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Abstract
S-structures on Lie algebras, introduced by Vinberg, represent a broad generalization of the
notion of gradings by abelian groups. Gradings by, not necessarily reduced, root systems
provide many examples of natural S-structures. Here we deal with a situation not covered by
these gradings: the short (SL2 × SL2)-structures, where the reductive group is the simplest
semisimple but not simple reductive group. The algebraic objects that coordinatize these
structures are the J -ternary algebras of Allison, endowed with a nontrivial idempotent.

Keywords S-structures · J -ternary algebras · Structurable algebras

Mathematics Subject Classification Primary 17B70

1 Introduction

All the algebras considered will be defined over an arbitrary ground field F of characteristic
�= 2, 3. Tensor products over F will simply be written as ⊗, instead of ⊗F. Algebraic groups
over F will be understood in the sense of affine group schemes of finite type.

A grading on a Lie algebra L by an abelian group G is determined by a homomorphism
D(G) → Aut(L), where D(G) is the diagonalizable (and hence reductive) group scheme
whose representing Hopf algebra is the group algebra FG (see, e.g., [15, Chapter 1]).
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Vinberg considered a large extension of this idea in his paper entitledNon-abelian gradings
of Lie algebras [27], by substituting the diagonalizable groups above by arbitrary reductive
groups.

Definition 1.1 [27, Definition 0.1] Let S be a reductive algebraic group and let L be a Lie
algebra. An S-structure on L is a homomorphism � : S → Aut(L) from S into the algebraic
group of automorphisms of L.

Actually, this definitionmakes sense for nonassociative algebras, ormore general algebraic
systems, not just for Lie algebras.

Let S be a reductive algebraic group and let s be its Lie algebra, the differential d� of an
S-structure on the Lie algebra L is a Lie algebra homomorphism d� : s → Der(L).

Definition 1.2 With the notations above, the S-structure � : S → Aut(L) on the Lie algebra
L is said to be inner if there is a one-to-one Lie algebra homomorphism ι : s ↪→ L such that
the following diagram commutes:

s L

Der(L)

d�

ι

ad (1.1)

Note that if � : S → Aut(L) is a non inner S-structure on the Lie algebra L, then we can
take the split extensions L̃ = L⊕ s as in [22, p. 18], where s acts on L through d�, and this
is endowed with a natural S-structure. Hence it is not harmful to restrict to inner S-structures.

Definition 1.1 is too general, so some restrictions onL as a module for the reductive group
S must be imposed. Vinberg himself considered in [27] two different situations:

• A nontrivial SL2-structure on a Lie algebra L is called very short if L decomposes,
as a module for SL2, as a sum of copies of the adjoint module and of the trivial one-
dimensionalmodule. Collecting isomorphic submodules, a very shortSL2-structure gives
an isotypic decomposition of the form

L = (sl2 ⊗ J ) ⊕ D

and it turns out that the Lie bracket on L induces a Jordan product on J . The subalgebra
D acts by derivations on J . All this goes back to [26].

• Anontrivial SL3-structure on a Lie algebraL is called short ifL decomposes as the direct
sum of one copy of the adjoint representations, copies of its natural three-dimensional
module and of its dual, and copies of the trivial representation, so that the isotypic
decomposition is:

L = sl3 ⊕ (V ⊗ J ) ⊕ (V ∗ ⊗ J ′) ⊕ D.

For simple L, J and J ′ may be identified, and inherit a structure of a cubic Jordan
algebra (see [27, Eq. (31)]). (A more general situation was considered in [7].)

Stasenko [25] has recently considered short SL2-structures on simple Lie algebras over
the complex numbers (see Definition 2.1). Although not with this terminology, the short
SL2-structures were considered in [18]. They are intimately related to the J -ternary algebras
of Allison [1], a connection that will be reviewed in Sect. 2.

The reader should note that there is no general definition of short and very short structures.
The definitions depend on the algebraic group S used (and on the inspiration of the different
authors to find a suitable name).
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Short (SL2 × SL2)-structures on Lie algebras Page 3 of 21 45

Another important source of nice S-structures is provided by the gradings by root systems,
initially considered by Berman and Moody [10] (see [9] and the references therein).

In the simply-laced case, a Lie algebra graded by such a root system contains a finite-
dimensional split simple Lie algebra s with such a root system, and it decomposes, as a
module for s, as a direct sum of copies of the adjoint module and the trivial module, so the
corresponding isotypic decomposition has two components: L = (s ⊗ A) ⊕ D. If S is the
simply connected group with Lie algebra s, the action of s integrates to an S-structure on L.

In the non simply-laced case, the isotypic decomposition also includes copies of the
irreducible module for swhose highest weight is the highest short root:L = (s⊗A)⊕ (W ⊗
B)⊕D. Finally, the case of the nonreduced root systems BCr gives isotypic decompositions
with four components, with two exceptions of five components (see [6, 9]): BC1-graded Lie
algebras with grading subalgebra of type D1 (which reduces to 5-gradings), and BC2-graded
Lie algebras with grading subalgebra of type D2 = A1 × A1.

Another nice class of S-structures has been given in [12], where the exceptional simple
Lie algebras of type Er , r = 7, 8, are shown to be endowed with a SLr

2-structure, such that
the irreducible modules that appear are single copies of the adjoint modules for the factors
of SLr

2, tensor products of the two-dimensional natural modules for some of these factors,
and trivial modules. This allows us to coordinatize these exceptional Lie algebras in terms
of some algebras related to some well-known binary codes.

The goal of this paper is to explore a new kind of S-structures not covered by the results
mentioned above and where the reductive group is not simple: the short (SL2 × SL2)-
structures defined in Sect. 3. These structures give isotypic decompositions with six
components, because as a module for SL2 × SL2, the Lie algebra decomposes as a direct
sum of copies of the adjoint modules for any of the two factors of SL2 × SL2, copies of the
two-dimensional natural modules for each of these factors, copies of the tensor product of
these two natural modules, and copies of the trivial module. [See (3.1).]

In particular, if we fix two of the factors SL2 of the SLr
2-structures in [12], a short (SL2 ×

SL2)-structure is obtained.
Trying to obtain directly the properties and multilinear operations among the six different

components in (3.1) from the Lie bracket on the Lie algebra is quite cumbersome and not
much illuminating. However, as shown in Sect. 3, the diagonal embeddingSL2 → SL2×SL2

induces a short SL2-structure from any short (SL2 × SL2)-structure. This will be the clue
to describe the short (SL2 × SL2)-structures on a Lie algebra in terms of J -ternary algebras
endowed with an idempotent (Theorem 3.3).

