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Abstract
Let us consider a quasi-linear boundary value problem−�pu = f (x, u), in�,withDirichlet
boundary conditions, where � ⊂ R

N , with p < N , is a bounded smooth domain strictly
convex, and the non-linearity f is a Carathéodory function p-super-linear and subcritical.
We provide L∞ a priori estimates for weak solutions, in terms of their L p∗

-norm, where
p∗ = N p

N−p is the critical Sobolev exponent. No hypotheses on the sign of the solutions,
neither of the non-linearities are required. This method is based in elliptic regularity for the
p-Laplacian combined either with Gagliardo–Nirenberg or with Caffarelli–Kohn–Nirenberg
interpolation inequalities. By a subcritical non-linearity we mean, for instance, | f (x, s)| ≤
|x |−μ f̃ (s), where μ ∈ (0, p), and f̃ (s)/|s|p∗

μ−1 → 0 as |s| → ∞, here p∗
μ := p(N−μ)

N−p is
the critical Hardy–Sobolev exponent. Our non-linearities includes non-power non-linearities.

In particular we prove that when f (x, s) = |x |−μ |s|p∗
μ−2s[

log(e+|s|)
]α , with μ ∈ [1, p), then, for

any ε > 0 there exists a constant Cε > 0 such that for any solution u ∈ H1
0 (�), the following

holds

[
log

(
e + ‖u‖∞

)]α ≤ Cε

(
1 + ‖u‖p∗

) (p∗
μ−p)(1+ε)

,

where Cε is independent of the solution u.
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1 Introduction

Let us consider the following quasi-linear boundary value problem involving the p-Laplacian

− �pu = f (x, u), in �, u = 0, on ∂�, (1.1)

where �p(u) = div(|Du|p−2Du) is the p-Laplacian operator, 1 < p < ∞, � ⊂ R
N ,

N > p, is a bounded, strictly convex, open subset with C2 boundary ∂�, and the non-
linearity f : �̄×R → R is Carathéodory function (that is, the mapping f (·, s) is measurable
for all s ∈ R, and the mapping f (x, ·) is continuous for almost all x ∈ �), and subcritical
(see definition 1.1).

We analyze the effect of the smoothness of the subcritical non-linearity f = f (x, u) on
the L∞(�) a priori estimates of weak solutions to (1.1). This study is usually focused on
positive classical solutions, see the classical references of de Figueiredo-Lions-Nussbaum,
and of Gidas-Spruck [15, 20], see also [7, 8].

A natural question concerning the class of uniformly bounded solutions is the following
one,

(Q1) those L∞(�) estimates apply also to a bigger class of solutions, in particular to weak
solutions (and to changing sign solutions)?.

Another natural question with respect to the class of subcritical non-linearities, can be
stated as follows,

(Q2) those L∞(�) estimates are valid into a bigger class of non-linearities (not asymptoti-
cally powers), and in particular to non-smooth non-linearities (with possibly changing
sign weights)?.

In this paper we extend the previous work in [28] for p = 2, and provide sufficient conditions
guarantying uniform L∞(�) a priori estimates for any u ∈ W 1,p

0 (�)weak solution to (1.1), in
terms of their L p∗

(�) bounds, in the class of Carathéodory subcritical generalized problems.
In this class, we state that any set of weak solutions uniformly L p∗

(�) a priori bounded is
universally L∞(�) a priori bounded.Our theorems allow changing signweights, and singular
weights, and also apply to changing sign solutions.

Problem (1.1) with f (x, s) = |x |−μ|s|q−1s, μ > 0, is known as Hardy’s problem, due to
its relation with the Hardy–Sobolev inequality. The Caffarelli–Kohn–Nirenberg interpolation
inequality for radial singular weights [6], states that whenever 0 ≤ μ ≤ p,

p∗
μ := p(N − μ)

N − p
,

is the critical exponent of the Hardy–Sobolev embedding W 1,p
0 (�) ↪→ L p∗

μ(�, |x |−μ)

(this embedding is continuous but not compact). For the case 0 ≤ μ ≤ p, using a Pohozaev
type identity, Pucci and Servadei prove some non-existence results in R

N , [31]. Some exis-
tence and non-existence results for power like non-linearities can be found in [1, 18, 19, 22],
see also [32] for the case p = N .

Usually the term subcritical non-linearity is reserved for power like non-linearities. Next,
we expand this concept to non-linearities including the class o

(|s|p∗
μ−1).

Let

p∗
N/r := p∗

r ′ = p∗
(
1 − 1

r

)
, (1.2)

where r ′ is the conjugate exponent of r , 1/r + 1/r ′ = 1.

123



L∞ a-priori estimates for p-laplacian equations Page 3 of 21    66 

Definition 1.1 By a subcritical non-linearity we mean that f satisfies one of the two fol-
lowing growth conditions:

(H0)

| f (x, s)| ≤ |a(x)| f̃ (s) (1.3)

where a ∈ Lr (�) with N/p < r ≤ ∞, and f̃ : R → [0,+∞) is continuous and satisfies

f̃ (s) > 0 for |s| > s0, and lim
s→±∞

f̃ (s)

|s|p∗
N/r −1

= 0; (1.4)

or

(H0)’

| f (x, s)| ≤ |x |−μ f̃ (s), (1.5)

where μ ∈ (0, p), 0 ∈ �, and f̃ : R → [0,+∞) is continuous and satisfies

f̃ (s) > 0 for |s| > s0, and lim|s|→∞
f̃ (s)

|s|p∗
μ−1 = 0 . (1.6)

Remark 1.2 Obviously |a(x)| f̃ (s) ≤ |a(x)| (1 + f̃ (s)), and we can always redefine f̃ in
order to satisfy f̃ (s) > 0 for |s| > 0.

Moreover, f̃ : R → [0,+∞) from (H0) or (H0)’ satisfies the following hypothesis:

(H1) there exists a constant c0 > 0 such that

lim sup
s→+∞

max[−s,s] f̃

max
{

f̃ (−s), f̃ (s)
} ≤ c0. (1.7)

Throughout the paper, we will assume either (H0) and (H1) or (H0)’ and (H1).

Remark 1.3 1. Observe that in particular, if f̃ (s) is monotone, then (H1) is obviously satisfied
with c0 = 1.

