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Abstract
We introduce the Boolean algebra of d-semialgebraic (more generally, d-definable) sets
and prove that its Stone space is naturally isomorphic to the Ellis enveloping semigroup
of the Stone space of the Boolean algebra of semialgebraic (definable) sets. For definably
connected o-minimal groups, we prove that this family agrees with the one of externally
definable sets in the one-dimensional case. Nonetheless, we prove that in general these two
families differ, even in the semialgebraic case over the real algebraic numbers. On the other
hand, in the semialgebraic case we characterise real semialgebraic functions representing
Boolean combinations of d-semialgebraic sets.
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1 Introduction

A recurrent matter in real algebraic geometry is attempting to characterize some properties
of an algebraic or semialgebraic set defined over a parameter set using a simpler set of
parameters. For instance, in [15] (see also [6]) the authors prove that any affine algebraic
variety defined over the real field is homeomorphic to a variety defined over the field Ralg

of real algebraic numbers. They do not achieve this by applying Tarski’s transfer principle,
but instead by producing a deformation of the coefficients. To accomplish this, they consider
sets of the form Z ∩R

n
alg where Z ⊂ R

n is a semialgebraic set defined over R. These sets are
known as externally semialgebraic and constitute the central topic of our paper. For example,
the set
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Xπ := {(x, y) ∈ R
2
alg | y < π · x}.

More generally, one can define the notion of externally semialgebraic set for an arbitrary real
closed field R1. Namely, a subset X of Rn

1 is externally semialgebraic if there exists a larger
real closed field R2 and a semialgebraic subset Z ⊂ Rn

2 such that X = Z ∩ Rn
1 .

The problem that we address in this paper is in a certain sense similar to the one described
above for real closed fields. We analyse whether any externally semialgebraic subset X of Rn

1
can be described in a specific way using a semialgebraic subset from a larger real closed field
R2. More precisely, whether any externally semialgebraic set X ⊂ Rn

1 is d-semialgebraic,
that is, if there exists a semialgebraic subset Z ⊂ Rn

2 defined over R1 and a point a ∈ Rn
2

such that X = (Z − a) ∩ Rn
1 .

The objective is to prove for n ≥ 2 that the collection of sets formed by Boolean combina-
tions of d-semialgebraic sets of Rn

1 is different from the collection of externally semialgebraic
sets of Rn

1 . In fact, we show that Xπ above is not a Boolean combination of d-semialgebraic
sets. This is a reasonable statement, since multiplication by π should not be possible to code
just via multiplication by real algebraic numbers and translations by transcendental numbers.

Although the problem can be stated in terms of classical semialgebraic geometry, the
solution relies in model-theoretic tools. So, since the above notions adapt to definable sets,
we shall not only focus on real closed fields and semialgebraic sets, but on arbitrary (o-
minimal) structures and definable sets, which are precisely the semialgebraic ones in the
real algebraic setting. It is worth noticing that the study of externally definable sets in model
theory is a recurrent topic. This goes back to [1] where the authors prove that externally
semialgebraic subsets of a real closed field are precisely finite unions of convex subsets, a
crucial property in our work.

The introductionofd-definable sets and themotivation to show that these twocollections of
sets are not equal comes from the theory of Ellis enveloping semigroups. In his seminal work
[12], Newelski made several connections between model theory and topological dynamics,
which has become an active area of research over the past decade, see for instance [3, 7–9,
17, 18] and [22] for some further reading.

We briefly recall Newelski’s construction. Let G be a definable group in a structure M .
The group acts naturally by homeomorphisms on the compact Hausdorff space of types
SG(M) concentrated in G (that is, space of ultrafilters of definable subsets of G). A classical
construction due to Ellis [5] permits to associate to this action the so-called Ellis envelop-
ing semigroup (E(SG(M)), ◦), i.e. a compact Hausdorff topological space equipped with a
semigroup operation which is continuous in the first coordinate. In [12, pp. 68–69], Newelski
gives two abstract conditions to identify the Ellis enveloping semigroup E(SG(M)) with the
Stone space SG(M). Nonetheless, as he points out, these conditions may fail even when G
is the additive group of algebraic real numbers and M = Ralg.

Later on, Newelski [13] observed that to understand the dynamics of the group action
is more convenient to work with externally definable sets, and consider the action of G on
the Stone space SextG (M) of ultrafilters of externally definable sets of M . In this situation,
the semigroup (E(SextG (M)), ◦) turns out to be (SextG (M), ∗) itself, with a well-known model
theoretic operation ∗ called coheir product.

Whilst considering the action on SextG (M) eases the model-theoretic treatment of the Ellis
semigroup, it seems also natural to ask whether E(SextG (M)) � SextG (M) are naturally isomor-
phic to E(SG(M)) as Ellis semigroups. To the best of our knowledge, there is no example in
the literature showing they are different. In fact, the question has been completely neglected,
apart from the aforementioned remark due to Newelski. Hence, the primary objective of our
paper is to demonstrate that SextG (M) and E(SG(M)) are not naturally isomorphic in general.
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In order to achieve this objective, in Sects. 2 and 3 we revisit and refine certain aspects
of the framework established by Newelski in his groundbreaking works [12, 13] and [14],
by studying Ellis semigroups of Stone spaces. As a consequence we obtain the following
characterization:

Theorem A (Corollary 3.4) Let M be an arbitrary structure. The Ellis semigroups SextG (M)

and E(SG(M)) are canonically isomorphic if and only if every externally definable subset
of G(M) is a (positive) Boolean combination of d-definable sets.

In Sect. 4 we then focus in the o-minimal context. Note that if the universe of M is the
(Dedekind complete) real field R then SextG (M) = SG(M). Therefore, to find an example
where SextG (M) is not E(SG(M)) it is natural to consider either M an ℵ0-saturated o-minimal
structure, or M = Ralg. We prove the following result:

Theorem B (Theorems 4.1 and 4.2, Corollary 4.10) Let M be an o-minimal structure and let
G be a definable group. The following hold:

(i) If dim(G) = 1, then (SextG (M), ∗) and (E(SG(M)), ◦) are naturally isomorphic as Ellis
semigroups.

(ii) If M is an ℵ0-saturated expansion of a real closed field and G = (M2,+), then
(SextG (M), ∗) and (E(SG(M)), ◦) are not naturally isomorphic as Ellis semigroups.

(iii) If M is an expansion of the field Ralg and G = (R2
alg,+), then (SextG (M), ∗) and

(E(SG(M)), ◦) are not naturally isomorphic as Ellis semigroups.

In addition, in Remark 4.11 we also construct an example of a definably compact group G
for which (SextG (M), ∗) and (E(SG(M)), ◦) are not naturally isomorphic as Ellis semigroups.

Finally, before finishing the introduction, wemake some comments on the proof of the last
theorem. For the proof of (iii) we establish a general statement (Proposition 4.8) that enables
us to characterize the real semialgebraic functions representing Boolean combinations of
d-semialgebraic sets. Using this proposition, we deduce that Xπ mentioned above is not
a Boolean combination of d-semialgebraic sets. Furthermore, this proposition allows us
to demonstrate that many other externally semialgebraic sets (intuitively, any externally
semialgebraic set described by a semialgebraic function using the product by transcendental
numbers) are also not expressible as such Boolean combinations.

The situation in (ii) is quite different. We prove that a specific externally definable set
is not a Boolean combination of d-definable sets. Although the general technique can be
applied to other externally definable sets, the proof depends on certain bounds calculated for
the specific example we are considering.Moreover, we show there are examples of externally
definable sets that at first sight could seem d-definable, but are not (see Example 4.7).

2 Set-up on Ellis semigroups of Stone spaces

The goal of the section is to give a general framework to study the Ellis enveloping of some
spaces of types. It will be convenient to regard these as Stone spaces. So, we fix a very general
set-up in terms of Boolean algebras following the approach of Newelski [13, Section 1] and
[14, Section 1], see also [4, Section 3].

Definition 2.1 An Ellis semigroup is a semigroup (E, ·) which is a compact Hausdorff topo-
logical space such that · is continuous in the first coordinate, that is, for each y ∈ E the map
x 
→ x · y is continuous.
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A natural example of Ellis semigroup is the Ellis enveloping semigroup. We recall briefly
its construction, see [5]. Suppose that S is a G-flow, i.e. let G be a group with the discrete
topology acting on a compact Hausdorff space S by homeomorphisms. Thus the action is
given by a (continuous) homomorphism G → Homeo(S) ≤ SS with g 
→ �g . The Ellis
enveloping semigroup E(S) is the closure of {�g}g∈G in SS , where SS is equipped with the
product topology.