Section 4 will be devoted to show examples of J -ternary algebras with idempotents and
the corresponding short (SL2 × SL2)-structures on certain Lie algebras, and Sect. 5 will be
devoted to using the results in [25] to describe, in terms of the examples in Sect. 4, all short
(SL2 × SL2)-structures on the finite-dimensional simple Lie algebras over an algebraically
closed field of characteristic 0.

In concluding this introduction, let us mention that Lie algebras L endowed with a homo-
morphism � : G → Aut(L), where G is a constant group scheme, have been considered too
in the literature and shown to be “coordinatized” by some nonassociative algebras (see, e.g.,
[16–18]).
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2 Short SL2-structures and J-ternary algebras

Short SL2-structures on simple Lie algebras over the complex numbers have been considered
by Stasenko [25, Definition 2]. Hence we extend his definition over arbitrary fields.

Definition 2.1 An SL2-structure � : SL2 → Aut(L) on a Lie algebra L is said to be short if
L decomposes, as a module for SL2 via �, into a direct sum of copies of the adjoint, natural,
and trivial modules.

Therefore, the isotypic decomposition of L allows us to describe L as follows:

L = (
sl(V ) ⊗ J

) ⊕ (
V ⊗ T

) ⊕ D, (2.1)

for vector spaces J , T , and D, where V is the natural two-dimensional representation of
SL2 � SL(V ). The action of SL2 is given by the adjoint action of SL2 on sl(V ), its natural
action on V , and the trivial action on J , T and D. The subspace D, being the subspace of
fixed elements by SL2, is a subalgebra of L.

This section is devoted to reviewing the connection between short SL2-structures on a Lie
algebra and the J -ternary algebras of Allison [1], developed in [18].

The following well known results will be needed. See, e.g., [18, Lemma 2.1].

Lemma 2.2 Let V be a two-dimensional vector space.

(i) The space Homsl(V )

(
sl(V ) ⊗ sl(V ), sl(V )

)
of sl(V )-invariant linear maps sl(V ) ⊗

sl(V ) → sl(V ) is spanned by the (skew-symmetric) Lie bracket:

f ⊗ g 	→ [ f , g] = f g − g f .

(ii) The space Homsl(V )

(
sl(V ) ⊗ sl(V ),F

)
is spanned by the trace map:

f ⊗ g 	→ tr( f g).

(iii) The space Homsl(V )

(
sl(V ) ⊗ V , V

)
is spanned by the natural action:

f ⊗ v 	→ f (v).

(iv) The space Homsl(V )

(
V ⊗ V ,F

)
is one-dimensional. Its nonzero elements are of the

form

u ⊗ v 	→ (u | v),

for a nonzero skew-symmetric bilinear form (. | .) on V .
(v) The space Homsl(V )

(
V ⊗ V , sl(V )

)
is one-dimensional. Once a nonzero skew-

symmetric bilinear form (. | .) is fixed on V , this subspace is spanned by the following
symmetric map:

u ⊗ v 	→ γu,v

(: w 	→ (u | w)v + (v | w)u
)
.

(vi) The spaces Homsl(V )

(
sl(V ) ⊗ sl(V ), V

)
, Homsl(V )

(
sl(V ) ⊗ V , sl(V )

)
,

Homsl(V )

(
sl(V ) ⊗ V ,F

)
, and Homsl(V )

(
V ⊗ V , V

)
are all trivial.

Moreover, Homsl(V ) may be replaced by HomSL(V ) all over.
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Remark 2.3 Lemma 2.2 is even valid in characteristic 3. Actually, if the characteristic of
our ground field F is 3, then [8, Theorem 1.11] gives the following isomorphisms of sl(V )-
modules:

V ⊗ V � sl(V ) ⊕ F, sl(V ) ⊗ V � Q(1), sl(V ) ⊗ sl(V ) � sl(V ) ⊕ Q(0),

where Q(1) is an indecomposable module with a unique maximal submodule W such that
Q(1)/W is isomorphic to V , and Q(0) is an indecomposable module with a unique maximal
submodule W such that Q(0)/W is isomorphic to the trivial module F. It follows at once
that all the spaces in items (i)–(v) are one-dimensional, and those in item (vi) are trivial.

Let us return to our assumption that the characteristic of the ground field is �= 2, 3. This
assumption will be kept throughout the paper with no further mention.

From now on, we will fix a nonzero skew-symmetric bilinear form (. | .) on our two-
dimensional vector space V .

Let L be a Lie algebra with an inner SL2-structure and isotypic decomposition as in
(2.1). The SL2-structure being inner forces J to contain a distinguished element 1, such that
sl(V ) ⊗ 1 is the image of ι in (1.1).

The SL2-invariance or, equivalently, the sl(V )-invariance, of the Lie bracket in our Lie
algebra L gives, for any f , g ∈ sl(V ), u, v ∈ V , a, b ∈ J , x, y ∈ T , and D ∈ D, the
following conditions:

[ f ⊗ a, g ⊗ b] = [ f , g] ⊗ a · b + 2tr( f g)Da,b,

[ f ⊗ a, u ⊗ x] = f (u) ⊗ a • x,

[u ⊗ x, v ⊗ y] = γu,v ⊗ 〈x | y〉 + (
u | v

)
dx,y,

[D, f ⊗ a] = f ⊗ D(a),

[D, u ⊗ x] = u ⊗ D(x),

(2.2)

for suitable bilinear maps

J × J → J : (a, b) 	→ a · b (symmetric),

J × J → D : (a, b) 	→ Da,b (skew-symmetric),

J × T → T : (a, x) 	→ a • x,

T × T → J : (x, y) 	→ 〈x | y〉 (skew-symmetric),

T × T → D : (x, y) 	→ dx,y (symmetric),

D × J → J : (D, a) 	→ D(a),

D × T → T : (D, x) 	→ D(x),

(2.3)

such that

1 · a = a, D1,a = 0, and 1 • x = x . (2.4)

The Jacobi identity on L also shows that all these maps are invariant under the action of
the Lie subalgebra D. The next result summarizes the properties of these maps:

Theorem 2.4 [18, Theorem2.2]ALie algebraL is endowedwith an inner shortSL2-structure
if and only if there is a two-dimensional vector space V such that L is, up to isomorphism,
the Lie algebra in (2.1), with Lie bracket given in (2.2), for suitable bilinear maps given in
(2.3), satisfying the following conditions:

• J is a unital Jordan algebra with the multiplication a · b.
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• T is a special unital Jordan module for J with the action a • x. That is, the map
J → End(T )(+), given by a 	→ (x 	→ a • x), is a homomorphism of unital Jordan
algebras. (For an associative algebra A, A(+) denotes the special Jordan algebra with
multiplication a · b = 1

2 (ab + ba).)
In other words, the following equation holds for a, b ∈ J and x ∈ T :

(a · b) • x = 1

2

(
a • (b • x) + b • (a • x)

)
. (2.5)