2. Assume that (H0) holds. Thanks to Sobolev embeddings, for any u ∈ W 1,p
0 (�),

f̃ (u) ∈ L
p∗

p∗
N/r −1

(�) with
p∗

N/r − 1

p∗ = 1 − 1

r
+ 1

N
− 1

p
,

and f (·, u) ∈ L(p∗)′(�) ∀a ∈ Lr (�), where
1

(p∗)′
= 1 − 1

p
+ 1

N
.

Moreover, since r > N/p, then p∗
N/r > p.

3. Assume that (H0)’ holds. Again, by Sobolev embeddings, for any u ∈ W 1,p
0 (�),

f̃ (u) ∈ L
p∗

p∗
μ−1 (�) with

p∗
μ − 1

p∗ = 1 − μ

N
− 1

p
+ 1

N
.

Let a(x) = |x |−μ, a ∈ Lq(�) for any q < N/μ, so f (·, u) ∈ Lq(�) for any q < (p∗)′.
From the sharpCaffarelli–Kohn–Nirenberg interpolation inequality for singular weights, (see
[6], see also Theorem A.1 and Corollary A.2), it can be checked that if u ∈ W 1,p

0 (�), then

f (·, u) ∈ L(p∗)′(�) for any μ ≤ p − 1 + p/N
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(see Corollary A.2.(ii), (A.14)).
Also, if u ∈ W 1,q(�), with q > p, then

f (·, u) ∈ L(p∗)′(�) for any μ ∈ (0, p)

(see Corollary A.2.(iii.a), (A.16)).
Observe that p∗

μ > p for μ ∈ (0, p), and that p − 1 + p/N < p.

Definition 1.4 By a weak solution we mean a function u ∈ W 1,p
0 (�) such that f (·, u) ∈

L(p∗)′(�), and
∫

�

|∇u|p−2∇u · ∇ϕ =
∫

�

f (x, u)ϕ, ∀ϕ ∈ W 1,p
0 (�).

Remark 1.5 The exponent (p∗)′ is called the duality exponent, and the condition f (·, u) ∈
L(p∗)′(�) guarantees by Sobolev’s embeddings that f (·, u) belongs to the dual space
W −1,p′

(�). If other cases, we enter into the field of problems with measure data, and other
definitions of solutions have to be considered (see [2, 25]).

Throughout the paper, by a solution we will refer to this weak solution. This definition
of solution is tied to question (Q1). By an estimate of Brezis–Kato [4], based on Moser’s
iteration technique [26], and elliptic regularity, wewill state sufficient conditions guarantying
that any weak solution to (1.1) with a Carathéodory subcritical non-linearity is a continuous
function, and in fact it is a strong solution, see Lemma 2.2.

Our definition of a subcritical non-linearity includes non-linearities such as

f (1)(x, s) := a(x)|s|p∗
N/r −2s

[
log(e + |s|)]α , or f (2)(x, s) := |x |−μ|s|p∗

μ−2s
[
log

[
e + log(1 + |s|)]

]α ,

for any α > 0, and either any a ∈ Lr (�), with N/p < r ≤ +∞, or μ ∈ (0, p). These
non-linearities exemplify question (Q2).

One of our main results, Theorem 1.6, applied in particular to f (x, s) = f (1)(x, s) with
a ∈ Lr (�) for r ∈ (N/p, N ], implies that for any ε > 0 there exists a constant C > 0
depending only on ε, �, r and N such that for any u ∈ W 1,p

0 (�) solution to (1.1), the
following holds:

[
log

(
e + ‖u‖∞

)]α ≤ C‖a‖ 1+ε
r

(
1 + ‖u‖p∗

) (p∗
N/r −p)(1+ε)

,

where C is independent of the solution u.
Related results concerning those non-power non-linearities f (x, s) = f (1)(x, s) with

r = ∞ can be found in [14], and for p = 2 in [12] analyzing what happen when α → 0, in
[13] with changing sign weights, in [23] for systems, and in [29] for the radial case.

Moreover, our second main result, Theorem 1.7, applied to f (x, s) = f (2)(x, s) with
μ ∈ [1, p2/N ], implies that for any ε > 0 there exists a constant C > 0 depending on ε, μ,
N , and �, such that for any u ∈ W 1,p

0 (�) solution to (1.1), the following holds:

[
log

[
e + log

(
1 + ‖u‖∞

)]]α ≤ C
(
1 + ‖u‖p∗

) (p∗
μ−p)(1+ε)

,

and where C is independent of the solution u.
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To state our main results, for a non-linearity f satisfying (H0), let us define

h(s) = hN/r (s) := |s|p∗
N/r −1

max
{

f̃ (−s), f̃ (s)
} for |s| > 0, (1.8)

(see Remark 1.2). And for a non-linearity f satisfying (H0)’, define

h(s) = hμ(s) := |s|p∗
μ−1

max
{

f̃ (−s), f̃ (s)
} , for |s| > 0. (1.9)

By sub-criticality, (see (1.4) or (1.6) respectively),

h(s) → ∞ as s → ∞. (1.10)

Let u be a solution to (1.1). We estimate h
(‖u‖∞

)
, in terms of the L p∗

-norm of u. This result
is robust, and holds for solutions and non-linearities without any sign restriction.

Our first main results is the following theorem.

Theorem 1.6 Assume that f : �×R → R is a Carathéodory function satisfying (H0)-(H1).
Then, for any u ∈ W 1,p

0 (�) weak solution to (1.1), the following holds:

(i) either there exists a constant C > 0 such that ‖u‖∞ ≤ C, where C is independent of
the solution u,

(ii) either for any ε > 0 there exists a constant C > 0 such that

h
(‖u‖∞

) ≤ C‖a‖ A+ε
r

(
1 + ‖u‖p∗

) (p∗
N/r −p)(A+ε)

,

where h is defined by (1.8),

A :=

⎧
⎪⎨

⎪⎩

1, if r ≤ N ,

p∗
N/r − 1

p∗
N/p

, if r > N ,

and C depends only on ε, c0 (defined in (1.7)), r , N , and �, and it is independent of the
solution u.

Our second main result is the following theorem.

Theorem 1.7 Assume that f : � ×R → R is a Carathéodory function satisfying (H0)’ with
μ ≤ p2/N, and (H1).

