⊂ S and L ⊂ T .

It is also worth mentioning that answering a question in [3], E. Reznichenko constructed
in [24] homogeneous spaces S and T such that Sω and T ω are countably compact and the
product S × T is not pseudocompact.

We say that a subset B of a space X is bounded in X if every continuous real-valued
function defined on X is bounded on B. Hence, X is bounded in itself iff it is pseudocompact.
A subset Y of X is σ -bounded in X if Y is the union of countably many bounded subsets of
X (see [1, p. 400]).

As usual, we use βX and μX to denote the Stone–Čech and Dieudonné completion of a
space X , respectively.

Theorem 5.3 Let X andY be spaces such that F(Y ) is topologically isomorphic to a subgroup
of F(X). If X is pseudocompact, then the space Y is σ -bounded and there exists a topological
monomorphism of F(μY ) to F(βX).

Proof Let ϕ : F(Y ) → F(X) be a topological monomorphism. Let also P = ϕ(Y ) and
Pn = P ∩ Fn(X), where n ∈ ω. Then P = ⋃

n∈ω Pn . We claim that each Pn is precompact
in F(X).

Every pseudocompact subspace of a topological group is precompact in the group (this
follows from [26, page 154, Statement A]). In particular, X is a precompact subset of F(X).
Hence the subset X∗ = X∪{e}∪X−1 of F(X) is also precompact (we apply Corollary 3.7.11
of [1] here). The product of two (equivalently, finitely many) precompact sets in a topological
group is again precompact [1, Corollary 3.7.11]. Since

Fk(X) = X∗ · · · X∗
︸ ︷︷ ︸

k times

(the product on the right side of the equality is taken in the free group F(X)), we conclude
that Fk(X) and its subset Pk are precompact in F(X). This proves our claim.
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Denote by G the image ϕ(F(Y )) considered as a subgroup of F(X). Since Pk ⊂ P ⊂ G
and G ⊂ F(X), it follows that Pk is a precompact subset of the group G (the property of
being a precompact subset is independent of whether the subset is related to the ambient
group F(X) or its subgroup G). Hence, the subset ϕ−1(Pk) of Y is precompact in F(Y ).
According to [1, Lemma 7.5.2] the latter implies that ϕ−1(Pk) is bounded in Y . The equality
Y = ⋃

k∈ω ϕ−1(Pk) enables us to conclude that the space Y is σ -bounded.
Using Corollary 2.2, we identify F(X) with the subgroup F(X , βX) of F(βX)

algebraically generated by the subset X of βX .
Every continuous pseudometric onY extends to a continuous pseudometric onμY . Hence,

by Theorem 2.1, F(Y ) is a dense topological subgroup of the group F(μY ).
Since the group F(βX) is Raı̆kov complete, the topological monomorphism ϕ : F(Y ) →

F(X) ⊂ F(βX) admits an extension to a continuous homomorphismψ : F(μY ) → F(βX).
Then ψ is also a topological monomorphism, according to [1, Corollary 3.6.18]. This
completes the proof of the theorem. ��

Belowwe apply the necessary condition for the embeddability of F(Y ) in F(X), presented
in Theorem 5.3 for a pseudocompact space X . The next theorem, which is one of the main
results of our article, demonstrates that Theorem 3.5 is quite precise.

Theorem 5.4 There exists a countably compact separable space Z such that F(Z2) does not
embed as a topological subgroup into F(Z).

Proof Let S and T be as in Proposition 5.1 and Z = S ⊕ T be the topological sum of S and
T . We recall that S = Xω and T = Yω, where X and Y are (countably compact) subspaces
of βω satisfying X ∩ Y = ω. Note that all the spaces X , Y , S and T are countably compact
and separable, and so is Z . By Theorem 5.3, it suffices to verify that the space Z2 is not
σ -bounded.

Suppose for a contradiction that Z2 is σ -bounded. Then S × T is also σ -bounded as a
clopen subset of Z2. Let S × T = ⋃

n∈ω Bn , where each Bn is a bounded subset of Z2 and,
hence, of S × T .

For every k ∈ ω, denote by pk the projection of (βω)ω to the kth factor βω(k). Since
pk(S) ∩ pk(T ) = X ∩ Y = ω for each k ∈ ω and the set  = {(n, n) : n ∈ ω} is discrete
and clopen in X ×Y , the intersection ∩ (pk × pk)(Bn) is finite for each n ∈ ω. Otherwise,
this intersection would be unbounded in X × Y , thus contradicting the fact that a continuous
image of a bounded set is bounded in the codomain, X × Y in our case.