• For any a, b, c ∈ J and x, y, z ∈ T , the following identities hold:

Da,b(c) = a · (b · c) − b · (a · c), (2.6)

Da·b,c + Db·c,a + Dc·a,b = 0, (2.7)

4Da,b(x) = a • (b • x) − b • (a • x), (2.8)

4Da,〈x |y〉 = −da•x,y + dx,a•y, (2.9)

2a · 〈x | y〉 = 〈a • x | y〉 + 〈x | a • y〉, (2.10)

dx,y(a) = 〈a • x | y〉 − 〈x | a • y〉, (2.11)

dx,y(z) − dz,y(x) = 〈x | y〉 • z − 〈z | y〉 • x + 2〈x | z〉 • y. (2.12)

• For any D ∈ D, the linear endomorphism of J ⊕ T , given by a + x 	→ D(a) + D(x),
for a ∈ J and x ∈ T , is an even derivation of the Z/2-graded algebra with even part
J , odd part T , and multiplication given by the formula:

(a + x) 
 (b + y) = (
a · b + 〈x | y〉) + (

a • y + b • x
)
, (2.13)

for a, b ∈ J and x, y ∈ T . ��
As remarked in [18], all this is strongly related to the J -ternary algebras considered by

Allison [1].

Definition 2.5 [6, (3.12)] Let J be a unital Jordan algebra with multiplication a · b, for
a, b ∈ J . LetT be a unital special Jordanmodule forJ with action a•x for a ∈ J and x ∈ T .
Assume 〈. | .〉 : T ×T → J is a skew-symmetric bilinear map and (., ., .) : T ×T ×T → T
is a trilinear product on T . Then the pair (J , T ) is called a J -ternary algebra if the following
axioms hold for any a ∈ J and x, y, z, w, v ∈ T :

(JT1) a · 〈x | y〉 = 1

2

(〈a • x | y〉 + 〈x | a • y〉),
(JT2) a • (x, y, z) = (a • x, y, z) − (x, a • y, z) + (x, y, a • z),
(JT3) (x, y, z) = (z, y, x) − 〈x | z〉 • y,
(JT4) (x, y, z) = (y, x, z) + 〈x | y〉 • z,
(JT5) 〈(x, y, z) | w〉 + 〈z | (x, y, w)〉 = 〈x | 〈z | w〉 • y〉,
(JT6) (x, y, (z, w, v)) = ((x, y, z), w, v) + (z, (y, x, w), v) + (z, w, (x, y, v)).

Theorem 2.4 in [18] becomes now the following result:

Theorem 2.6 Let L be a Lie algebra endowed with a short inner SL2-structure with isotypic
decomposition in (2.1). Then the pair (J , T ) is a J -ternary algebra with the triple product
on T given by the next formula:

(x, y, z) = 1

2

(
−dx,y(z) + 〈x | y〉 • z

)
, (2.14)

for all x, y, z ∈ T , where 〈 | 〉, •, and dx,y are defined as in (2.2) and (2.3).
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Conversely, if (J , T ) is a J -ternary algebra with bilinear maps a · b, a • x, 〈x | y〉, and
trilinear map (x, y, z), as in Definition 2.5, then the vector space

L(J , T ) := (sl(V ) ⊗ J ) ⊕ (V ⊗ T ) ⊕ D, (2.15)

is a Lie algebra with an inner SL2-structure with the bracket defined as in (2.2), and where
D is the subalgebra of the Lie algebra of even derivations of the Z/2-graded algebra J ⊕ T
defined in (2.13) spanned by the maps Da,b for a, b ∈ J , and dx,y for x, y ∈ T , defined as
follows:

Da,b(c) = a · (b · c) − b · (a · c),
Da,b(x) = 1

4

(
a • (b • x) − b • (a • x)

)
,

dx,y(a) = 〈a • x | y〉 − 〈x | a • y〉,
dx,y(z) = 〈x | y〉 • z − 2(x, y, z),

(2.16)

for a, b, c ∈ J and x, y, z ∈ T .

Under the conditions of Theorem 2.6, the J -ternary algebra (J , T ) is said to coordinatize
the SL2-structure on L.

Aword of caution is needed here. IfL is a Lie algebra endowedwith an innerSL2-structure
as in Theorem 2.6, and (J , T ) is the associated J -ternary algebra that coordinatizes it, the
Lie algebra L(J , T ) is not necessarily isomorphic to our original L. It may even fail to be
isomorphic to a subalgebra of L. Actually, L(J , T ) is centrally isogenous to the subalgebra
of the original L generated by the isotypic components sl(V ) ⊗J and V ⊗ T . That is, their
universal central extensions coincide (see [6, 10] and the references therein). We will not go
into details.

3 Short (SL2 × SL2)-structures

We start by introducing a new class of S-structures: the short (SL2 × SL2)-structures.

Definition 3.1 An (SL2 × SL2)-structure � : SL2 × SL2 → Aut(L) on a Lie algebra L is
said to be short if L decomposes, as a module for SL2 × SL2 via �, into a direct sum of
copies of the following modules:

• the adjoint module for each of the two copies of SL2,
• the natural two-dimensional modules V1 and V0 for each of the two copies of SL2 [the

weird numbering 1, 0 is justified by the Peirce decomposition in (3.5)],
• the tensor product V1 ⊗ V0, and
• the trivial one-dimensional module.

Remark 3.2 Due to Lemma 2.2, where SL2-invariance may be substituted by sl2-invariance,
the reader who feels uncomfortable with affine group schemes may consider an alternate
definition of short sl2⊕sl2-structure on a Lie algebraL, as a homomorphism of Lie algebras
� : sl2 ⊕ sl2 → Der(L) such that, as a module for sl2 ⊕ sl2 via �, L decomposes into a
direct sum of copies of the adjoint module for each of the two copies of sl2, of the natural
two-dimensional modules V1 and V0 for each of the two copies of sl2, of the tensor product
V1 ⊗ V0, and of the trivial one-dimensional module.
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Assume that � : SL2 × SL2 → L is an inner short (SL2 × SL2)-structure on the Lie
algebra L, then its isotypic decomposition allows us to describe L as follows:

L = (
sl(V1) ⊗ J1

) ⊕ (
sl(V0) ⊗ J0

) ⊕ (
(V1 ⊗ V0) ⊗ J 1

2

) ⊕ (
V1 ⊗ T1

) ⊕ (
V0 ⊗ T0

) ⊕ S.

(3.1)

Note that the invariance of the bracket under the action of SL2×SL2 � SL(V1)×SL(V0)
forces that

(
sl(Vi )⊗Ji

)⊕ (
Vi ⊗Ti

)⊕S is a subalgebra with a short inner SL2-structure, for
i = 0, 1, and hence that the bracket in L induces a structure of J -ternary algebra on (Ji , Ti ),
for i = 1, 0.