Then, for any u ∈ W 1,p
0 (�) solution to (1.1), the following holds:

(i) either there exists a constant C > 0 such that ‖u‖∞ ≤ C, where C is independent of
the solution u,

(ii) either for any ε > 0 there exists a constant C > 0 such that

h
(‖u‖∞

) ≤ Cε

(
1 + ‖u‖p∗

) (p∗
μ−p)(B+ε)

,

where h is defined by (1.9),

B :=

⎧
⎪⎨

⎪⎩

p∗
μ − 1

p∗
N/p

= 1 + p(1 − μ)

(p − 1)N
, if μ ∈ (0, 1) ∩ (0, p2/N ],

1, if μ ∈ [1, p2/N ],
(1.11)

and C depends only on ε, c0 (defined in (1.7)), μ, N , and �, and it is independent of
the solution u.
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As an immediate consequence of Theorem 1.6, and Theorem 1.7, as soon as we have a
universal a priori L p∗

- norm for weak solutions to (1.1) in W 1,p
0 (�), then solutions are a

priori universally bounded in the L∞- norm.
This results hold for positive, negative and changing sign non-linearities, and also for

positive, negative and changing sign solutions. The techniques and ideas introduced in [28]
are robust enough to be used for proving analogues results in other non-linear problems.
Here we present the work for the p-Laplacian. The work for nonlinear boundary conditions
is actually in preparation by Chhetri, Mavinga, and the author.

This paper is organized in the following way. Section2 collects some well known results.
In Sect. 3, we prove Theorem 1.6, using Gagliardo–Nirenberg interpolation inequality. In
Sect. 4, we prove Theorem 1.7. It yields on the Caffarelli–Kohn–Nirenberg interpolation
inequality, which is written in Appendix A, by the sake of completeness.

2 Preliminaries and known results

2.1 Gradient Regularity

We are going to use the following result about the summability of the gradient for solutions
to equations involving the p-Laplacian operator.

Theorem 2.1 (Gradient Regularity) Let � be a smooth bounded domain in R
N , N ≥ 2, and

let u ∈ W 1,p
0 (�), 1 < p < ∞, be a solution to the problem

{
−�p(u) = g in �

u = 0 on ∂�,

with g ∈ Lq(�). We assume that
{
1 < q < ∞ if p ≥ N ,

(p∗)′ ≤ q < ∞ if 1 < p < N .

Here p∗ = N p
N−p is the critical exponent for Sobolev embedding, and (p∗)′ = p∗

p∗−1 =
N p

N p−N+p , is its conjugate exponent.

(i) If q < N, then ‖∇u‖Lq∗(p−1)(�) ≤ C‖g‖
1

(p−1)
Lq (�)

(ii) If q ≥ N, then ‖∇u‖Lσ (�) ≤ C‖g‖
1

(p−1)
Lq (�) for any σ < ∞.

Here C is a constant that depends on p, N , q.

The previous theorem follows from different results proved in several papers (see [2, 5,
10, 16, 17, 21, 25], the survey [11], and the references therein), where more general situations
are also considered.

2.2 Improved regularity of the weak solutions

We first collect a regularity Lemma for any weak solution to (1.1) with a non-linearity of
sub-critical growth, in fact weak solutions in W 1,p

0 (�) are in Lq for any finite q ≥ 1, see
[30, Theorem 2.1, Theorem 2.2].
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Lemma 2.2 (Improved regularity) Assume that u ∈ W 1,p
0 (�) weakly solves (1.1) for a

Carathéodory non-linearity f : �̄×R → R with sub-critical growth, satisfying either (H0),
either (H0)’ with μ ≤ p2/N, (see (1.3)–(1.4) or (1.5)–(1.6) respectively).

Then, u ∈ Lq(�) for any 1 ≤ q < ∞. Moreover, u ∈ L∞(�).

Proof We first adapt to the p-Laplacian the technique used in [15] (based in Brezis–Kato,
see [4]) to get the Lq estimates for any finite q ≥ 1. Let u be a weak solution to (1.1). For
t > 0, λ > 0, define

ϕ = ϕt,λ := u min
{|u|2t , λ2

}
,

and

ψ = ψt,λ := u
(
min

{|u|2t , λ2
}) 1

p
.

We observe that

|u|p−1|ϕ| = |ψ |p, (2.1)

and that ϕ,ψ ∈ W 1,p
0 (�) since u ∈ W 1,p

0 (�), and ϕ, ψ, ∇ϕ, ∇ψ ∈ L p(�). Indeed,

∇(
min{|u|2t , λ2}) =

⎧
⎨

⎩

2t u|u|2t−2∇u; |u|t < λ

0; |u|t > λ,

(2.2)

and

∇
((

min
{|u|2t , λ2

}) 1
p
)

=

⎧
⎪⎨

⎪⎩

2t
p u|u| 2t

p −2∇u; |u|t < λ

0; |u|t > λ,

(2.3)

so ∇ϕ is given by

∇ϕ =
⎧
⎨

⎩

(1 + 2t)|u|2t∇u; |u|t ≤ λ,

λ2∇u; |u|t > λ,

(2.4)

and ∇ψ by

∇ψ =

⎧
⎪⎨

⎪⎩

(1 + 2t
p )|u| 2t

p ∇u; |u|t ≤ λ,

λ
2
p ∇u; |u|t > λ.

(2.5)

In particular
∫

�

|∇ϕ|p = (1 + 2t)p
∫

�∩{|u|t <λ}
|u|2tp|∇u|p + λ2p

∫

�∩{|u|t >λ}
|∇u|p

≤ (1 + 2t)p λ2p
∫

�

|∇u|p < +∞ ,

so, for each t > 0, λ > 0 fixed, ϕ = ϕt,λ ∈ W 1,p
0 (�). Likewise

∫

�

|∇ψ |p =
(
1 + 2t

p

)p
∫

�∩{|u|t <λ}
|u|2t |∇u|p + λ2

∫

�∩{|u|t >λ}
|∇u|p < +∞,
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and, for each t > 0, λ > 0 fixed, ψ = ψt,λ ∈ W 1,p
0 (�).