Fact 2.2 (Ellis) The pair (E(S), ◦) is an Ellis semigroup, where ◦ denotes the composition
of functions.

Now, fix a group G and let A ⊂ P(G) be a Boolean algebra. Consider the Stone space
S(A) of A, which recall is the set of ultrafilters on A. This is a compact Hausdorff totally
disconnected topological space with the Stone topology, i.e. the topology generated by the
family of subsets of the form [X ] = {p ∈ S(A) | X ∈ p} where X is an arbitrary element of
A. For g ∈ G, we write pAg to denote the principal ultrafilter {X ∈ A | g ∈ X} associated to
g.

Suppose that A is left-invariant, that is, it is closed under left-translation by elements of
G. For g ∈ G define �Ag : S(A) → S(A) as

�Ag (q) := {X ∈ A | g−1X ∈ q}.
The inverse of �Ag is clearly �A

g−1 . Thus, each map �Ag is a homeomorphism since for X ∈ A
we have

(�Ag )−1 ([X ]) =
{
q ∈ S(A) | X ∈ �Ag (q)

}
= [g−1X ],

which is a basic open subset of S(A). Therefore S(A) is a G-flow.
For an ultrafilter p ∈ S(A), consider the map

dp : A → P(G), X 
→ dpX := {
g ∈ G | g−1X ∈ p

}
.

This is a homomorphism of Boolean algebras which preserves left-translation. Note that a
priori there is no reason why the image of dp is contained in A.

We recall the following definition from [14].

Definition 2.3 LetA ⊂ P(G) be a left-invariant Boolean algebra. We say thatA is d-closed
if dq X ∈ A for every q ∈ S(A) and X ∈ A.

Remark 2.4 If a left-invariant Boolean algebra A is d-closed, then A is necessarily right-
invariant, i.e. it is closed under right-translation by elements of G. Indeed, in general, given
X ∈ A and h ∈ G we have that

Xh = {
g ∈ G | h−1 ∈ g−1X

} = {
g ∈ G | g−1X ∈ pAh−1

} = dpA
h−1

X . (1)

Thus, assuming that A is d-closed, we see that Xh ∈ A.

We introduce the following notion, which also appears in [10, Section 2.3] in an equivalent
form (see Remark 2.6 below).

Definition 2.5 Given a left-invariant Boolean subalgebra A ⊂ P(G) we define Ad ⊂ P(G)

to be the Boolean subalgebra generated by the sets of the form dpX for p ∈ S(A) and X ∈ A.
Note that by taking h = 1G in the expression (1) of Remark 2.4 we immediately get that

A ⊂ Ad , so A = Ad whenever A is d-closed. Furthermore, we also have the following.
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Remark 2.6 Let A be a left-invariant Boolean algebra.

(1) The Boolean algebra Ad is left-invariant because hdqY = dqhY for any q ∈ S(A),
h ∈ G and Y ∈ A.

(2) IfA ⊂ B are two left-invariant Boolean algebras such that B is d-closed, thenAd ⊂ Bd .
Indeed, given some set X ∈ A ⊂ B and some p ∈ S(A), choose some ultrafilter
q ∈ S(B) such that q|A = p. It then follows that

g ∈ dpX ⇔ g−1X ∈ p ⇔ g−1X ∈ q ⇔ g ∈ dq X ,

showing that dpX = dq X ∈ Bd , as required. In particular, if B is d-closed thenAd ⊂ B.
It follows from (1) and (2) that Ad is the smallest left-invariant d-closed Boolean algebra
containing A. This results has also been proved independently in [10, Section 2.2]. Indeed,
Malinowski defines Ad as the minimal d-closed left-invariant subalgebra of P(G) and then
proves in [10, Fact 2.22] that it is precisely the Boolean algebra generated by the sets dpX
for p ∈ S(A) and X ∈ A.

Next, we will also see that Ad is itself d-closed but before it is convenient to introduce
some further notation.

The following is a mere translation of [13, Lemma 1.5(1)] to this general setting (cf. [4,
Lemma 3.10]). We give the proof for the sake of completeness.

Fact 2.7 Let A ⊂ B be two left-invariant Boolean subalgebras of P(G) such that Ad ⊂ B.
For p ∈ S(B), the map

�Ap : S(A) → S(A), q 
→ �Ap (q) := {
X ∈ A | dq X ∈ p

}

is well-defined and is the limit of (�Ag )g∈G with respect to the ultrafilter p in the pointwise
convergence topology in the space of functions from S(A) to S(A).

Proof Observe first that the set �Ap (q) is well-defined since dq X ∈ Ad ⊂ B and p ∈ S(B).
Furthermore, the set �Ap (q) is an ultrafilter on A. Hence, the map is well-defined. Also, for
g ∈ G observe that �Ag coincides with the map associated to the principal ultrafilter pBg
because

�Ag (q) =
{
X ∈ A | dq X ∈ pBg

}
= {

X ∈ A | g ∈ dq X
} = {

X ∈ A | g−1X ∈ q
}
.

Finally, for an ultrafilter p ∈ S(B) and X ∈ A we have that

lim
g→p

�Ag (q) ∈ [X ] ⇔
{
g ∈ G | �Ag (q) ∈ [X ]

}
∈ p ⇔ {

g ∈ G | g−1X ∈ q
} ∈ p

⇔ dq X ∈ p ⇔ X ∈ �Ap (q) ⇔ �Ap (q) ∈ [X ],
which shows that limg→p �Ag = �Ap . ��

Note that for a left-invariant Boolean algebra A, Fact 2.7 provides a description of the
Ellis semigroup (E(S(A)), ◦) of the G-flow S(A). Indeed, for any B left-invariant Boolean
subalgebra of P(G) with Ad ⊂ B we have that

E(S(A)) =
{
�Ap | p ∈ S(B)

}
=

{
�Ap | p ∈ S(Ad)

}
,

where the second equality holds by considering the restriction map S(B) � S(Ad). Hence-
forth, to easier notation, we omit to write the superscript A in �Ap when there is no possible
confusion.

In addition, Newelski proved [14, Proposition 2.4] (see also Proposition 2.10 below):
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Fact 2.8 Let A ⊂ P(G) be a left-invariant d-closed Boolean subalgebra. We have that
(S(A), ∗) is an Ellis semigroup, where ∗ is defined as p ∗q := �p(q). Furthermore, the map

� : S(A) → E(S(A)), p 
→ �p,

is an isomorphism of Ellis semigroups.

Now we see that Ad is d-closed. So, the result above will hold true for Ad .

Lemma 2.9 The Boolean algebraAd is the smallest left-invariant d-closed Boolean algebra
containing A.

Proof By Remark 2.6, it remains to prove that Ad is d-closed. Since for each p ∈ S(Ad)

the map dp : Ad → P(G) is a homomorphism of Boolean algebras, it suffices to show that
dpX ∈ Ad for arbitrary p ∈ S(Ad) and X = dqY with q ∈ S(A) and Y ∈ A. In that case,
and since �Ap (q) ∈ S(A) by Fact 2.7, we have

g ∈ dpX = dp(dqY ) ⇔ g−1dqY ∈ p ⇔ dqg
−1Y ∈ p

⇔ g−1Y ∈ �Ap (q) ⇔ g ∈ d�Ap (q)Y .

Hence, we deduce that dpX = d�Ap (q)Y belongs to Ad , as desired. ��
As a consequence, it follows fromFact 2.8 that S(Ad) is naturally isomorphic to E(S(Ad))

as Ellis semigroups. Furthermore, an inspection of the original proof in [14, Proposition 2.4]
yields the following. In fact, it explicitly appears in [10, Theorem 2.24] where it is credited
to Newelski.

Proposition 2.10 LetA ⊂ B be two left-invariant Boolean subalgebras of P(G) such that B
is d-closed. The map

� : S(B) → E(S(A)), p 
→ �(p) = �Ap

is an epimorphism of Ellis semigroups. Furthermore, it is an isomorphism when Ad = B.
Proof We first prove that � : S(B) → S(A)S(A) is continuous, where S(A)S(A) is equipped
with the product topology. It suffices to show that themap S(B) → S(A)givenby p 
→ �Ap (q)

is continuous for every q ∈ S(A). So, let X ∈ A, consider the basic open set [X ] and set
U ⊂ S(B) to be its preimage under this map. Note that for p ∈ S(B) we have

p ∈ U ⇔ �Ap (q) ∈ [X ] ⇔ X ∈ �Ap (q) ⇔ dq X ∈ p ⇔ p ∈ [dq X ].
Since dq X ∈ Ad ⊂ B, we deduce that U is a (basic) open set, showing that the map

p 
→ �Ap (q) is continuous, as desired.