In order to get more information, it is not a good idea to expand blindly the Lie bracket
on L. Instead, consider the diagonal subgroup of SL2 × SL2. The composition

SL2
�−→ SL2 × SL2

�−→ Aut(L), (3.2)

where � is the diagonal embedding g 	→ (g, g), gives an inner SL2-structure on L. This
structure is short because, as SL2-modules via � ◦ �, sl(Vi ) is the adjoint module and Vi
is the two-dimensional natural module, for i = 1, 0, and V1 ⊗ V0 decomposes as the direct
sum of an adjoint module and a trivial module. (See items (iv) and (v) of Lemma 2.2.)

The next theorem is our main result. It describes the short inner (SL2 × SL2)-structures
on a Lie algebra in terms of J -ternary algebras (J , T ) where the unital Jordan algebra J
contains a nontrivial distinguished idempotent.

Theorem 3.3 Let L be a Lie algebra endowed with a short inner (SL2 × SL2)-structure
� : SL2 ×SL2 → Aut(L). Let (J , T ) be the J -ternary algebra that coordinatizes the short
SL2-structure � = � ◦ � in (3.2), with isotypic decomposition given by (2.1):

L = (
sl(V ) ⊗ J

) ⊕ (
V ⊗ T

) ⊕ D, (3.3)

where V is the two-dimensional natural module for SL2.
Then the unital Jordan algebra J contains an idempotent e = e·2 �= 0, 1 such that the

image of the Lie algebra homomorphism ι in (1.1) is
(
sl(V ) ⊗ e

) ⊕ (
sl(V ) ⊗ (1 − e)

)
.

Conversely, ifL is a Lie algebra endowedwith an innerSL2-structure� : SL2 → Aut(L)

with isotypic decomposition in (3.3), and such that the unital Jordan algebra J contains a
nontrivial idempotent e, then L is endowed with a short inner (SL2 × SL2)-structure whose
isotypic decomposition is the following:

L = (
sl(V ) ⊗ J1

) ⊕ (
sl(V ) ⊗ J0

) ⊕
((
sl(V ) ⊗ J 1

2

) ⊕ De,J 1
2

)

⊕ (
V ⊗ T1

) ⊕ (
V ⊗ T0

) ⊕ S, (3.4)

where J = J1 ⊕ J 1
2

⊕ J0 is the Peirce decomposition of J relative to the idempotent e:

J1 = {a ∈ J | e · a = a}, J 1
2

=
{
a ∈ J | e · a = 1

2
a

}
, J0 = {a ∈ J | e · a = 0},

(3.5)

T = T1 ⊕ T0 is the induced decomposition on T :

T1 = {x ∈ T | e • x = x}, T0 = {x ∈ T | e • x = 0}, (3.6)

and where the following assertions hold:
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• for any a ∈ J1, sl(V ) ⊗ a is a copy of the adjoint module for the first copy of SL2,
• for any a ∈ J0, sl(V ) ⊗ a is a copy of the adjoint module for the second copy of SL2,
• for any a ∈ J 1

2
,
(
sl(V ) ⊗ a

) ⊕ FDe,a is a copy of the tensor product of the natural

module for the first copy of SL2 and the natural module for the second copy of SL2,
• for any x ∈ T1, V ⊗ x is a copy of the natural module for the first copy of SL2,
• for any x ∈ T0, V ⊗ x is a copy of the natural module for the second copy of SL2,
• S is the subspace of fixed elements by SL2 × SL2. Moreover, the subspace of fixed

elements by SL2 under � = � ◦ � is the direct sum D = S ⊕ De,J 1
2
.

Proof For the first part, as the (SL2 × SL2)-structure � is inner, L contains a subalgebra
isomorphic to sl2 ⊕ sl2, which in the decomposition (3.3) appears as

(
sl(V ) ⊗ e1

) ⊕ (
sl(V ) ⊗ e2

)
,

for orthogonal idempotents e1, e2 ∈ J ; that is, e·2
1 = e1, e·2

2 = e2, e1 ·e2 = 0 and 1 = e1+e2.
Now it is enough to take e = e1.

Conversely, let L be a Lie algebra endowed with a short inner SL2-structure � : SL2 →
Aut(L) with isotypic decomposition as in (3.3). Let e ∈ J be a nontrivial idempotent (i.e.,
e = e·2 �= 0, 1), and let J = J1 ⊕ J 1

2
⊕ J0 be the corresponding Peirce decomposition as

in (3.5). Equation (2.5) gives e • x = e • (e • x) for any x ∈ T , so that T decomposes as in
(3.6).

We need a short digression before continuing with the proof. The vector space gl(V ) of
linear endomorphisms of our two-dimensional vector space V is a module for sl(V )⊕ sl(V )

by means of the action

( f1, f2) · g := f1g − g f2, (3.7)

for f1, f2 ∈ sl(V ) and g ∈ gl(V ). Moreover, once we fix, as we have done before, a nonzero
skew-symmetric bilinear form (. | .) on V , gl(V ) is isomorphic to V ⊗ V by means of the
linear map determined as follows:

u ⊗ v 	→ u(v | .)
(: w 	→ (v | w)u

)
,

for u, v, w ∈ V . This linear isomorphism is an isomorphism of sl(V ) ⊕ sl(V )-modules,
where the first (resp. second) copy of sl(V ) acts on the first (resp. second) copy of V in
V ⊗ V .

Also note that for any f ∈ sl(V ), theCayley-Hamilton equation gives f 2 = − det( f )id =
1
2 tr( f

2)id, and hence, by linearization we get

f g + g f = tr( f g)id, (3.8)

for any f , g ∈ sl(V ). On the other hand, [ f , g] = f g − g f which, together with (3.8) gives
the formulas:

f g = 1

2

([ f , g] + tr( f g)id
)
, g f = 1

2

(−[ f , g] + tr( f g)id
)
, (3.9)

for f , g ∈ sl(V ), and hence we have

( f1, f2) · g = f1g − g f2 = 1

2

([ f1 + f2, g] + tr(( f1 − f2)g)id
)
, (3.10)

for any f1, f2, g ∈ sl(V ).
(Note that sl(V )⊕sl(V ) can be substituted by SL(V )×SL(V ) above, with (3.7) changed

to ( f1, f2) · g = f1g f
−1
2 , for rational points f1, f2 ∈ SL(V ) and g ∈ gl(V ).)
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Now, for L as above, endowed with a short inner SL2-structure �, (2.2) gives, for any
f1, f2, g ∈ sl(V ) and a ∈ J 1

2
, the following:

[ f1 ⊗ e + f2 ⊗ (1 − e), g ⊗ a] = 1

2
[ f1 + f2, g] ⊗ a + 2tr(( f1 − f2)g)De,a,

[ f1 ⊗ e + f2 ⊗ (1 − e), De,a] = 1

4
( f1 − f2) ⊗ a,

where we have used D1,a = 0 and De,a(e) = − 1
4a, which follow from (2.4) and (2.6).