Now, using (2.4), we get
∫

�

|∇u|p−2∇u · ∇ϕ = (1 + 2t)
∫

�∩{|u|t <λ}
|u|2t |∇u|p + λ2

∫

�∩{|u|t >λ}
|∇u|p,

hence
∫

�

|∇ψt,λ|p ≤ C
∫

�

|∇u|p−2∇u · ∇ϕt,λ, (2.6)

for C = C(t, p) := max
{
1,

(
1+ 2t

p

)p

1+2t

}
. Now, using Sobolev embeddings on the previous

inequality, and testing the equation −�pu = f (x, u) with ϕ, we can write

‖ψ‖ p
p∗ ≤ Ct

∫

�

f (x, u)ϕ,

where Ct is a uniform constant depending on t, p, N , and �, but independent of λ.
(i) We start assuming (H0), see (1.3)–(1.4). By sub-criticality, (see (1.4)), for any ε > 0,

there exists s′
ε such that

| f (x, s)| ≤ ε |a(x)| |s|p∗
N/r −1 if s ≥ s′

ε,

so, for some constant C1 > 0 depending on ε but independent of λ, we get that

‖ψ‖ p
p∗ ≤ Ct

(
C1 + ε

∫

�

|a(x)| |u|p∗
N/r −1|ϕ|

)

= Ct + εCt

∫

�

|a(x)| |u|p∗
N/r −p|ψ |p,

where we have used (2.1). By Hölder’s inequality with exponents r , Nr
pr−N , and p∗

p (we

observe that 1
r + pr−N

Nr + p
p∗ = 1

r + p
N − 1

r + 1 − p
N = 1), and taking into account that

(
p∗

N/r − p
)

Nr
pr−N = p∗, we get that

‖ψ‖ p
p∗ ≤ Ct + εCt‖a‖r

(∫

�

(
|u|p∗

N/r −p
) Nr

pr−N
) pr−N

Nr

‖ψ‖ p
p∗

= Ct + εCt‖a‖r

(∫

�

|u|p∗
) pr−N

Nr ‖ψ‖ p
p∗

= Ct + εCt‖a‖r ‖u‖p∗
N/r −p

p∗ ‖ψ‖ p
p∗ .

Since u ∈ W 1,p
0 (�), we have that ‖u‖p∗ is bounded. Now, taking ε small, for any fixed

0 < t < ∞, we get that, ‖ψt,λ‖p∗ is bounded with a bound depending on t , but independent

of λ. Letting λ → ∞, we deduce that
∫
�

|u| p+2t
p p∗

is bounded for any fixed 0 < t < ∞.
Consequently,

∫
�

|u|q is bounded for any fixed q > p∗ (and since � is bounded in fact for
any q ∈ [1,∞)).

Finally, under (H0), r > N/p, and so r∗(p − 1) > N . Hence, combining the above
estimates, with the gradient regularity of Theorem 2.1, and using Sobolev embeddings, we
deduce that u ∈ L∞(�).
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(ii) We now assume (H0)’ with μ ≤ p2/N , see (1.5)–(1.6). By sub-criticality, (see (1.6)),
for any ε > 0, there exists sε such that

| f (x, s)| ≤ ε |x |−μ|s|p∗
μ−1 if s ≥ sε,

so that denoting by C1 a constant depending on ε but independent of λ, using (2.1), and by
Hölder’s inequality with exponents p∗

p∗−p ,
p∗
p , we get that

‖ψ‖ p
p∗ ≤ Ct

(
C1 + ε

∫

�

|x |−μ|u|p∗
μ−1|ϕ| dx

)

= Ct + εCt

∫

�

|x |−μ|u|p∗
μ−p|ψ |p dx

≤ Ct + εCt

(∫

�

(
|x |−μ|u|p∗

μ−p
) p∗

p∗−p

) p∗−p
p∗ (∫

�

|ψ |p∗
) p

p∗

= Ct + εCt
∥
∥|x |−γ u

∥
∥p∗

μ−p
ρ

‖ψ‖p
p∗ ,

where γ := μ
p∗
μ−p , and ρ := (p∗

μ−p)p∗
p∗−p .

Now, since Caffarelli–Kohn–Nirenberg interpolation inequality, (see (A.12)–(A.13))
∥∥|x |−γ u

∥∥
ρ

≤ C ‖∇u‖p, (2.7)

where

1

ρ
− γ

N
= 1

p∗ , and 0 < γ ≤ 1, (2.8)

which trivially holds for any μ ≤ p2/N . Then, the above can be written as

‖ψ‖p
p∗ ≤ Ct + εCt ‖∇u‖ p∗

μ−p
p ‖ψ‖p

p∗

Since u ∈ W 1,p
0 (�), we have that ‖∇u‖p is bounded. Now, taking ε small, for any fixed

0 < t < ∞we get that ‖ψt,λ‖p∗ is bounded with a bound independent of λ. Letting λ → ∞,

we deduce that
∫
�

|u| p+2t
p p∗

is bounded, for any fixed 0 < t < ∞. Consequently,
∫
�

|u|q is
bounded for any fixed q > p∗ (and since � is bounded in fact for any q ∈ [1,∞)).

Finally, under hypothesis (H0)’,μ < p, and so
(

N
μ

)∗
(p−1) > N . Hence, combining the

above estimates, with the gradient regularity of Theorem 2.1, and using Sobolev embeddings,
we deduce that u ∈ L∞(�).

3 Estimates of the L∞-norm of the solutions to (1.1) in presence of a
Carathéodory non-linearity

Under hypothesis (H0)-(H1), we establish an estimate for the function h applied to the
L∞(�)-norm of any u ∈ W 1,p

0 (�) solution to (1.1), in terms of their L p∗
(�)-norm. From

now on, C denotes several constants that may change from line to line, and are independent
of u.
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3.1 Proof of Theorem 1.6

The arguments of the proof use Gagliardo–Nirenberg interpolation inequality (see [27]), and
are inspired in the equivalence between uniform L p∗

(�) a priori bounds and uniform L∞(�)

a priori bounds for solutions to subcritical elliptic equations, see [9, Theorem 1.2] for the
quasi-linear case and f = f (u), and [24, Theorem 1.3] for the p-Laplacian and f = f (x, u).

We first use elliptic regularity and Sobolev embeddings, and next, we invoke the
Gagliardo–Nirenberg interpolation inequality (see [27]).

Proof Let {uk} ⊂ W 1,p
0 (�) be any sequence of weak solutions to (1.1). Since Lemma 2.2,

in fact {uk} ⊂ W 1,p
0 (�) ∩ L∞(�). If ‖uk‖∞ ≤ C, then (i) holds. Now, we argue on the

contrary, assuming that there exists a sequence ‖uk‖∞ → +∞ as k → ∞.