Applying a diagonal argument we choose, for every k ∈ ω, an integer nk ∈ ω such that
(nk, nk) /∈ (pk × pk)(Bk). Then the point x = (nk)k∈ω ∈ ωω is in (S × T ) \ ⋃

k∈ω Bk ,
which is a contradiction. Therefore, neither S × T nor Z2 is σ -bounded. This implies the
conclusion of the theorem, as was previously stated. ��

6 Remarks and problems

In Sect. 3, the validity of Nickolas’ result (Theorem 1.7) has been extended in different ways
by Theorems 3.5 and 4.12. It is only natural to seek a common generalization for the latter
two theorems. We suggest a candidate for this type of generalization.

Problem 6.1 Let X = ⋃
k∈ω Xk be a Tychonoff space, where Xk ⊂ Xk+1 and each Xk is a

closed C∗-embedded subspace of X. Assume also that Xk is an FP-space for each k ∈ ω.
Does F(X) contain a (closed) copy of the group F(Xn), for each integer n ≥ 1?
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Remark 6.2 According to [28, Theorem 3.13], the free topological group F(X) of a pseudo-
compact space X is the inductive limit of its closed subspaces Fn(X), with n ∈ ω, if and only
if X is an NC-space. Let X = ω1 and Y = ω1 + 1 be the spaces of ordinals that carry the
usual order topology. Clearly, both X and Y are NC-spaces. The topological sum L = X⊕Y
of X and Y is normal, countably compact and locally compact, but it fails to be an NC-space.
Indeed, it is well-known that βX ∼= Y . Also, the square L × L contains the closed subspace
X × Y . The latter space is not normal by the Tamano theorem [5, Theorem 5.1.38] because
X is not paracompact. Therefore, the square L × L is not normal either. We conclude that
L is not an NC-space and that the group F(L) is not the the inductive limit of its closed
subspaces Fn(L). We see, in particular, that the class of NC-spaces is not finitely productive
(take the product X × Y ). A similar conclusion was obtained in [28, Theorem 4.1] by means
of a considerably longer argument.

Notice that L is an FP-space because it is pseudocompact and locally compact. Hence
Corollary 3.6 applies to the space L .

Remark 6.3 Let X be an ordinal space [0, α), where α is an infinite ordinal. Lemma 4.3
together with Theorem 4.12 imply that for each integer n ≥ 1, F(X) contains a closed
subgroup topologically isomorphic to F(Xn). However, this statement is meaningful only
for the uncountable ordinals α. In fact, it follows from [2, Theorem 3.1] that F(X) and F(Xn)

are topologically isomorphic for each integer n ≥ 1 and every countable ordinal α. If, for
instance, α = ω1 or α = ω1 + 1, then F(X) and F(Xn) are not topologically isomorphic,
by the results of [8], so the embedding of F(Xn) into F(X) indeed makes sense.

It has been noticed bymany authors that the free topological groups in the sense ofMarkov
or Graev share many topological and algebraic properties. Denote the free topological group
in the sense of Graev by FG(X). It is known that for every X , the free topological group in
the sense of Markov F(X) is isomorphic to the free topological group in the sense of Graev
FG(Y ), where Y is obtained from X by adding the isolated point e, the identity element of
FG(Y ) (see [1, Exercise 7.1(b)]).

It is also known that for every Tychonoff space X , theGraev free topological group FG(X)

is a topological subgroup of the Markov free topological group F(X), see [17]. We do not
know whether the converse holds true:

Problem 6.4 Is F(X) topologically isomorphic to a subgroup of FG(X)?

Remark 6.5 All the main results of the article are valid for embeddings of the free topological
groups in the sense of Graev, regardless of the solution to Problem 6.4. It is known or can be
easily verified that all theorems on Markov free topological groups involved in the proofs of
Theorems 3.5, 4.12 and 5.4 are valid for Graev free topological groups.

Problem 6.6 Let X be an arbitrary Tychonoff space. Letϕ : X → F(X) be amapping defined
by ϕ(x) = xn for each x ∈ X, where n ≥ 2 is a natural number. Is it true that the extension
of ϕ to a continuous homomorphism ϕ̃ : F(X) → F(X) is a topological isomorphism of
F(X) onto a closed subgroup of F(X)?

A very well-known fact says that the free algebraic group on two generators F2 contains
an isomorphic copy of the free algebraic group F∞ on a countably infinite set of generators.
Consequently, the two problems that follow can be viewed as topological versions of this
purely algebraic result. In the first of them, we propose to generalize Corollary 3.3.
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Problem 6.7 It is true that for every Tychonoff space X with |X | ≥ 2, the group F(X)

contains a (closed) subgroup topologically isomorphic to F(X ⊕ X) (or F(X × N), where
N carries the discrete topology)?

Problem 6.8 Let X be a space containing a nontrivial convergent sequence S. Does F(X)

contains a (closed) subgroup topologically isomorphic either to F(X ⊕ S) or F(X × S)?
What happens if one replaces S with the closed unit interval [0, 1]?

Proposition 3.2 implies an affirmative answer to Problem 6.8 in the special case of a
pseudocompact or kω-space X .
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