Comparing with (3.10), it turns out that the linear map
(
sl(V ) ⊗ a

) ⊕ FDe,a −→ gl(V )

f ⊗ a 	→ f ,

De,a 	→ 1

4
id,

is an isomorphism of sl(V ) ⊕ sl(V ) � (
sl(V ) ⊗ e

) ⊕ (
sl(V ) ⊗ (1 − e)

)
-modules.

On the other hand, for any a ∈ J 1
2
, Eq. (2.6) gives De,a(e) = ( 1

4 − 1
2

)
a = − 1

4a, so the
linear map

J 1
2

→ D, a 	→ De,a

is one-to-one, and D decomposes as D = De,J 1
2

⊕ S, with

S = {D ∈ D | D(e) = 0}.
It then follows that S is the centralizer of the subalgebra

(
sl(V ) ⊗ e

) ⊕ (
sl(V ) ⊗ (1− e)

) �
sl(V ) ⊕ sl(V ).

Therefore, the decomposition in (3.4) gives a decomposition of L, as a module for sl2 ⊕
sl2 � (

sl(V ) ⊗ e
) ⊕ (

sl(V ) ⊗ (1− e)
)
, into a direct sum of copies of the adjoint module for

the first copy of sl2, copies of the adjoint module for the second copy of sl2, copies of the
tensor product of the natural modules for the two copies of sl2, copies of the natural module
for the first copy of sl2, copies for the natural module for the second copy of sl2, and copies
of the trivial one-dimensional module for sl2 ⊕ sl2. This shows that L is endowed with a
short inner (SL2 × SL2)-structure. ��
Remark 3.4 Let L be a Lie algebra endowed with a short inner SL2-structure � : SL2 →
Aut(L) with isotypic decomposition as in (3.3), and such that the unital Jordan algebra J
contains a nontrivial idempotent e. Then (2.7) with c = e, a ∈ J1, and b ∈ J0 gives

DJ1,J0 = 0,

and now, with b = c = e and a ∈ J1, gives De,J1 = 0. (This should be familiar to experts
in Jordan algebras, but note that here Da,b is an element of the subalgebra D, which acts by
derivations on J , but it is not, in general, the Lie algebra of derivations of J .)

Also, (2.10) with a = e gives

〈Ti | Ti 〉 ⊆ Ji (i = 1, 0), 〈T1 | T0〉 ⊆ J 1
2
,

and (2.9) with a = e shows dx .y = 4De,〈x |y〉 for x ∈ T0 and y ∈ T1, which implies

dT0,T1 ⊆ De,J 1
2
.
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All these conditions follow too from the fact that the bracket inL is invariant under the action
of

(
sl(V ) ⊗ e

) ⊕ (
sl(V ) ⊗ (1 − e)

)
.

Remark 3.5 The Lie algebras graded by the nonreduced root system BC2 and with grading
subalgebra of type C2 are also coordinatized by J -ternary algebras with a proper idempotent
plus someextra restrictions [6,Theorem6.66]. The connectionwithTheorem3.3 is as follows.
Take two two-dimensional vector spaces V1, V2, endowed with nonzero alternating forms.
Identify the simple Lie algebra of type C2 with s = sp(V1 ⊥ V2). Then sl(V1) ⊕ sl(V2) �
sl2 ⊕ sl2 is naturally a subalgebra of s, and s decomposes, as a module for sl(V1) ⊕ sl(V2),
as sl(V1) ⊕ sl(V2) ⊕ (V1 ⊗ V2). The s-modules that appear in a BC2-graded Lie algebra
with grading subalgebra s decompose, as modules for sl(V1) ⊕ sl(V2), into a direct sum of
copies of the adjoint modules sl(V1) and sl(V2), natural modules V1 and V2, V1 ⊗ V2, and
the trivial module. Hence any BC2-graded Lie algebra with a grading subalgebra of type C2

is naturally endowed with a short (SL2 × SL2)-structure.

4 Examples

In this section, several examples of J -ternary algebras will be reviewed. Any nontrivial
idempotent in the corresponding Jordan algebras provides examples of short (SL2 × SL2)-
structures on the associated Lie algebra. The first class of examples of J -ternary algebras
are defined in terms of unital associative algebras with involution and left modules for them,
while the second class of examples is related to structurable algebras.

The classification of the reduced finite-dimensional J -ternary algebras was obtained by
Hein [19, 20].

4.1 Prototypical example

Let (A, ∗) be a unital associative algebra with involution, and let T be a left A-module
endowedwith a skew-hermitian form h : T ×T → A. That is, h isF-bilinear, and h(ax, y) =
ah(x, y) and h(x, y) = −h(y, x)∗, for any a ∈ A and x, y ∈ T .

As above, let V be a two-dimensional vector space endowed with a nonzero skew-
symmetric bilinear form (. | .), and consider the left A-module

W = (V ⊗ A) ⊕ T ,

where V ⊗A is a leftA-module in the natural way: a(u ⊗ b) := u ⊗ (ab), for any a, b ∈ A
and u ∈ V . Extend h to a skew-hermitian form, also denoted by h, on W by imposing that
V ⊗ A and T are orthogonal relative to h, and defining its restriction to V ⊗ A as follows:

h(u ⊗ a, v ⊗ b) := 2(u | v)ab∗, (4.1)

for any u, v ∈ V and a, b ∈ A.
Denote by τ the involution on EndA(W) induced by h:

h
(
f (x), y

) = h
(
x, f τ (y)

)

for any f ∈ EndA(W) and any x, y ∈ W , and denote too by τ the restriction of τ to
EndA(T ).

For any x, y ∈ W , the A-linear map defined as follows:

ϕx,y = h(., x)y + h(., y)x : z 	→ h(z, x)y + h(z, y)x, (4.2)
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is skew-symmetric relative to τ . That is, ϕτ
x,y = −ϕx,y , or ϕx,y belongs to the Lie algebra

Skew
(
EndA(W), τ

)
. Also, for any a ∈ A and x, y ∈ W , we have

ϕax,y = ϕx,a∗y

because h is skew-hermitian. And for any f ∈ Skew
(
EndA(W), τ

)
and any x, y ∈ W , the

following equation follows at once:

[ f , ϕx,y] = ϕ f (x),y + ϕx, f (y). (4.3)

For any endomorphism ϕ of the left regular moduleA, there is an element a ∈ A such that
ϕ(1) = a∗. Hence, for any b ∈ A, we get ϕ(b) = ϕ(b1) = bϕ(1) = ba∗. As a consequence,
the associative algebra EndA(A) is isomorphic to A by means of the assignment:

a 	→ (
Ra∗ : b 	→ ba∗), (4.4)

and hence we can identify the associative algebras

EndA(V ⊗ A) � EndF(V ) ⊗ EndA(A) � EndF(V ) ⊗ A,

so that the element f ⊗ a ∈ EndF(V ) ⊗ A is identified with the endomorphism f ⊗ Ra∗ ∈
EndA(V ⊗ A).