We split the proof in two steps. Firstly, we write an W 1,q∗(p−1) estimate for q ∈(
N/p,min{r , N }), and observe that q∗(p − 1) > N . Secondly, we invoke the Gagliardo–
Nirenberg interpolation inequality for the L∞-norm in terms of its W 1,q∗(p−1)-norm and its
L p∗

-norm.
Step 1. W 1,q∗(p−1) estimates for q ∈ (

N/p,min{r , N }).
Let us denote by

Mk := max
{

f̃
( − ‖uk‖∞

)
, f̃

(‖uk‖∞
)} ≥ 1

2c0
max[−‖uk‖∞,‖uk‖∞] f̃ , (3.1)

where the inequality holds by hypothesis (H1), see (1.7).
Let us take q in the interval (N/p, N ) ∩ (N/p, r). Growth hypothesis (H0)(see (1.3)–

(1.4)), hypothesis (H1) (see (1.7)), and Hölder inequality, yield the following
∫

�

∣∣ f
(
x, uk(x)

)∣∣q
dx ≤

∫

�

|a(x)|q
(

f̃
(
uk(x)

))q
dx

=
∫

�

|a(x)|q
(

f̃
(
uk(x)

))t (
f̃
(
uk(x)

))q−t
dx

≤ C

[∫

�

|a(x)|q
(

f̃
(
uk(x)

))t
dx

]
M q−t

k

≤ C

(∫

�

|a(x)|qs dx

) 1
s
(∫

�

(
f̃
(
uk(x)

))ts′
dx

) 1
s′

M q−t
k

≤ C‖a‖q
r

(
‖ f̃ (uk)‖ p∗

p∗
N/r −1

)t
M q−t

k , (3.2)

where 1
s + 1

s′ = 1, qs = r , C = cq−t
0 (for c0 defined in (1.7)), and ts′ = p∗

p∗
N/r −1 , so

t := p∗

p∗
N/r − 1

(
1 − q

r

)
< q (3.3)

⇐⇒ 1

q
− 1

r
<

p∗
N/r − 1

p∗ = 1 − 1

r
− 1

p
+ 1

N

⇐⇒ 1

q
< 1 − 1

p
+ 1

N
⇐⇒ 1

q
< 1 − 1

p∗ = 1

(p∗)′
�

since p/N < 1 − 1
p∗ ⇐⇒ p < N�, and q > N/p > (p∗)′.
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Since the gradient regularity for the p-Laplacian (see Theorem 2.1) we have that

‖∇uk‖Lq∗(p−1)(�) ≤ C
∥
∥ f

(·, uk(·)
)∥∥

1
p−1

q , (3.4)

where 1/q∗ = 1/q − 1/N , and C = C(c0, N , p, q, |�|) and it is independent of u.

Now, substituting (3.2) into (3.4)

‖∇uk‖Lq∗(p−1)(�) ≤ C

(

‖a‖r

(
‖ f̃ (uk)‖ p∗

p∗
N/r −1

) t
q

M
1− t

q
k

) 1
p−1

,

Step 2. Gagliardo–Nirenberg interpolation inequality.
Observe that since q > N/p, then q∗(p − 1) > N . Thanks to the Gagliardo–Nirenberg
interpolation inequality, there exists a constant C = C(N , q, |�|) such that

‖uk‖∞ ≤ C‖∇uk‖σ
q∗(p−1) ‖uk‖1−σ

p∗

where

1 − σ

p∗ = σ

(
1

N
− 1

q∗(p − 1)

)

= σ

p − 1

(
p − 1

N
− 1

q
+ 1

N

)
= σ

p − 1

(
p

N
− 1

q

)

= σ

p − 1

[
1 − 1

q
− p

(
1

p
− 1

N

)]
= σ

(p − 1)p∗
(

p∗
N/q − p

)
. (3.5)

Hence

‖uk‖∞ ≤ C

[

‖a‖r

(
‖ f̃ (uk)‖ p∗

p∗
N/r −1

) t
q

M
1− t

q
k

] σ
p−1

‖uk‖1−σ
p∗ , (3.6)

where C = C(c0, r , N , q, |�|).
From definition of Mk (see (3.1)), and definition of h (see (1.8)), we deduce that

Mk = ‖uk‖ p∗
N/r −1

∞
h
(‖uk‖∞

) .

From (3.5)

1

σ
= 1 + 1

p − 1

[
p∗

N/q − p
]

= 1

p − 1

(
p∗

N/q − 1
)

. (3.7)

Moreover, since definition of t (see (3.3)), and definition of p∗
N/r (see (1.2)

1 − t

q
=

p∗ (
1 − 1

r

) − 1 − p∗
(
1
q − 1

r

)

p∗
N/r − 1

= p∗
N/q − 1

p∗
N/r − 1

, (3.8)

which, joint with (3.7), yield
[
1 − t

q

]
σ

p − 1
(p∗

N/r − 1) = 1.
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Now (3.6) can be rewritten as

h
(‖uk‖∞

) (1− t
q ) σ

p−1 ≤ C

[

‖a‖r

(
‖ f̃ (uk)‖ p∗

p∗
N/r −1

) t
q

] σ
p−1

‖uk‖1−σ
p∗ ,

or equivalently

h
(‖uk‖∞

) ≤ C‖a‖ θ
r

(
‖ f̃ (uk)‖ p∗

p∗
N/r −1

)θ−1 ‖uk‖ ϑ
p∗ ,

where

θ := (1 − t/q)−1 = p∗
N/r − 1

p∗
N/q − 1

, (3.9)

ϑ := 1 − σ

σ
(1 − t/q)−1(p − 1) = θ (p∗

N/q − p), (3.10)

see (3.8) and (3.5). Observe that since q < r , then θ > 1. Moreover, since (3.9)

θ − 1 = p∗
N/r − p∗

N/q

p∗
N/q − 1

. (3.11)

Furthermore, from sub-criticality, see (1.4)

∫

�

| f̃ (uk)|
p∗

p∗
N/r −1 ≤ C

(
1 +

∫

�

|uk |p∗
dx

)
,

so

‖ f̃ (uk)‖ p∗
p∗

N/r −1
≤ C

(
1 + ‖uk‖p∗

N/r −1

p∗

)
.

Consequently

h
(‖uk‖∞

) ≤ C‖a‖ θ
r

(
1 + ‖uk‖�

p∗
)
,

with

� := (p∗
N/r − 1)(θ − 1) + ϑ = (p∗

N/r − p)θ,

where we have used (3.11), (3.10), and (3.9).
Fixed N > p and r > N/p, the function q → θ = θ(q) for q ∈ (

N/p,min{r , N }), is
decreasing, so

inf
q∈(N/p,min{r ,N }) θ(q) = θ

(
min{r , N }) = A :=

⎧
⎨

⎩

1, if r ≤ N ,
p∗

N/r −1

p∗
N/p

, if r > N .