Once we have seen that � : S(B) → S(A)S(A) is continuous, we obtain that its image
im(�) is a closed subset of S(A)S(A). So, as clearly �g ∈ im(�) for g ∈ G, we deduce that
E(S(A)) ⊂ im(�). Moreover, we get the equality by Fact 2.7. Therefore, we have shown
that � : S(B) → E(S(A)) is an epimorphism of Ellis semigroups.

For the second part of the statement it is enough to prove that � is injective, as S(Ad) is
compact and E(S(A)) Hausdorff. Let p1, p2 ∈ S(Ad) be two distinct ultrafilters. So, there
is some set Y ∈ Ad such that Y ∈ p1 but Y /∈ p2, which we may assume to be of the form
dq X for some X ∈ A and q ∈ S(A). Note that

Y ∈ pi ⇔ dq X ∈ pi ⇔ X ∈ �Api (q).

So, we obtain �Ap1 �= �Ap2 and hence the map � is injective. ��
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We finish the section by pointing out thatAd is the unique Boolean subalgebra that yields
a natural isomorphism between (S(Ad), ∗) and (E(S(A)), ◦).

Corollary 2.11 LetA ⊂ B be two left-invariant Boolean subalgebras of P(G) such that B is
d-closed. The following are equivalent:

(1) The natural restriction r : S(B) � S(Ad) is an homeomorphism.
(2) The map � : S(B) → E(S(A)), given by �(p) = �Ap , is an isomorphism of Ellis

semigroups.
(3) It holds that B = Ad .

Proof Notice first that the natural restriction r : p 
→ {X ∈ Ad | X ∈ p} is well-defined,
continuous and surjective. If in addition r is an homeomorphism, since any basic open set
in S(B) is also closed, we deduce that such a basic open set is a finite union of basic open
subsets of S(B) of the form [X ] for X ∈ Ad . In particular, it follows that B = Ad . Hence, we
obtain the equivalence between (1) and (3). Also, condition (3) implies (2) by Proposition
2.10. To prove that (2) implies (1), note that � : S(B) → E(S(A)) is �(p) = �Ar(p). Indeed,
for X ∈ A and q ∈ S(A) we have

X ∈ �Ar(p)(q) ⇔ dq X ∈ r(p) ⇔ r(p) ∈ [dq X ]Ad ⇔ p ∈ [dq X ]B ⇔ dq X ∈ p.

So, the map r is injective and hence an homeomorphism. ��

3 Translations by external elements

Here we use the set-up established in the previous section to study the Ellis enveloping
semigroup of spaces of types, following the approach of [13, Section 2].

Fix a κ-saturated structure M̄ in a languageL and letM be an elementary substructurewith
|M | < κ . Let G = G(M̄) ⊂ M̄n be an M-definable group and write G(M) for G ∩ Mn . Let
DefG(M) be the Boolean algebra of all M-definable subsets of G(M) ⊂ Mn . We denote by
SG(M) the Stone space of DefG(M), that is, the space of ultrafilters of M-definable subsets
of G(M). Using the correspondence between formulas and definable sets, we can identify
an ultrafilter n-type over M with an n-type (i.e. a maximal consistent set of LM -formulas
concentrating on G).

We recall the notion of externally definable subset.

Definition 3.1 We say that X ⊂ G(M) is externally definable if there exists some M̄-
definable set Y ⊂ G such that X = Y ∩ G(M).

We denote the collection of all externally definable subsets of G(M) by DefextG (M) and
we write SextG (M) to denote its Stone space. Newelski [13, Lemma 1.3] proved that the
Boolean algebra of externally definable subsets of G(M), which is clearly left-invariant
under translates of G(M), is d-closed.

Bearing in mind the results from the previous section, we refine the notion of externally
definable. We introduce the following concept:

Definition 3.2 We say that a subset X ⊂ G(M) is d-definable if there is some M-definable
set Y ⊂ G and some h ∈ G such that X = Yh ∩ G(M).

It is clear that every M-definable subset of G(M) is d-definable, and also that every
d-definable is externally definable. Furthermore, we have the following:
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Lemma 3.3 Let X be a subset of G(M). The set X is d-definable if and only if X = dq(Z∩M)

for some M-definable subset Z ⊂ G and someq ∈ SG(M). In particular, theBoolean algebra
generated by all d-definable subsets of G(M) is DefG(M)d .

Proof Given an M-definable subset Y ⊂ G and an arbitrary element h ∈ G we prove that
Yh ∩ G(M) = dq(Y ∩ M) for q ∈ SG(M) the ultrafilter corresponding to tp(h−1/M).
Indeed, we have for g ∈ G(M) that

g ∈ dq(Y ∩ M) ⇔ g−1(Y ∩ M) ∈ q ⇔ h−1 ∈ g−1Y ⇔ g ∈ Yh ∩ G(M).

This yields that the d-definable sets are precisely the sets of the form dq(Z ∩ M) for some
q ∈ SG(M) and some M-definable subset Z ⊂ G. So, we deduce that the Boolean algebra
generated by all d-definable subsets of G(M) is DefG(M)d . ��

As a consequence, it follows from Lemma 2.9 that the Boolean algebra generated by the
d-definable subsets of G(M) is left-invariant and d-closed. Hence, combining this with the
previous section, we obtain that

� : SextG (M) → E(SG(M)), p 
→ �p

is always an epimorphism of Ellis semigroups, by Proposition 2.10. Furthermore, we have:

Corollary 3.4 The function� : SextG (M) → E(SG(M)), given by p 
→ �p, is an isomorphism
of Ellis semigroups if and only if every externally definable subset of G(M) is a (positive)
Boolean combination of d-definable sets.

Proof Observe first that the complement of a d-definable set is again d-definable. So, a
Boolean combination of d-definable sets is indeed a positive Boolean combination. Hence,
we obtain the result by Lemma 3.3 and Corollary 2.11. ��

4 Ellis envelopes in o-minimal structures

Fix an o-minimal structure M and let G be a definable group. Throughout the section, we
shall work within an |M |+-saturated elementary extension M̄ of M .

4.1 One-dimensional groups

In this setting, we state and prove the following:

Theorem 4.1 Let G be a definably connected one-dimensional definable group. Then
(SextG (M), ∗) and (E(SG(M)), ◦) are naturally isomorphic as Ellis semigroups.

Proof Note first that since G is definably connected, it is commutative by [16, Corollary
2.15]. So, along the proof we use additive notation.

By Corollary 3.4 it suffices to show that every externally definable subset of G(M) is a
Boolean combination of d-definable sets. So, fix an LM̄ -formula ψ(x) concentrated on G.
To prove that ψ(M) is a Boolean combination of d-definable sets, we will heavily rely on
the results from [19]. We distinguish two cases:
Case 1. Suppose that G is not definably compact; thus G is of R-type in the terminology
from [19]. In this case, there is a definable linear order <G on G such that (G,+,<G)

is an ordered divisible torsion-free abelian group and <G is dense and without endpoints.
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Moreover, every definable subset of G is a finite union of <G -intervals and points. Hence,
we may assume without loss of generality that ψ(M̄) is an <G -interval or a point. Since
a point is clearly d-definable, we can assume that ψ(M̄) is an <G -interval of the form
(−∞, b) = {x ∈ G | x <G b} or (a,+∞), which is defined likewise. It then follows that
either

ψ(M) = (
(−∞, 0) + b

) ∩ G(M) or ψ(M) = (
(0,+∞) + a

) ∩ G(M).

In both cases the externally definable set is d-definable, as desired.
Case 2. Suppose that G is definably compact; thus G is of S

1-type according to [19]. In this
case, there exists a definable circular order R(x, y, z) on G such that

(i) R(x, y, z) implies that x, y, z are distinct,
(ii) R(x, y, z) implies that R(y, z, x) and R(−z,−y,−x) hold,
(iii) R(x, y, z) implies that R(x + u, y + u, z + u) holds for any u ∈ G.

Moreover, for any x0 ∈ G, the relation R(x0, y, z) defines a dense linear order without
endpoints in G\{x0}. We write <x0 for this binary relation. In addition, every definable
subset of G\{x0} is a finite union of <x0 -intervals and points. In particular, a definably
connected definable proper subset of G is of the form R(a, M̄, b) for some a, b ∈ G.