Also, for any f ∈ EndF(V ), u, v ∈ V , and a, b, c ∈ A, we have:

h( f (u) ⊗ ba∗, v ⊗ c) = 2
(
f (u) | v

)
ba∗c∗ = 2

(
u | f 
(v)

)
b(ca)∗,

where f 
 is the adjoint of f relative to (. | .):
(
f (u) | v

) = (
u | f 
(v)

)
for any u, v ∈ V , so

that f 
 = − f if and only if f ∈ sl(V ). Hence, with the identification above EndA(V ⊗A) �
EndF(V )⊗A, the adjoint ( f ⊗a)τ equals f 
⊗a∗, and theLie algebraSkew

(
EndA(V⊗A), τ

)

appears as:

Skew
(
EndA(V ⊗ A), τ

) � (
sl(V ) ⊗ H(A, ∗)

) ⊕ (
idV ⊗ Skew(A, ∗)

)
,

where H(A, ∗) denotes the subspace of symmetric elements of A relative to ∗.
Inside the Lie algebra Skew

(
EndA(W), τ

)
there is the subalgebra

L = Skew
(
EndA(V ⊗ A), τ

) ⊕ Skew
(
EndA(T ), τ

) ⊕ ϕV⊗A,T ,

which can be identified with
(
sl(V ) ⊗ H(A, ∗)

) ⊕ ϕV⊗A,T ⊕
((
idV ⊗ Skew(A, ∗)

) ⊕ Skew
(
EndA(T ), τ

))
.

Also, for any u ∈ V , a ∈ A, and x ∈ T , we have ϕu⊗a,x = ϕu⊗1,a∗x , so that ϕV⊗A,T =
ϕV⊗1,T , and this allows us to identify ϕV⊗A,T with V ⊗ T , where u ⊗ x corresponds to
ϕu⊗1,x for u ∈ V and x ∈ T .

With these identifications we may write

L = (
sl(V ) ⊗ H(A, ∗)

) ⊕ (V ⊗ T ) ⊕ D, (4.5)

with D = (
idV ⊗ Skew(A, ∗)

) ⊕ Skew
(
EndA(T ), τ

)
. This shows that L is endowed with a

short SL2-structure, with J -ternary algebra
(
J = H(A, ∗), T

)
.

Let us see what the operations in (J , T ) look like, according to (2.2) and (2.3).
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• For f , g ∈ sl(V ) and a, b ∈ H(A, ∗), working inside EndF(V ) ⊗A and using (3.9), we
get

[ f ⊗ a, g ⊗ b] = f g ⊗ ab − g f ⊗ ba

= [ f , g] ⊗ a · b + 1

2
tr( f g)idV ⊗ [a, b],

and this shows that the Jordan product on J = H(A, ∗) is the natural one: a · b =
1
2 (ab + ba), while Da,b is given by Da,b = idV ⊗ 4[a, b] ∈ idV ⊗ Skew(A, ∗).

• For f ∈ sl(V ), a ∈ H(A, ∗), v ∈ V , and x ∈ T , we get:

[ f ⊗ a, ϕv⊗1,x ] = ϕ f (v)⊗a∗,x = ϕ f (v)⊗1,ax ,

so the action of J on T is also the natural one: a • x = ax .
Also, for any s ∈ Skew(A, ∗), a ∈ H(A, ∗) and x ∈ T , we have

[idV ⊗ s, ϕv⊗1,x ] = ϕv⊗s∗,x = ϕv⊗1,sx . (4.6)

• Finally, for u, v ∈ V and x, y ∈ T , we get

[ϕu⊗1,x , ϕv⊗1,y] = ϕϕu⊗1,x (v⊗1),y + ϕv⊗1,ϕu⊗1,x (y)

= 2(v | u)ϕx,y + ϕv⊗1,u⊗h(y,x).
(4.7)

But for u, v, w ∈ V and a ∈ H(A, ∗), the map ϕv⊗1,u⊗a sends w ⊗ 1 to

2(w | v)u ⊗ a + 2(w | u)v ⊗ a∗.

On the other hand, for a = c + s with c = c∗ ∈ H(A, ∗) and s = −s∗ ∈ Skew(A, ∗),
using that (u | v)w + (v | w)u + (w | u)v is 0, we get

2(w | v)u ⊗ a + 2(w | u)v ⊗ a∗

= 2(w | v)u ⊗ (c + s) + 2(w | u)v ⊗ (c − s)

= −2γu,v(w) ⊗ c − 2
(
(v | w)u + (w | u)v

) ⊗ s

= γu,v(w) ⊗ (−a − a∗) + (u | v)w ⊗ (a − a∗)

=
(
γu,v ⊗ (−a − a∗) − (u | v)idV ⊗ (a − a∗)

)
(w ⊗ 1)

(recall that the element f ⊗ a ∈ EndF(V ) ⊗ A is identified with the endomorphism
f ⊗ Ra∗ ∈ EndA(V ⊗ A)), so that we have

ϕv⊗1,u⊗a = γu,v ⊗ (−a − a∗) − (u | v)idV ⊗ (a − a∗).

Then (4.7) gives the following identity:

[ϕu⊗1,x , ϕv⊗1,y]
= γu,v ⊗ (

h(x, y) − h(y, x)
) + (u | v)

(
−2ϕx,y − (

idV ⊗ (
h(x, y) + h(y, x)

)))
,

and comparing with (2.2) we obtain the following values:

〈x | y〉 = h(x, y) − h(y, x)
(= h(x, y) + h(x, y)∗ ∈ H(A, ∗)

)
,

dx,y = −2ϕx,y − idV ⊗ (
h(x, y) + h(y, x)

)

∈ Skew
(
EndA(T ), τ

) ⊕ (
idV ⊗ Skew(A, ∗)

)
.