Finally, and since the infimum is not attained in
(
N/p,min{r , N }), for any ε > 0, there

exists a constant C > 0 such that

h
(‖uk‖∞

) ≤ C ‖a‖ A+ε
r

(
1 + ‖uk‖ (p∗

N/r −p)(A+ε)

p∗
)
,

where C = C(ε, c0, r , N , |�|), ending the proof.
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Weend this sectionwith an immediate corollary of Theorem1.6: any sequence of solutions
in W 1,p

0 (�), uniformly bounded in the L p∗
(�)-norm, is also uniformly bounded in the

L∞(�)-norm.

Corollary 3.1 Let f : � × R → R be a Carathéodory function satisfying (H0)–(H1).
Let {uk} ⊂ W 1,p

0 (�) be any sequence of solutions to (1.1) such that there exists a constant
C0 > 0 satisfying

‖uk‖p∗ ≤ C0.

Then, there exists a constant C > 0 such that

‖uk‖∞ ≤ C . (3.12)

Proof We reason by contradiction, assuming that (3.12) does not hold. So, at least for a
sub-sequence again denoted as uk , ‖uk‖∞ → ∞ as k → ∞. Now part (ii) of the Theorem
1.6 implies that

h
(‖uk‖∞

) ≤ C . (3.13)

From hypothesis (H0)(see in particular (1.10)), for any ε > 0 there exists s1 > 0 such that
h(s) ≥ 1/ε for any s ≥ s1, and so h

(‖uk‖∞
) ≥ 1/ε for any k big enough. This contradicts

(3.13), ending the proof.

4 Estimates of the L∞-norm of the solutions to (1.1) in presence of
radial singular weights

We start this section with their corresponding immediate corollary of Theorem 1.7: any
sequence of solutions in W 1,p

0 (�), uniformly bounded in the L p∗
(�)-norm, is also uniformly

bounded in the L∞(�)-norm. Their proof is identical to that of Corollary 3.1, we omit it.

Corollary 4.1 Let f : � × R → R be a Carathéodory function satisfying (H0)’–(H1).
Let {uk} ⊂ W 1,p

0 (�) be any sequence of solutions to (1.1) such that there exists a constant
C0 > 0 satisfying

‖uk‖p∗ ≤ C0.

Then, there exists a constant C > 0 such that

‖uk‖∞ ≤ C .

4.1 Proof of Theorem 1.7

Proof Let {uk} ⊂ W 1,p
0 (�) be any sequence of solutions to (1.1). Since Lemma 2.2, {uk} ⊂

W 1,p
0 (�) ∩ L∞(�). If ‖uk‖∞ ≤ C, then (i) holds.

Now, we argue on the contrary, assuming that there exists a sequence {uk} ⊂ W 1,p
0 (�) of

solutions to (1.1), such that ‖uk‖∞ → +∞ as k → ∞.

By Morrey’s Theorem (see [3, Theorem 9.12]), observe that also

‖∇uk‖s → +∞ as k → ∞, (4.1)

for any s > N .
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Step 1. W 1,q∗(p−1) estimates for q ∈ (
N/p,min{N , N/μ}).

As in the proof of Theorem (1.6), let us denote by

Mk := max
{

f̃
( − ‖uk‖∞

)
, f̃

(‖uk‖∞
)} ≥ 1

2c0
max[−‖uk‖∞,‖uk‖∞] f̃ , (4.2)

where the inequality is due to hypothesis (H1), see (1.7).
Let us take q in the interval (N/p, N ) ∩ (N/p, N/μ). Using growth hypothesis (H0)’

(see (1.5)), hypothesis (H1) (see (1.7)), and Hölder inequality, we deduce
∫

�

∣
∣ f

(
x, uk(x)

)∣∣q
dx ≤

∫

�

|x |−μq
(

f̃
(
uk(x)

))q
dx

=
∫

�

|x |−μq
(

f̃
(
uk(x)

)) t
p∗
μ−1

(
f̃
(
uk(x)

))q− t
p∗
μ−1 dx

≤ C

[∫

�

|x |−μq (
1 + uk(x)t ) dx

]
M

q− t
p∗
μ−1

k

≤ C
(
1 + ∣

∣|x |−γ uk
∣
∣ t
t

)
M

q− t
p∗
μ−1

k ,

where γ = μq
t , t ∈ (

0, q
(

p∗
μ − 1

))
, C = c

q− t
p∗
μ−1

0 (for c0 defined in (1.7)), and where Mk is
defined by (4.2).

Since elliptic regularity see Theorem 2.1, we have that

‖∇uk‖q∗(p−1) ≤ C

[(
1 + ∣∣|x |−γ uk

∣∣ t
t

) 1
q

M
1− t

q(p∗
μ−1)

k

] 1
p−1

, (4.3)

where 1/q∗ = 1/q − 1/N (since q > N/p, then q∗(p − 1) > N ), and C = C(N , q, |�|).
Step 2. Caffarelli–Kohn–Nirenberg interpolation inequality.

Since the Caffarelli–Kohn–Nirenberg interpolation inequality for singular weights (see [6],
see also Theorem A.1, and Corollary A.2(ii)), there exists a constant C > 0 depending on
the parameters N , q, μ, θ ∈ [0, 1] and t , such that

∣∣|x |−γ uk
∣∣
t ≤ C‖∇uk‖θ

q∗(p−1) ‖uk‖1−θ
p∗ , (4.4)

where

0 <
1

t
− μq

Nt
= θ

(
1

q∗(p − 1)
− 1

N

)
+ (1 − θ)

1

p∗

= 1

p∗ − θ

(
1

p
− 1

q∗(p − 1)

)

= 1

p∗ − θ

p − 1

(
1 − 1

p
− 1

q
+ 1

N

)
= 1

p∗ − θ(p∗
N/q − 1)

(p − 1)p∗ . (4.5)

Observe that since t < q(p∗
μ − 1), then the r.h.s. of (4.5) is bounded from below,

1

p∗ − θ

(p − 1)p∗ (p∗
N/q − 1) = 1

t

(
1 − μq

N

)
>

1

p∗
μ − 1

(
1

q
− μ

N

)
,

so,

θ(p∗
N/q − 1)

(p − 1)p∗ <
p∗
μ − 1 − p∗( 1q − μ

N )

p∗(p∗
μ − 1)

= p∗
N/q − 1

p∗(p∗
μ − 1)

,
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and we get an upper bound for θ , hence 0 < θ <
p−1

p∗
μ−1 < 1.