Clearly, we may assume that ψ(M) � G(M), as otherwise there is nothing to prove.
Thus, after translating by an element of G(M) if necessary, we have that 0 ∈ G(M)\ψ(M),
so we can assume thatψ(M) is of the form R(0, M, a), with a ∈ M̄\M . By [19, Proposition
4], there is only one element of order 2 in G. Denote it by 1

2 and note that 1
2 ∈ G(M), so

a �= 1
2 . We consider two subcases:

Case 2.1. If R(0, a, 1
2 ), then R( 12 , a + 1

2 , 0) by iii) adding u = 1
2 , so R(0, 1

2 , a + 1
2 ) by ii).

Thus, we get R(0, a, a + 1
2 ) by transitivity of <0. We claim that

R(0, M, a) = R

(
1

2
+ a, M, a

)
∩ R

(
0, M,

1

2

)
,

which yields the result since
(
R( 12 , M̄, 0) + a

) ∩ M = R( 12 + a, M, a) is d-definable. Let
x ∈ G(M) be such that R(0, x, a); note then that R(0, x, 1

2 ) by transitivity of <0 since
R(0, a, 1

2 ). On the other hand, as R(0, a, a + 1
2 ), we have R(a, a + 1

2 , 0) by ii). Combining
this with R(a, 0, x), we get by transitivity of<a that R(a, a+ 1

2 , x) and hence R(a+ 1
2 , x, a),

as desired.
For the right to left inclusion, let x ∈ G(M) be such that R( 12 + a, x, a) and R(0, x, 1

2 ).
Note first that R(0, x, 1

2 ) and R(0, 1
2 , a + 1

2 ) implies R(0, x, a + 1
2 ) by transitivity of <0.

Thus R(x, a + 1
2 , 0) by ii). As R(a + 1

2 , x, a) implies R(x, a, a + 1
2 ) by ii), we get that

R(x, a, 0) by transitivity of <x . This yields that R(0, x, a), as claimed.
Case 2.2. If R(0, 1

2 , a), then R(0,−a, 1
2 ) by (ii), since

1
2 has order 2. So, the set R(0, M,−a)

is a Boolean combination of d-definable sets by Case 2.1. Now, observe using ii) that

R(0, x,−a) holds ⇔ R(a,−x, 0) holds.

Hence, we deduce that R(a, M, 0) = −R(0, M,−a), which yields that

G(M)\R(a, M, 0) = R(a, 0, M) ∪ {0}
is also a Boolean combination of d-definable sets. Consequently, so is R(0, M, a). This
finishes the proof. ��
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4.2 Arbitrary dimension in anℵ0-saturatedmodel

The statement does not generalise to arbitrary dimensions, not even in the semialgebraic case.
Our next goal is to prove the following.

Theorem 4.2 Let M be aℵ0-saturated o-minimal expansion of a real closed field, and let G =
(M2,+). Then, the continuous function � : SextG (M) → E(SG(M)) is not an isomorphism
of Ellis semigroups.

In view of Corollary 3.4, to prove the theoremwe only need to find an externally definable
subset of M2 which is not a Boolean combination of d-definable subsets of M2. To this
purpose it will be convenient to work within the Shelah expansion of the structure, which we
next recall.

Given a definable subset Z ⊂ M̄n , defined with parameters from M̄ , introduce an n-
relational symbol RZ associated to Z . Define the structure MSh which expands M together
with these new relational symbols RZ , where RZ is interpreted as the externally definable set
Z ∩ Mn . Shelah’s expansion theorem [20] ensures that the structure MSh has elimination of
quantifiers, see also [2, 23] for a different proof. In particular, given an externally definable
set Y ⊂ Mn+1 and x ∈ Mn , the fiber of Y over x

Yx := {y ∈ M | (x, y) ∈ Y }
is also externally definable, by Shelah’s quantifier elimination theorem. In the o-minimal
setting, quantifier elimination was first proven by Baisalov and Poizat [1]. Furthermore, as a
consequence they deduced that MSh is weakly o-minimal [1, p. 577]. In particular:

Fact 4.3 Let M be an o-minimal structure and let X ⊂ M be an externally definable subset.
Then X is a finite disjoint union of convex sets.

Our first step towards the proof of Theorem 4.2 is the following very general statement
on a specific family of externally definable sets of Mn+1, for arbitrary (and non-necessarily)
saturated o-minimal structures.

Proposition 4.4 Let h : D → M̄ be an M̄-definable function, where D ⊂ M̄n is an M̄-
definable cell, such that for every x ∈ D ∩ Mn the type tp(h(x)/M) is not definable. Let

X = {(x, y) ∈ Mn+1 | x ∈ D and y < h(x)}
and let {Ci j } be a finite family of externally definable subsets of Mn+1 such that for Yi :=⋂r

j=1 Ci j we have that X = ⋃�
i=1 Yi . Then there is a family of externally definable subsets

{Fi j }i, j of D ∩ Mn with D ∩ Mn = ⋃
i, j Fi j , and for each x ∈ Fi j there are y1, y2 ∈ M

with y1 < h(x) < y2 and (y1, y2) ∩ Ci j,x = (y1, h(x)) ∩ M.

Proof First note that since each type tp(h(x)/M) is not definable, for each x ∈ M there is
some ε ∈ M>0 such that −ε < h(x) < ε. Moreover, if y ∈ M is such that y < h(x) then
the set (y, h(x)) ∩ M is infinite. Indeed, otherwise the type tp(h(x)/M) would be defined
by the formula y > b for some b ∈ M with b < h(x) and (b, h(x)) ∩ M = ∅. Similarly, if
y ∈ M is such that y > h(x) then the set (h(x), y) ∩ M is infinite.

Now, for each i = 1, . . . , �, consider the set

Ỹi = {
(x, y) ∈ X | (y,+∞) ∩ Yi,x = (y, h(x)) ∩ M

}

123



Ellis enveloping semigroups in real... Page 11 of 22 69

and let π(Ỹi ) denote its projection on the first n coordinates, that is,

π(Ỹi ) := {x ∈ D ∩ Mn | ∃y0 ∈ M with (x, y0) ∈ Ỹi }.
Both sets are clearly definable in the structureMSh and therefore they are externally definable.
Claim 1. If x ∈ D ∩ Mn is not in π(Ỹi ), then there is an element y0 ∈ M with y0 < h(x),
i.e. (x, y0) ∈ X , such that (y0, h(x)) ∩ Yi,x = ∅.
Proof of Claim 1

Assume otherwise that (y0, h(x))∩Yi,x �= ∅ whenever y0 ∈ M and y0 < h(x). Note that
since the set Yi,x is externally definable, it is a finite union of maximal (disjoint) convex sets
Z1 < . . . < Zs by Fact 4.3. Choose some y′ ∈ Zs . We next show that

(y′,+∞) ∩ Yi,x = (y′, h(x)) ∩ M,

which will give the desired contradiction since x /∈ π(Ỹi ). To prove this equality, note first
that

(y′,+∞) ∩ Yi,x = (y′, h(x)) ∩ Yi,x ,

as Yi ⊂ X . So, it suffices to see the inclusion ⊃. Let y0 ∈ (y′, h(x)) ∩ M . We have by
assumption that (y0, h(x))∩Yi,x �= ∅, so there is some element y1 ∈ (y0, h(x))∩Yi,x . Now,
recall that

Yi,x = Z1 ∪ · · · ∪ Zs with Z1 < · · · < Zs .

Also y′ ∈ Zs and y′ < y0 < y1 with y1 ∈ Yi,x . Thus, we deduce that y1 ∈ Zs and therefore
by convexity y0 ∈ Zs ⊂ Yi,x , as required. �� Claim 1
Claim 2.We have D ∩ Mn = ⋃�

i=1 π(Ỹi ).
Proof of Claim 2.

Let x0 ∈ D ∩ Mn and suppose that x0 /∈ π(Ỹi ) for every i = 1, . . . , �. By Claim 1 there
is some element y0 ∈ M with (x0, y0) ∈ X such that (y0, h(x0)) ∩ Yi,x0 = ∅ for every
i = 1, . . . , �. On the other hand, since X = ⋃�

i=1 Yi , we also have

(−∞, h(x0)) ∩ M =
�⋃

i=1

Yi,x0 .

However, since the set (y0, h(x0)) ∩ M is infinite, as remarked at the very beginning of the
proof, we obtain a contradiction. �� Claim 2

Now, recall that each Yi = ⋂r
j=1 Ci j where each Ci j ⊂ Mn+1 is a externally definable

subset. Given i = 1, . . . , � and j = 1, . . . , r , define the set

Fi j = {x ∈ π(Ỹi ) | ∃y1, y2 ∈ M, y1 < h(x) < y2 and (y1, y2) ∩ Ci j,x = (y1, h(x)) ∩ M},
which is externally definable.