(4.8)
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Now Equations (2.14), (4.2), and (4.8), provide the triple product:

(x, y, z) = ϕx,y(z) + 1

2

(
h(x, y) + h(y, x)

)
z + 1

2

(
h(x, y) − h(y, x)

)
z

= h(z, x)y + h(z, y)x + 1

2

(
h(x, y) + h(y, x)

)
z + 1

2

(
h(x, y) − h(y, x)

)
z

= h(x, y)z + h(z, x)y + h(z, y)x . (4.9)

Therefore, our J -ternary algebra (J , T ) is the prototypical example of J -ternary algebra
in [6, Example 3.14]. We summarize it in the following result:

Proposition 4.1 Let (A, ∗) be a unital associative algebra with involution and let T be a left
A-module endowedwith a skew-hermitian form h : T ×T → A. Then the pair (J , T ), where
J = H(A, ∗) is the Jordan algebra of symmetric elements of A relative to the involution ∗,
is a J -ternary algebra with the following operations:

• a · b = 1
2 (ab + ba) for any a, b ∈ J = H(A, ∗),

• a • x = ax for any a ∈ J and x ∈ T ,
• 〈x | y〉 = h(x, y) − h(y, x) for x, y ∈ T , and
• (x, y, z) = h(x, y)z + h(z, x)y + h(z, y)x for x, y, z ∈ T .

Let us have a look at some particular cases of this prototypical example.
To begin with, letW and Z be two vector spaces, letB be the associative algebra EndF(W )

of linear endomorphisms of W , and letA = B ⊕Bop be the direct sum of B and its opposite
algebra (defined over the same vector space but with newmultiplication a.b = ba). Consider
the exchange involution on A: (a, b)ex = (b, a). The Jordan algebra J = H(A, ex) is
isomorphic to the Jordan algebra B(+) obtained by the symmetrization of the multiplication
in B.

The vector space W is the natural left module for B, and hence it is a left module for A
annihilated by Bop . The dual vector space W ∗ is a right B-module, and hence a left Bop-
module, so it becomes a leftA-module annihilated by B. Then T := (W ⊗ Z∗)⊕ (W ∗ ⊗ Z)

becomes a left A-module in a natural way (the action of A on Z and Z∗ is trivial), and it is
endowed with a skew-hermitian form h in which the subspaces W ⊗ Z∗ and W ∗ ⊗ Z are
totally isotropic, and where we have

h(w ⊗ α, ω ⊗ z) = α(z)wω(.) ∈ EndF(W ) = B ⊆ A,

for w ∈ W , ω ∈ W ∗, z ∈ Z , and α ∈ Z∗.
Then

(
J = B(+), T

)
is a J -ternary algebra and ifW and Z are finite-dimensional, the Lie

algebra L in (4.5) is naturally isomorphic to the general linear Lie algebra gl
(
(V ⊗W )⊕ Z

)
.

Its derived algebra sl
(
(V ⊗ W ) ⊕ Z

)
shares the same J -ternary algebra.

On the other hand, if W is a vector space endowed with a symmetric (respectively skew-
symmetric) bilinear form bW : W × W → F, and Z is another vector space endowed with
a skew-symmetric (resp. symmetric) bilinear form bZ : Z × Z → F, then T = W ⊗ Z is
naturally a left module for the algebraA = EndF(W ), which is endowed with the involution
attached to bW , while T is endowed with the skew-hermitian form

h : T × T −→ A
(w1 ⊗ z1, w2 ⊗ z2) 	→ bZ (z1, z2)w1bW (w2, .).

For finite-dimensional W and Z , the Lie algebra L in (4.5) is the symplectic Lie algebra
sp

(
(V ⊗ W ) ⊥ Z

)
(resp. the orthogonal Lie algebra so

(
(V ⊗ W ) ⊥ Z

)
), where the bilinear

form on (V ⊗ W ) ⊥ Z is the orthogonal sum of the form bZ on Z and the tensor product of
the skew-symmetric form on V and the form bW on W .
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4.2 Structurable algebras and J-ternary algebras

Let L be a Lie algebra with a short SL2-structure and isotypic decomposition as in (2.1). The
Lie bracket is then given by (2.2), and the triple product on T by (2.14).

Fix a symplectic basis {p, q} in V : (p | q) = 1, and identify sl(V ) with sl2 using this
basis. Then we have E = (

0 1
0 0

) = 1
2γp,p , H = (

1 0
0 −1

) = −γp,q , and F = (
0 0
1 0

) = − 1
2γq,q .

The adjoint action of H gives a 5-grading:

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2,

where L2 = E ⊗ J , L−2 = F ⊗ J , L1 = p ⊗ T , L−1 = q ⊗ T , and L0 = (H ⊗ J ) ⊕ D.
Identify J with L2 by means of a ↔ E ⊗ a, and T with L1 by means of x ↔ p ⊗ x .

Writing F for F ⊗ 1 and using (2.2) gives, for a, b ∈ J and x, y, z ∈ T , the following
equations:

• [[E ⊗ a, F], E ⊗ b] = [H ⊗ a, E ⊗ b] = 2E ⊗ a · b, so that the Jordan product in J
becomes the product in L2 given by

A · B = 1

2
[[A, F], B], (4.10)

for A, B ∈ L2.
• [[E ⊗ a, F], p ⊗ x] = [H ⊗ a, p ⊗ x] = p ⊗ a • x , and hence L1 becomes a special

module for the Jordan algebra L2 with the action given by

A • X = [[A, F], X ], (4.11)

for A ∈ L2 and X ∈ L1.
• [p ⊗ x, p ⊗ y] = γp,p ⊗ 〈x | y〉 = 2E ⊗ 〈x | y〉, so that the product L1 × L1 → L2 in

the J -ternary algebra (L2,L1) is given by

〈X | Y 〉 = 1

2
[X , Y ], (4.12)

for X , Y ∈ L1.
• [[p⊗x, [p⊗y, F]], p⊗z] = −[[p⊗x, q⊗y], p⊗z] = −[γp,q⊗〈x | y〉+dx,y, p⊗z] =

p ⊗ (〈x | y〉 • z − dx,y(z)
) = 2p ⊗ (x, y, z) [recall (2.14)], and hence the triple product

in L1 is given by

(X , Y , Z) = 1

2
[[X , [Y , F]], Z ], (4.13)

for X , Y , Z ∈ L1.

This is summarized in the next result.

Proposition 4.2 LetL be a 5-graded Lie algebra, and assume that there are elements E ∈ L2

and F ∈ L−2, such that span {E, F, H = [E, F]} is a subalgebra isomorphic to sl2, with
Li = {X ∈ L | [H , X ] = i X}, for i = −2,−1, 0, 1, 2. (In particular [H , E] = 2E and
[H , F] = −2F.) Then the pair (L2,L1) is a J -ternary algebra with the operations in (4.10),
(4.11), (4.12), and (4.13).

In particular, consider a structurable algebra (A, -), that is, a unital algebra with involution
such that the operators Vx,y defined by

Vx,y(z) = {x, y, z} := (x ȳ)z + (z ȳ)x − (zx̄)y
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satisfy

[Vx,y, Vz,w] = VVx,y(z),w − Vz,Vy,x (w),

for all x, y, z, w ∈ A (see [2]). LetH and S denote, respectively, the subspace of symmetric
(h̄ = h) and skew-symmetric (s̄ = −s) elements in A. The inner structure Lie algebra
Instrl(A, -) of A is the Lie subalgebra of gl(A) spanned by the Vx,y’s.