Substituting now (4.4) into (4.3) we can write

‖∇uk‖q∗(p−1) ≤ C

[
(
1 + ‖∇uk‖θ t

q∗(p−1) ‖uk‖(1−θ)t
p∗

) 1
q

M
1− t

q(p∗
μ−1)

k

] 1
p−1

.

Now, dividing by ‖∇uk‖ θ t/q(p−1)
q∗(p−1) and using (4.1) we obtain

(
‖∇uk‖q∗(p−1)

)1− θ t
q(p−1) ≤ C

[
(
1 + ‖uk‖

(1−θ)t
q

p∗
)

M
1− t

q(p∗
μ−1)

k

] 1
p−1

.

Let us check that

1 − θ t

q(p − 1)
> 0 for any t < q

(
p∗
μ − 1

)
. (4.6)

Indeed, observe first that (4.5) is equivalent to

θ =
1
p∗ − 1

t + μq
Nt

1
p − 1

q∗(p−1)

(4.7)

hence

θ t

q(p − 1)
=

1
q

(
t

p∗ − 1
)

+ μ
N

p−1
p − 1

q∗
=

1
q

(
t

p∗ − 1
)

+ μ
N

1 − 1
q − 1

p∗
(4.8)

consequently

θ t

q(p − 1)
< 1 ⇐⇒ 1

q

(
t

p∗ − 1

)
+ μ

N
< 1 − 1

q
− 1

p∗

⇐⇒ 1

q

t

p∗ < 1 − 1

p∗ − μ

N

⇐⇒ t

q
< p∗ (

1 − μ

N

)
− 1 = p∗

μ − 1

⇐⇒ t < q
(

p∗
μ − 1

)
,

so, (4.6) holds.
Consequently,

‖∇uk‖q∗(p−1) ≤ C
(
1 + ‖uk‖A0

p∗
)

M B0
k , (4.9)

where

A0 :=
(1−θ)t
q(p−1)

1 − θ t
q(p−1)

, B0 :=
(
1 − t

q(p∗
μ−1)

)
1

p−1

1 − θ t
q(p−1)

.

Step 3. Gagliardo–Nirenberg interpolation inequality.
Thanks to the Gagliardo–Nirenberg interpolation inequality (see [27]), there exists a constant
C = C(N , q, |�|) such that

‖uk‖∞ ≤ C‖∇uk‖σ
q∗(p−1) ‖uk‖1−σ

p∗ , (4.10)
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where

1 − σ

p∗ = σ

[
1

N
− 1

q∗(p − 1)

]
. (4.11)

Hence, substituting (4.9) into (4.10) we deduce

‖uk‖∞ ≤ C
(
1 + ‖uk‖ σ A0

p∗
)

M σ B0
k ‖uk‖ 1−σ

p∗ . (4.12)

From definition of Mk (see (3.1)), and of h (see (1.9)), we obtain

Mk = ‖uk‖ p∗
μ−1

∞
h
(‖uk‖∞

) .

Now we check that

σ B0 (p∗
μ − 1) = 1. (4.13)

Indeed, from (4.11)

1

σ
= 1 + p∗

(
1

N
− 1

q∗(p − 1)

)
= p∗

p
− p∗

q∗(p − 1)

= p∗

p − 1

[
1 − 1

p
− 1

q
+ 1

N

]
= 1

p − 1

(
p∗

N/q − 1
)
. (4.14)

From (4.8), we deduce

1 − θ t

q(p − 1)
=

1 − 1
q − 1

p∗ − 1
q

(
t

p∗ − 1
)

− μ
N

1 − 1
q − 1

p∗

=
(
1 − μ

N

) − 1
p∗ − t

qp∗

1 − 1
q − 1

p∗
= p∗

μ − 1 − t
q

p∗
(
1 − 1

q

)
− 1

= p∗
μ − 1 − t

q

p∗
N/q − 1

. (4.15)

Moreover, since (4.15),
(

1 − t

q(p∗
μ − 1)

)
(

p∗
μ − 1

) 1
(
1 − θ t

q(p−1)

)

=
(

p∗
μ − 1 − t

q

)
1

(
1 − θ t

q(p−1)

) = p∗
N/q − 1.

Hence

B0 (p∗
μ − 1) = p∗

N/q − 1

p − 1
. (4.16)

Taking into account (4.14) and (4.16), we deduce that (4.13) holds.
Consequently, we can rewrite (4.12) in the following way

h
(‖uk‖∞

) 1
p∗
μ−1 ≤ C

(
1 + ‖uk‖ σ A0

p∗
)

‖uk‖ 1−σ
p∗ ,

then

h
(‖uk‖∞

) ≤ C
(
1 + ‖uk‖ �

p∗
)
,
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with

� := (
p∗
μ − 1

)
[

1 + σ

t
q(p−1) − 1

1 − θ t
q(p−1)

]

.

Since (4.14)–(4.15), σ
(
1 − θ t

q(p−1)

)−1 = (p − 1) (p∗
μ − 1 − t

q )−1, and substituting it

into the above equation we obtain

� = (
p∗
μ − 1

)
(

p∗
μ − p

p∗
μ − 1 − t

q

)

.

Fixed p < N and μ ∈ (0, p), the function (t, q) → � = �(t, q) for (t, q) ∈ (
0, q(p∗

μ −
1)

) × (
N/p,min{N , N/μ}), is increasing in t and decreasing in q .

If μ ∈ [1, p), then min{N , N/μ} = N/μ. Equation (4.5) with q = qk = (1 −
1/k)N/μ → N/μ, t = tk = 2p∗

k → 0 and θ = θk = p−1
2(p∗

N/qk
−1) → p−1

2(p∗
μ−1) is satis-

fied. Hence, when μ ∈ [1, p),

p∗
μ − p ≤ inf

t∈
(
0,(p∗

μ−1)q
)
, q∈

(
N
p , N

μ

) �(t, q) ≤ �
(
tk, qk

) → p∗
μ − p.

On the other hand, for μ ∈ (0, 1), the min{N , N/μ} = N . For any εk → 0, equation
(4.5) with q = qk = N (1 − εk) → N , and t = tk → t0 ∈ [0, (p∗

μ − 1)N ], yields θ =
θk = (p−1)p∗

p∗
N/qk

−1

[
1
p∗ − 1

tk

(
1 − μ(1 − 1/k)

)] → p
[

1
p∗ − 1

t0
(1 − μ)

]
≥ 0, so t0 ≥ p∗(1 − μ).