To finish the proof, it is enough to prove that

D ∩ Mn =
�⋃

i=1

r⋃
j=1

Fi j .

Let x ∈ D ∩ Mn . By Claim 2 there is some i = 1, . . . , � with x ∈ π(Ỹi ). Thus, there is
an element y1 ∈ M with y1 < h(x) such that (y1,+∞) ∩ Yi,x = (y1, h(x)) ∩ M . Since
Yi = ⋂r

j=1 Ci j , for all j = 1, . . . , r we have (y1, h(x)) ∩ M ⊂ Ci j,x and hence

(y1, h(x)) ∩ M = (y1, h(x)) ∩ Ci j,x ,
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since Ci j,x ⊂ M . Therefore, we need only prove that there exist some j = 1, . . . , r and
some y2 ∈ M with h(x) < y2 for which (y1, h(x)) ∩ Ci j,x = (y1, y2) ∩ Ci j,x .

Recall that if ξ ∈ M is such that ξ > h(x) then (h(x), ξ) ∩ M is infinite. Furthermore,
we first claim:
claim3 There exists some j ∈ {1, . . . , r} such that for every ξ ∈ M with ξ > h(x) we have
(h(x), ξ) ∩ M �⊂ Ci j,x .

Proof of Claim 3. Otherwise, for each j there is some ξ j ∈ M with ξ j > h(x) such that
(h(x), ξ j ) ∩ M ⊂ Ci j,x . Set ξ ′ := min{ξ1, . . . , ξr } and note then that

(h(x), ξ ′) ∩ M ⊂ (y1,+∞) ∩ Yi,x = (y1, h(x)) ∩ M,

where the last equality holds by the choice of y1. However, the above is clearly a contradiction.
�� Claim 3

Let j be given by Claim 3 and consider the non-empty externally definable set

{y′ ∈ M | y′ > h(x) and y′ ∈ M\Ci j,x }.
By Fact 4.3 this is a finite union of maximal (disjoint) convex sets Z1 < · · · < Zs . Fix an
arbitrary element y2 ∈ Z1. We claim that (h(x), y2) ∩ M ⊂ Z1. Indeed, given and element
ξ ∈ (h(x), y2) ∩ M , there is some ξ ′ ∈ (h(x), ξ) ∩ M with ξ ′ ∈ M\Ci j,x , by the choice of
j . So, we have that ξ ′ ∈ Zk for a certain k = 1, . . . , s. Since ξ ′ < ξ < y2 we must have that
ξ ′ ∈ Z1 and by convexity ξ ∈ Z1, as desired.

In particular, once we know that (h(x), y2) ∩ M ⊂ Z1, it follows that

(h(x), y2) ∩ M ⊂ M\Ci j,x

and so

(y1, y2) ∩ Ci j,x = (
(y1, h(x)) ∩ Ci j,x

) ∪ (
(h(x), y2) ∩ Ci j,x

) = (y1, h(x)) ∩ Ci j,x .

This finishes the proof. ��
Now, we introduce some notation. Let M denote an o-minimal expansion of a real closed

field. Denote by inf+M (R) the set of positive elements of M which are infinitesimal with
respect to R, that is

inf+M (R) := {
x ∈ M>0 | x < 1

n for all n ∈ N\{0}} .

Consider the unique type pid(x) ∈ S1(M) determined by the set of formulas
{
x < 1

n | n ∈ N\{0}} ∪ {
m < x | m ∈ inf+M (R)

}
.

The subscript id stands for idempotent, since the type pid is idempotent in the space of types
with respect to the semigroup operation induced by addition.

Now, Theorem 4.2 is a straightforward consequence of Corollary 3.4 and the following
proposition.

Proposition 4.5 Let M be an ℵ0-saturated o-minimal expansion of a real closed field. Let M̄
be an |M |+-saturated extension of M and let e ∈ M̄ be a realization of pid. The externally
definable subset

X = {(x, y) ∈ M2 | 0 < x and 0 < y < e · x}
of the additive group (M2,+) is not a Boolean combination of d-definable sets.
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Remark 4.6 The underlying intuition behind the above statement is clear: the multiplication
map x 
→ e · x cannot be equal to a map of the form

g(x) := f (x + c) + d,

where f is some M-definable map and c, d ∈ M̄ . In fact, the latter is clear: if e · x = g(x) =
f (x + c) + d for all x ∈ M̄>0 then f (x) = e(x − c) − d and since f is M-definable
then it is easy to deduce that e ∈ M , which is a contradiction. However, our situation is
completely different: what we really have to show is that the map x 
→ tp(e · x/M) cannot be
equal to a map x 
→ tp(g(x)/M) where g(x) is as above. If such is the case then essentially
tp(g′(x)/M) = tp(e/M) and therefore g(x) = e · x + k for some k ∈ M̄ , from where
we obtain easily another contradiction. The two words in emphasis are far from clear, see
Example 4.7 below.

In the proof of Proposition 4.5 we try to make sense of the above intuition through a
case-by-case development via the mean value theorem (see [21, Ch.7]).

Proof of Proposition 4.5 In an o-minimal structure, each definable set over a set of parameters
is a finite disjoint union of cells defined over the same set of parameters. Thus, a Boolean
combination of d-definable sets of (M2,+) is a Boolean combination of d-definable cells,
i.e., sets of the formC = (

C̃+(c, d)
)∩M2 where C̃ is an M-definable cell and (c, d) ∈ M̄2.

Suppose that the given set X is a Boolean combination of d-definable cells. We can write
it as X = ⋃

i Yi , where Yi := ⋂r
j=1 Ci j for some d-definable cells Ci j . We first see that we

may reduce to the case when X is a specific single d-definable cell, after possibly shrinking
the set X . We prove: ��
Claim 1. There are some a ∈ M with a > 0, an M-definable function f : I → M̄ with I an
open interval, and elements c, d ∈ M̄ such that M>a ⊂ I − c and

{
(x, y) ∈ M2 | (a < x) ∧ (0 < y < e · x)} = (ME)

= {
(x, y) ∈ M2 | (a < x) ∧ (0 < y < f (x + c) + d)

}
.

Proof of Claim 1. Note that tp(e/M) is not definable, and therefore for every x ∈ M>0 we
have that tp(e · x/M) is neither definable. Hence, by Proposition 4.4, there is a family of
externally definable subsets {Fi j } of M>0 such that M>0 = ⋃

Fi j , and for each x ∈ Fi j
there are y1, y2 ∈ M with y1 < e · x < y2 and (y1, y2) ∩ Ci j,x = (y1, e · x) ∩ M . Note that
we can choose y1 with y1 > 0.

Each Fi j is a finite union of convex sets, by Fact 4.3. Therefore there exist a pair (i, j)
and an element a ∈ M>0 such that M>a ⊂ Fi j . Denote C := Ci j . So, for all x ∈ M>a there
exist some y1 ∈ (0, e · x) ∩ M and some y2 ∈ (e · x,+∞) ∩ M with

(y1, y2) ∩ Cx = (y1, e · x) ∩ M .

By definition, the d-definable cell C equals to (C̃ + (−c, d)
) ∩ M2 for some (−c, d) ∈ M̄2

and some 2-dimensional cell

C̃ := ( f1, f2) = {
(x, y) ∈ I × M̄ | f1(x) < y < f2(x)

}
,

where I ⊂ M̄ is an open interval, defined over M , and f1, f2 : I → M̄ are two M-definable
functions. Note that

(
C̃ + (−c, d)

) = {
(x − c, y + d) ∈ (I − c) × M̄ | f1(x) < y < f2(x)

}

= {
(x, y) ∈ (I − c) × M̄ | f1(x + c) + d < y < f2(x + c) + d

}
.
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Thus, since C = (C̃ + (−c, d)
) ∩ M2, for each x ∈ M>a there exist y1 ∈ (0, e · x) ∩ M and

y2 ∈ (e · x,+∞) ∩ M with

(y1, e · x) ∩ M = (y1, y2) ∩ Cx = (y1, y2) ∩ (
f1(x + c) + d, f2(x + c) + d

) ∩ M .

In particular, it follows that y1 < f2(x + c) + d and f1(x + c) + d ≤ e · x < y2. So, taking
the union with the interval (0, y1] ∩ M in the above equalities, we get

(0, e · x) ∩ M = (0, y2) ∩ (
0, f2(x + c) + d

) ∩ M .