Hence, when μ ∈ (0, 1),

inf
t∈(p∗(1−μ),(p∗

μ−1)N ), q∈
(

N
p ,N

)�(t, q) = �(p∗(1 − μ), N ) = (p∗
μ − p)B,

where B is defined by (1.11).
Since the infimum is not attained, for any ε > 0, there exists a constant C =

C(ε, c0, μ, N ,�) such that

h
(‖uk‖∞

) ≤ C
(
1 + ‖uk‖ (p∗

μ−p)(B+ε)

p∗
)
,

which ends the proof.
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Appendix A. The Caffarelli–Kohn–Nirenberg interpolation inequality

Theorem A.1 Let s, q, t, α, β, σ and θ be fixed real numbers (parameters) satisfying

s, q ≥ 1, t > 0, 0 ≤ θ ≤ 1, (A.1)
1

s
+ α

N
,
1

q
+ β

N
,
1

t
− γ

N
> 0, (A.2)

where

γ = −[
θσ + (1 − θ)β

]
. (A.3)

Then, there exists a positive constant C > 0 such that for all u ∈ C∞
c (RN ):

∣
∣|x |−γ u

∣
∣
Lt (RN )

≤ C
∥
∥|x |α |∇u|∥∥ θ

Ls (RN )

∥
∥|x |βu

∥
∥ 1−θ

Lq (RN )
, (A.4)

where

1

t
− γ

N
= θ

(
1

s
+ α − 1

N

)
+ (1 − θ)

(
1

q
+ β

N

)
, (A.5)

0 ≤ α − σ if θ > 0, (A.6)

and

α − σ ≤ 1 if θ > 0 and
1

s
+ α − 1

N
= 1

t
− γ

N
. (A.7)

Moreover, on any compact set in parameter space in which (A.1), (A.2), (A.5) and 0 ≤
α − σ ≤ 1 hold, the constant C is bounded.

See [6] for a proof.

Corollary A.2 Suppose that � ⊂ R
N is of class C1 with ∂� bounded. Let s, q, t, σ, θ be

fixed real parameters satisfying (A.1)–(A.3) particularized for α = β = 0 (specifically
1 ≤ s, q < ∞, 1

t >
γ
N where γ = (−σ)θ , θ ∈ [0, 1]).

Then,
(i) there exists a positive constant C = C(�, N , s, q, t, σ, θ) such that for all u ∈

W 1,p(�) ∩ Lq(�):
∣∣|x |−γ u

∣∣
Lt (�)

≤ C
∥∥∇u

∥∥ θ

Ls (�)

∥∥u
∥∥ 1−θ

Lq (�)
, (A.8)

where

1

t
− γ

N
= θ

(
1

s
− 1

N

)
+ (1 − θ)

1

q
, (A.9)

σ ≤ 0 if θ > 0, (A.10)

and

0 ≤ −σ ≤ 1 if θ > 0, and
1

s
− 1

N
= 1

t
− γ

N
. (A.11)

In particular, for all u ∈ W 1,p(�) with p �= 2, p < N,

|x |−μ|u|p∗
μ−2 ∈ L

N
p (�).
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(ii) Moreover, if s = p, q = p∗, and σ < 0 (so γ > 0), there exists a positive constant
C = C(�, N , p, t, σ ) such that for all u ∈ W 1,p(�):

∣
∣|x |−γ u

∣
∣
Lt (�)

≤ C
∥
∥∇u

∥
∥

L p(�)
(A.12)

where

1

t
− γ

N
= 1

p
− 1

N
, and 0 < γ ≤ 1. (A.13)

In particular, for all u ∈ W 1,p(�)

| f (x, u)| ≤ C
(
1 + |x |−μ|u|p∗

μ−1) ∈ L(p∗)′(�), if μ ≤ p − 1 + p

N
. (A.14)

(iii) Besides, for all u ∈ W 1,q(�) with q > p:
∣
∣|x |−γ u

∣
∣
Lt (�)

≤ C
∥
∥∇u

∥
∥

L p(�)
,

where

1

t
− γ

N
= 1

q
− 1

N
. (A.15)

In particular, for all u ∈ W 1,q(�) with q > p,

(iii.a) f (x, u) ≤ C
(
1 + |x |−μ|u|p∗

μ−1) ∈ L(p∗)′(�), (A.16)

and

(iii.b) |x |−μ|u|p∗
μ−2 ∈ L

N
p (�). (A.17)

Proof (i) The proof can be obtained using that C∞
c (RN ) is dense in L p(RN ) for any 1 ≤

p < ∞, and the extension operator, P : W 1,p(�) → W 1,p(RN ), see [3, Theorem 9.7].
Moreover, (A.8)–(A.11) is a direct consequence of (A.4)–(A.7).

In particular, for all u ∈ W 1,p(�) with p �= 2, p < N , choosing now t = (p∗
μ − 2) N

p ,

θ = 1, and σ = − μ
p∗
μ−2 , we deduce from (A.3) that γ = μ

p∗
μ−2 , hence

1

t
− γ

N
= p − μ

N (p∗
μ − 2)

�= 1

p
− 1

N
when p �= 2, and p < N ,

so (A.14) is accomplished.
(ii) Assume now s = p, q = p∗, and γ > 0. Obviously, if γ = (−σ)θ > 0, then

0 �= θ ∈ (0, 1], and (A.6)–(A.7) imply

0 < (−σ) ≤ 1, so 0 < γ ≤ 1.

In particular, choosing t = (p∗
μ −1)(p∗)′, θ = 1, and σ = − μ

p∗
μ−1 , we deduce from (A.3)

that γ = μ
p∗
μ−1 , hence

1
t − γ

N = 1
p − 1

N , and

γ ≤ 1 ⇐⇒ μ ≤ p − 1 + p

N
.

Consequently, (A.14) holds.
(iii) Assume finally p > 2.
(iii.a) Indeed, choosing t = (p∗

μ − 1)(p∗)′, and γ = μ
p∗
μ−1 , we deduce from (A.15) that

1

t
− γ

N
= 1

p
− 1

N
<

1

p
− 1

N
,
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so (A.7) do not apply.
(iii.b) Choosing now t = (p∗

μ − 2) N
p , and θ = 1, we deduce from (A.13) that γ = μ

p∗
μ−2 ,

so

γ ≤ 1 ⇐⇒ μ ≤ 4/N .
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