Note we must have that f2(x +c)+d < y2 as otherwise (0, e · x)∩M = (0, y2)∩M , which
is a contradiction. Altogether, it follows readily that

{(x, y) ∈ M2 | (a < x) ∧ (0 < y < e · x)} =
= {(x, y) ∈ M2 | (a < x) ∧ (0 < y < f2(x + c) + d)},

as desired. �� Claim 1
Hence, to finish the proof it is enough to contradict Claim 1. In other words, we need to

show that there cannot exist a ∈ M>0 and c, d ∈ M̄ and anM-definable function f : I → M̄
satisfying (ME). The term ME stands for main equality.

Let a ∈ M , c, d ∈ M̄ and f : I → M̄ be given by Claim 1. Note that we are assuming
that we can evaluate f in x + c for each x ∈ M>a , since we have M>a ⊂ I − c.
Claim 2.We can assume that I ⊂ M̄ is an open interval definable over M satisfying that:

• the function f is C1,
• either f > 0 or f < 0 holds, and
• it holds f ′ > 0 and in particular f is strictly increasing.

Proof of Claim 2. Indeed, by o-minimality there are open disjoint subintervals I1, . . . , Is
of I , all definable over M , with F := I\(I1 ∪ · · · ∪ Is) finite and such that each f |Ii is a
C1-function satisfying that either f |Ii > 0 or f |Ii < 0 or f |Ii = 0, and either f ′|Ii > 0 or
f ′|Ii < 0 or f ′|Ii = 0.
Each Ji := (Ii − c) ∩ M>a is a convex subset of M>a with Ji ∩ J j = ∅ if i �= j . Since Ji

is convex, either there is an element b ∈ M>a such that Ji ⊂ M<b, in which case we will say
that Ji is bounded, or there is some b ∈ M>a such that M>b ⊂ Ji . Thus, as M>a ⊂ I − c,
we have that

M>a ⊂ (I − c) = (F − c) ∪
s⋃

i=1

Ji

and therefore there is a1 ∈ M>a such that M>a1 ⊂ ⋃s
i=1 Ji . In particular, not all Ji can

be bounded. So, there are an i = 1, . . . , s and some a2 ∈ M>a1 such that M>a2 ⊂ Ji . In
particular, in (ME) we can replace a by a2 and f by f |Ii , as required as we will see next.

Note that in (ME), the case f = 0 is not allowed. Moreover, the case f ′ ≤ 0 is also
excluded. To see the latter, consider the M̄-definable function g(x) := f (x + c) + d , which
is differentiable over its domain I −c. By the mean value theorem, for all x1, x2 ∈ M>a with
x1 < x2 there is some u ∈ M̄ with x1 < u < x2 such that

g(x2) − g(x1) = g′(u) · (x2 − x1) = f ′(u + c) · (x2 − x1).

If f ′ ≤ 0, then we have that g(x2) ≤ g(x1) for all x1, x2 ∈ M>a with x1 < x2. However, for
a fixed x1 ∈ M>a , choose somem1,m2 ∈ M with 0 < m1 < m2 < e. Let x2 = m−1

1 · x1 and
y = m2 · x2. Thus, we have that ex1 < x1 < y < e · x2. So, we get by (ME) that y < g(x2)
but x1 < y �< g(x1), a contradiction. �� Claim 2
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Henceforth, we define

g(x) := f (x + c) + d

which is a differentiable over its domain I − c and it is definable over M̄ . Moreover, note
that for all x ∈ M>a we have that 0 < g(x), by (ME).

From now on, we will use the mean value theorem without explicit reference.
Claim 3.We can assume that the interval I is of the form (i,+∞) for some i ∈ M or of the
form (−∞, i) for some i ∈ M . Moreover, in the former case we have that c > i − (a + 1)
and in latter case we have c < M .
Proof of Claim 3. Note first that c < M whenever I ⊂ (−∞, i) for some i ∈ M , since in
this case M>a ⊂ I − c and hence M < i − c. Also, if I ⊂ (i,+∞) for some i ∈ M , then
c > i − (a + 1). After observing this, note also that the interval I cannot be of the form
(i1, i2) for some i1, i2 ∈ M with i1 < i2, as otherwise we would have i1 − (a+1) < c < M ,
a contradiction.

Hence, it remains to consider the case when I = (−∞,+∞). In that case, if there is some
c1 ∈ M such that c1 < c then for every x ∈ M>a we have that a+c1 < x +c. In which case,
we set I ′ = (a + c1,+∞). Otherwise, we would have that c < M and set I ′ = (−∞, 0).
In either case we have that I ′ satisfies that M>a ⊂ I ′ − c. Hence, we can replace I by I ′,
obtaining the claim. �� Claim 3

From now on we assume that I is of the form given in Claim 3. To get the desired
contradiction, now we study how the derivative of f behaves on I .
Claim 4. There is some M-definable unbounded open interval J ⊂ I such that f ′(x) < e
for every x ∈ J ∩ M . In particular, for every natural number n ≥ 1 and every x ∈ J we have
that f ′(x) < 1

n .
Proof of Claim 4. Since f ′ is an M-definable function on I ⊂ M̄ , we have that

I ∩ M = {
x ∈ I ∩ M | f ′(x) < e

} � {
x ∈ I ∩ M | f ′(x) > e

}
.

The two disjoint sets from the right hand side of the equality are externally definable. So,
both equal a finite union of convex sets by Fact 4.3. This yields that only one of them can
be unbounded. In particular, there exists some unbounded open M-definable interval J ⊂ I
such that f ′|J∩M < e or f ′|J∩M > e.

Suppose, to get a contradiction, that f ′(x) > e for every x ∈ J ∩ M . As f ′ and J are
both definable over M , it follows by ℵ0-saturation of M that there is some natural number
n0 ≥ 1 such that f ′(x) > 1

n0
for every x ∈ J , since clearly

J ∩ M =
⋃
n≥1

{
x ∈ J ∩ M | f ′(x) > 1

n

}
.

Now, choose some x1, x2 ∈ M>a with x2 = 2x1. Furthermore, by Claim 3 we can choose
them so that [x1 + c, x2 + c] ⊂ J . Indeed, if I is of the form (−∞, i) then by Claim 3 we
know that c < M and so both xi + c ∈ J , since J is of the form (−∞, j) for some j ∈ M
with j < i . On the contrary, if I is of the form (i,+∞) with i ∈ M , then J = ( j,+∞)

for some j ∈ M>i and also c �< M by Claim 3. So, if M < c then choose any x1 ∈ M>a .
Otherwise, it suffices to choose x1 > a+| j − c| to ensure that x1, x2 ∈ M>a and that x1 + c
and so x2 + c belong to J .

As x1 < x2, there is an element x̂ ∈ M̄ with x1 < x̂ < x2 such that

g(x2) − g(x1) = g′(x̂) · (x2 − x1) = f ′(x̂ + c) · x1 >
x1
n0

,
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where the inequality holds since x̂ + c ∈ J . Thus g(2x1) > g(x1) + x1
n0
. Now, fix some

m ∈ M such that 0 < m < e. Since m · x1 < e · x1, we have by (ME) that m · x1 < g(x1)
and therefore

m · x1 + 1

n0
· x1 < g(x1) + 1

n0
· x1 < g(2x1).

So, again by (ME) we obtain that m · x1 + 1
n0

· x1 < e · 2x1 and hence 1
2 (m + 1

n0
) < e, which

is a contradiction. This yields the claim. �� Claim 4
Now, let J ⊂ I be the open interval given byClaim4. This is unbounded and definable over

M . Since the function f ′ is definable overM , byClaim2 and 4 the limit � = lim|x |→+∞ f ′(x)
belongs to M and satisfies that 0 < � < e. Thus, for every ε ∈ M with 0 < ε there is some
unbounded open interval Jε ⊂ J , definable over M , such that | f ′(x) − �| < ε for every
x ∈ Jε.

Fix ε = �. Let x1 ∈ M>a be such that x1 + c ∈ J�; this is possible arguing as in the proof
of Claim 4. Let now m ∈ M be with 0 < m < e and set x2 = x1 · m−1, which is also an
element of M>a with x1 < x2. It follows as in the proof of Claim 3 that x2 + c ∈ J�. Hence,
there is some x̂ ∈ M̄ with x1 < x̂ < x2, and so x̂ + c ∈ J�, such that

g(x2) − g(x1) = g′(x̂) · (x2 − x1) = f ′(x̂ + c) · (x2 − x1) < 2� · (x2 − x1).

On the other hand, for y = x1 + 2� · (x2 − x1) ∈ M we have

0 < y < x1 + 2� · x2 = m · x2 + 2� · x2 = (m + 2�) · x2 < e · x2
and therefore by (ME) it follows that y < g(x2). Thus, we obtain

x1 + 2� · (x2 − x1) = y < g(x2) < g(x1) + 2� · (x2 − x1),

which yields that x1 < g(x1). So, again by (ME) we have that x1 < e · x1, a contradiction as
e < 1. This final contradiction finishes the proof. ��

Finally, let us point out that there are externally definable sets that may not seem a Boolean
combination of d-definable, but actually are.

Example 4.7 Let M be an ℵ0-saturated o-minimal expansion of a real closed field. Let M̄ be
an |M |+-saturated extension of M and let e ∈ M̄ be a realization of pid. We show that the
externally definable set

X := {(x, y) ∈ M2 | (0 < x < e) ∧ (0 < y < e · x)}
= {(x, y) ∈ M2 | x ∈ inf+

R
(M) ∧ (0 < y < e · x)}

is an intersection of two d-definable sets.
For each a ∈ M>0 denote by p(a)

id := tp(e · a/M), which is the unique type that extends
the set of formulas

{
x < a

n | n ∈ N\{0}} ∪ {
a · m < x | m ∈ inf+

R
(M)

}
.

Note that for c ∈ inf+
R
(M) and d ∈ M̄ realizing p(c)

id , we have

(∗) the element c2
2 + d realizes p(c)

id .

Indeed, if there is some infinitesimalm ∈ inf+
R
(M) with c2

2 +d < m · c then d < c · (m− c
2 ).

Since c, d > 0, we must have that m − c
2 > 0 and so m − c

2 ∈ inf+
R
(M). However, this

contradicts the fact that d realizes p(c)
id .
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On the other hand, assume that there is some natural number n ≥ 1 such that c2
2 + d ≥ c

n .
Since c ∈ inf+

R
(M) we have n · c < 1 and therefore

d ≥
(
1

n
− c

2

)
· c = 2 − n · c

2n
· c >

1

2n
· c,

which yields that d does not realize p(c)
id , a contradiction.

Finally, once we have seen (∗), consider the ∅-definable sets
Z1 := {(x, y) ∈ M̄2 | y ≤ 1

2 · x2} and Z2 := (−∞, 0) × M̄,

as well as their associated d-definable sets

X1 := M2 ∩
(
Z1 − (e, e2

2 )
)

=
{
(x, y) ∈ M2 | y ≤ 1

2 · (x + e)2 − 1
2 · e2 = x2

2 + e · x
}

and

X2 := M2 ∩ (
Z2 + (e, 0)

) = {
(x, y) ∈ M2 | x < e

}
.

In particular, the externally definable set

X1 ∩ X2 ∩ (
(0,∞) × (0,∞)

) = {
(x, y) ∈ M2 | (0 < x < e) ∧ (

0 < y ≤ 1
2 · x2 + x · e)}

is an intersection of two d-definable sets and by (∗) is clearly equal to X . Indeed, given a
pair (x, y) ∈ M2 with 0 < x < e, we see that 0 < y < e · x if and only if y ∈ M>0 is
strictly smaller than any realization of p(x)

id . So, the condition 0 < y < e · x is equivalent to
0 < y ≤ 1

2 x
2 + x · e, by (∗), as required.

4.3 Arbitrary dimension in the real algebraic numbers

Given a real closed field extension R̄ of R denote by FinR(R̄) the set of finite non-standard
reals, i.e.

FinR(R̄) = {
x ∈ R̄ | there is some r ∈ R with |x | < r

}
.

Recall that the real field is Dedekind complete. Therefore, for any real closed field extension
R̄ of R there exists a well-defined standard map

st : FinR(R̄) → R

which sends an arbitrary element x ∈ FinR(R̄) to the unique element st(x) ∈ R such that
x ∈ st(x) + infR(R̄). More generally, given a natural number n ∈ N with n ≥ 1 we define

st : Finn
R
(R̄) → R

n, x̄ = (x1, . . . , xn) 
→ st(x̄) := (st(x1), . . . , st(xn)).

Note that given x̄ ∈ Finn
R
(R̄), the tuple st(x̄) ∈ R

n is the unique one in R
n such that x̄

belongs to all its semialgebraic open neighborhoods defined over R.

Proposition 4.8 Let Ralg denote the field of real algebraic numbers with the field structure.
Let I ⊂ R be an open interval and let h : I → R be a semialgebraic function. If the
externally semialgebraic subset

X = {(x, y) ∈ (I ∩ Ralg) × Ralg | y < h(x)}
of the semialgebraic group (R2

alg,+) is a Boolean combination of d-definable sets, then
there are finitely many disjoint open subintervals I1, . . . , Is ⊂ I such that I\(I1 ∪ · · · ∪ Is)
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is finite and for each i = 1, . . . , s there are a semialgebraic map fi : Ji → R defined over
Ralg, with Ji an open interval, and elements ci , di ∈ R such that each Ii ⊂ Ji − ci and
h(x) = fi (x + ci ) + di for all x ∈ Ii .

Proof Note first that if h(x) = r for some r ∈ R, then the statement is clear by setting s = 1,
I1 = I , f1 = 0, c1 = 0 and d1 = r . Therefore, we may assume that h : I → R is not a
constant function. So, by o-minimality we can assume that h : I → R is strictly monotone
and C1. By Proposition 4.4 and similarly as in the proof of Claim 1 of Proposition 4.5, we can
further assume that there is a saturated real closed field extension R̄ of R and a semialgebraic
map f : J → R̄ definable over Ralg with J ⊂ R̄ an open interval and c, d ∈ R̄ such that
I ∩ Ralg ⊂ J − c and

X = {(x, y) ∈ (I ∩ Ralg) × Ralg | y < f (x + c) + d}.
Again by o-minimality we can assume that f is strictly monotone and C1, as in Claim 2 of
Proposition 4.5. Note that I ∩ Ralg ⊂ J − c implies I ⊂ J − c, by density.

Moreover, since

h(x) ≡Ralg f (x + c) + d

for all x ∈ I ∩ Ralg, we have that f (x + c) + d ∈ FinR(R̄) and so st( f (x + c) + d) = h(x)
for all x ∈ I ∩ Ralg. Note by monotonicity of f that we also have f (x + c) + d ∈ FinR(R̄)

for all x ∈ I ⊂ R.
Now, we distinguish three cases.
(1) Assume c ∈ FinR(R̄), so clearly also d ∈ FinR(R̄). Set c′ := st(c) and d ′ := st(d).

We first note that since J is defined over Ralg we have

I ∩ Ralg = st(I ∩ Ralg) ⊂ st((J ∩ FinR(R̄)) − c) = st(J ∩ FinR(R̄)) − c′ ⊂ cl(J ) − c′,

where cl(−) denotes the topological closure. Since both I and J are open intervals defined
over R, we obtain that I ∩ Ralg ⊂ I ⊂ J − c′. Let us prove that

st( f (x + c) + d)) = f (x + c′) + d ′

and so f (x + c′) + d ′ = h(x) for all x ∈ I ∩ Ralg. If the latter holds true, then we clearly
obtain that

h(x) = f (x + c′) + d ′

for all x ∈ I ⊂ R, since both f|J∩R : J ∩R → R and h : I → R are continuous, as required.
Fix x0 ∈ I ∩ Ralg and let U be a semialgebraic open neighborhood of f (x0 + c′) + d ′

defined over R. We must show that f (x0 + c) + d ∈ U . Consider the semialgebraic map

h̃ : (J − x0) × R̄ → R̄, (y, z) 
→ f (x0 + y) + z

which is continuous and defined overRalg. Thus, h̃−1(U ) is an open semialgebraic set defined
over R. Since (c′, d ′) ∈ h̃−1(U ) and st(c, d) = (c′, d ′) we deduce that (c, d) ∈ h̃−1(U ) and
so f (x0 + c) + d ∈ U .

(2) Assume c ∈ R̄ with R < c. In this case we may assume that J is an interval of the
form ( j,+∞) for some j ∈ Ralg. If I (R̄) denotes the R̄-points of I , we can consider the
R̄-semialgebraic function

g : I (R̄) → R̄, x 
→ g(x) := f (x + c) + d
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which is also strictly monotone and C1. Recall that g(x) ∈ FinR(R̄) for every x ∈ I ∩Ralg =
I (R̄)∩Ralg. Considering the derivatives functions, we have that g′(x) = f ′(x + c) for every
x ∈ I ∩ Ralg.

We distinguish two cases depending on whether the limit of f ′(x) exists or not:
2.1 If limx 
→+∞ f ′(x) = ±∞, then for every x ∈ I (R̄ ∩ FinR(R̄) we have that |g′(x)| =

| f ′(x + c)| > R. Otherwise, there are some x0 ∈ I (R̄) ∩ FinR(R̄) and some n ∈ N with
|g′(x0)| = | f ′(x0 + c)| < n. But by assumption there must exists some non-negative δ ∈ R

such that for all x ∈ R̄ with x > δ we have that | f ′(x)| > n. So, since x0 + c > δ, we get
| f ′(x0 + c)| > n, a contradiction.

Once we have seen that |g′(x)| = | f ′(x + c)| > R for every x ∈ I (R̄) ∩ FinR(R̄), we
choose some x1, x2 ∈ I ∩ Ralg with x1 < x2. We have that g(x2), g(x1) ∈ FinR(R̄). Now,
by the mean value theorem there is an element x̂ ∈ I (R̄) with x1 < x̂ < x2 such that

g(x2) − g(x1) = g′(x̂) · (x2 − x1).

Observe that x̂ ∈ I (R̄)∩FinR(R̄), as x1 < x2 ∈ Ralg. So, we deduce that |g′(x̂)| ·(x2−x1) >

R, contradicting the fact that g(x2) − g(x1) ∈ FinR(R̄).
2.2 Assume now that limx 
→+∞ f ′(x) = � for some � ∈ Ralg. Let us show that for every

x ∈ I (R̄) ∩ FinR(R̄) we have that g′(x) ∈ FinR(R̄) and st(g′(x)) = �. Indeed, for any
ε ∈ R>0 there is some non-negative δε ∈ R such that for every x ∈ J = ( j,+∞) with
x > δε we have | f ′(x)− �| < ε. Since for every x ∈ I (R̄)∩FinR(R̄) and for every ε ∈ R>0

we have that x + c > δε , we deduce that

|g′(x) − �| = | f ′(x + c) − �| < ε.

Thus g′(x) ∈ FinR(R̄) for every x ∈ I (R̄) ∩ FinR(R̄) and we obtain that st(g′(x)) = �, as
claimed.

Next, fix some x1 ∈ I ∩ Ralg. By the mean valued theorem, for every x2 ∈ I ∩ Ralg with
x1 < x2 there is some element x̂ ∈ I (R̄) such that x1 < x̂ < x2 and

g(x2) − g(x1) = g′(x̄) · (x2 − x1).

Thus, applying the standard map we get st(g(x2)) = st(g(x1)) + � · (x2 − x1). So

h(x2) = h(x1) + � · (x2 − x1).

It then follows that the function k := h(x) − � · x ∈ R is constant for every x ∈ I ⊂ R, and
so h(x) = � · x + k. Finally, we consider the semialgebraic function f̃ : R̄ → R̄ given by
x 
→ � · x , which is clearly defined over Ralg. Hence, we obtain that h(x) = f̃ (x + 0) + k
for all x ∈ I , as required.

(3) Assume finally that c ∈ R̄ with c < R. This case is a straightforward adaptation of
the latter case. This finishes the proof. ��
Remark 4.9 (1) Note that if X ⊂ R

m
alg is an externally semialgebraic set then there is a

saturated real closed field R and a semialgebraic subset Y ⊂ Rm such that X = Y ∩R
m
alg.

Since we can assume that R contains the real field R, and types over R are definable,
we deduce that Z := Y ∩ R

m is a real semialgebraic set with X = Z ∩ R
m
alg. Thus,

externally semialgebraic sets ofR
m
alg are Boolean combinations of sets as in the statement

of Proposition 4.8.
(2) The proof of Proposition 4.8 goes through for any o-minimal structure Ralg whose

universe is the field of real algebraic numbers Ralg and such that it has an elementary
extension R � Ralg whose universe is the real field R.
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Finally, we prove:

Corollary 4.10 Let Ralg be the field of real algebraic numbers and let G = (R2
alg,+). The

continuous map � : SextG (Ralg) → E(SG(Ralg)) is not an isomorphism.

Proof By Theorem 3.4 it is enough to show that the externally definable set

{(x, y) ∈ R
2
alg | y < π · x}

is not d-definable. Otherwise, by Proposition 4.8 there is an open interval I of R and there
are a semialgebraic map f : J → R defined over Ralg and some elements c, d ∈ R such that
π · x = f (x + c)+d for all x ∈ I . In particular, setting z = x + c ∈ I + c we readily obtain

f (z) = π · (z − c) − d = π · z − (π · c + d).

However, evaluating in any two distinct real algebraic numbers of I + c we deduce that
π ∈ Ralg, a blatant contradiction. ��
Remark 4.11 It is possible to refine the above result in order to find a definably compact
example. Indeed, consider G := (R2

alg,+) and G1 = ([0, 1),+1
)2 where [0, 1) ⊂ Ralg and

+1 denotes the sum mod 1. Note that the underlying definable set of G1 is a definable subset
of G, and therefore the (externally) definable subsets of G1 are (externally) definable subsets
of G. Note also that G1 is definably compact and isomorphic to the quotient of G by Z × Z.

Let X ⊂ G1 be an externally definable subset such that X is a Boolean combination of
d-definable in the sense of G1. We claim that X is a Boolean combination of d-definable in
the sense of G.

To ease the reading, we denote by M the field Ralg and let M̄ be an |M |+-saturated
elementary extension of M . Assume first that C ⊂ G1 is a d-definable in the sense of G1,
and let us show that C is a Boolean combination of d-definable sets in the sense of G. By
definition, C = (Z +1 y) ∩ M for some M-definable set Z ⊂ G1(M̄) and y ∈ G1(M̄). We
show for F := (

Z × Z
) ∩ (−2, 1)2 that

C = ((
(Z + y) ∩ M

) + F
) ∩ [0, 1)2.

It is enough to prove that the left hand set is contained in the one of the right hand side, and
note that Z+y ⊂ [0, 2)2. For every x ∈ C there is x0 ∈ (Z+y)∩M such that x−x0 ∈ Z×Z.
Note that x − x0 ∈ (−2, 1)2 and so x ∈ [((Z + y) ∩ M

) + F], as required. On the other
hand, since

(
(Z + y) ∩ M

) + F = (
(Z + F) + y

) ∩ M where Z + F is M-definable, we
deduce that the right term of the equality is a Boolean combination of d-definable sets of G.

For the general case, suppose X = ⋃
i
⋂

j Ci j where each Ci j is a d-definable subset of

G1. For each i and j , let Zi j ⊂ G(M̄) be an M-definable set and yi j ∈ G(M̄) such that
Ci j := (Zi j +1 yi j ) ∩ M . Define for each i and j the set

C̃i j := ((
(Zi j + yi j ) ∩ M

) + F
) ∩ [0, 1)2,

which by the above paragraph is a Boolean combination of d-definable subsets of G. It is
easy to check that

X =
⋃
i

⋂
j

C̃i j ,

and therefore we deduce X is also a Boolean combination of d-definable subsets of G, which
finishes the proof of our claim.
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Finally, we deduce that the continuous map � : SextG1
(Ralg) → E(SG1(Ralg)) is not an

isomorphism. For, byCorollary 3.4 and the claim above it is enough to show that the externally
definable set

{(x, y) ∈ R
2
alg : (0 < x < 1) ∧ 0 < y < π

4 y}

is not a Boolean combination of d-definable sets of G = (R2
alg,+), which follows by a

similar argument as in Corollary 4.10.

Acknowledgements We thank the referee for the careful reading of the paper and all suggestions made. In
particular, we wish to express our gratitude for pointing us the work of Adam Malinowski and Ludomir
Newelski, concerning the alternative representation of the Ellis semigroup as Stone spaces in [10, 11].

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baisalov, Y., Poizat, B.: Paires de structures o-minimales. J. Symb. Logic 63(2), 570–578 (1998)
2. Chernikov, A., Simon, P.: Externally definable sets and dependent pairs. Isr. J. Math. 194, 409–425 (2013)
3. Chernikov, A., Simon, P.: Definably amenable NIP groups. J. Am. Math. Soc. 31(3), 609–641 (2018)
4. Conant, G.: Stability in a group. Groups Geom. Dyn. 15, 1297–1330 (2021)
5. Ellis, R.: Lectures on Topological Dynamics. W. A. Benjamin, New York (1969)
6. Fernando, J., Ghiloni, R.: Subfield-algebraic geometry (to appear)
7. Gismatullin, J., Penazzi, D., Pillay, A.: Some model theory of SL(2, R). Fundam. Math. 229(2), 117–128

(2015)
8. Jagiella, G.: Definable topological dynamics and real Lie groups. MLQ Math. Logic Q. 61(1–2), 45–55

(2015)
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