The Kantor construction (see [3] or [6, 6.4]) gives the 5-graded Lie algebra

L = K (A, -) = S∼ ⊕ A∼ ⊕ Instrl(A, -) ⊕ A ⊕ S,

where L−2 = S∼ is a copy of S, L−1 = A∼ is a copy of A (the elements in these cases will
be written as s∼ for s ∈ S, or x∼ for x ∈ A), L0 = Instrl(A, -), L1 = A and L2 = S. The
Lie bracket in L is given by the following equations:

[T , x] = T (x), [T , x∼] = T ε(x)∼,

[T , s] = T (s) + sT (1), [T , s∼] = (
T ε(s) + sT ε(1)

)∼
,

[x, y] = 2(x ȳ − yx̄), [x∼, y∼] = 2(x ȳ − yx̄)∼,

[x, y∼] = 2Vx,y, [s, t∼] = Ls Lt

(
= 1

2
(Vst,1 − Vs,t )

)
,

[x, s∼] = −(sx)∼, [x∼, s] = −sx,

for any x, y ∈ A, s, t ∈ S, and T ∈ Instrl(A, -), and where Ls is the operator of left
multiplication by s, and V ε

x,y := −Vy,x for any x, y ∈ A.

Proposition 4.3 Let (A, -) be a structurable algebra, and let s ∈ S be a skew-symmetric
element such that the left multiplication Ls is bijective, then the pair (S,A) is a J -ternary
algebra with the following operations:

a · b = 1

2

(
a(sb) + b(sa)

)
,

a • x = a(sx),

〈x | y〉 = x ȳ − yx̄,

(x, y, z) = −Vx,sy(z),

for a, b ∈ S and x, y, z ∈ A.

Proof In a slightly different way, this appears without proof in [6, Remark 6.7]. We will
prove it here as a consequence of Proposition 4.2.

Since Ls is invertible, there is an element s′ ∈ S such that L−1
s = Ls′ [5, Proposition 11.1]

and then the elements E = s′ and F = s∼ satisfy the conditions of Proposition 4.2, with
H = [E, F] = V1,1 = id. Therefore, (S,A) is a J -ternary algebra with the operations
defined as in (4.10), (4.11), (4.12), and (4.13):

a · b = 1

2
[[a, s∼], b] = 1

2
[LaLs, b] = 1

2

(
a(sb) + b(as)

) = 1

2

(
a(sb) + b(sa)

)
,

a • x = [[a, s∼], x] = [LaLs, x] = a(sx),

〈x | y〉 = 1

2
[x, y] = x ȳ − yx̄,

(x, y, z) = 1

2
[[x, [y, s∼]], z] = 1

2
[[x,−(sy)∼], z] = −[Vx,sy, z] = −Vx,sy(z),

for a, b ∈ S and x, y, z ∈ A, as required. ��
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As a particular case, consider the case of the structurable algebra obtained as the tensor
product of a Cayley (or octonion) algebra and another unital composition algebra: A =
C1 ⊗ C2, where the involution is the tensor product of the canonical involutions in the Cayley
algebra C1 and in the composition algebra C2.

Denote by ni the norm in Ci , and by Si the subspace of trace zero elements (i.e., s̄ = −s)
in Ci , for i = 0, 1. The skew-symmetric part of A is S = S1 ⊗ 1 + 1 ⊗ S2, which we will
identify with S1 ⊕ S2. Fix an element s ∈ S1 with n1(s) �= 0.

As in [4] consider the Albert form Q : S → F, which is the nondegenerate quadratic form
given by

Q(s1 + s2) := 1

n1(s)

(
n1(s1) − n2(s2)

)
,

for s1 ∈ S1 and s2 ∈ S2. Consider also the linear map � given by

(s1 + s2)
� := n1(s)(s1 − s2).

Write c = − 1
n1(s)

s. The pair (S,A) is a J -ternary algebra (Proposition 4.3), and the Jordan
product in S satisfies, for any a ∈ S, the following:

a·2 = asa = 1

n1(s)
(as�a) = 1

n1(s)

(
Q(a)s − Q(a, s)a

) = Q(a, c)c − Q(a)c, (4.14)

where we have used [4, (3.7)]. Therefore S is the Jordan algebra denoted by J ord(Q, c) in
[23, I.3.7] (a quadratic factor in the notation there), or the Jordan algebra of the quadratic
form −Q|(Fs)⊥ in the notation of [21, I.4]. The unity is the element c. (Here (Fs)⊥ denotes
the subspace of S orthogonal to s.)

Our structurable algebra A = C1 ⊗ C2 is a special module for the Jordan algebra (S, ·)
with a • x = a(sx). For any a ∈ S orthogonal to s (relative to Q), and any x ∈ A we get

a • (a • x) = a·2 • x = −Q(a)c • x = −Q(a)x,

and hence the action of S on A extends to a homomorphism of associative algebras

θ : Cl((Fs)⊥,−Q|(Fs)⊥
) → EndF(A), (4.15)

where Cl
(
(Fs)⊥,−Q|(Fs)⊥

)
is the associated Clifford algebra. This is the unital special uni-

versal envelope of the Jordan algebra S [21, II.11]. Actually, the Jordan algebra (S, ·) embeds

in Cl
(
(Fs)⊥,−Q|(Fs)⊥

)(+), with αc + u ∈ S being sent to α1 + u ∈ Cl
(
(Fs)⊥,−Q|(Fs)⊥

)
,

for any α ∈ F and u ∈ (Fs)⊥ (recall that c is the unity of the Jordan algebra (S, ·)).
Remark 4.4 The Clifford algebra Cl

(
(Fs)⊥,−Q|(Fs)⊥

)
is isomorphic to the even Clifford

algebra Cl+
(
S, Q

)
. The natural isomorphism takes any a ∈ (Fs)⊥ to the element 1

n1(s)
a 
 s,

where 
 denotes the (associative) product in Cl
(
S, Q

)
.

If C2 is associative, and hence of dimension at most 4, then A is a free right C2-module
of dimension 8 and the image of θ in (4.15) is contained in EndC2(A) � EndF(C1) ⊗ C2.
Actually, [4, Theorem 4.5] shows that the image of θ is precisely EndC2(A). Moreover, if
C2 is commutative (so its dimension is 1 or 2), by dimension count, θ gives an isomorphism
Cl

(
(Fs)⊥,−Q|(Fs)⊥

) � EndC2(A). If C2 is a quaternion algebra, then Cl
(
(Fs)⊥,−Q|(Fs)⊥

)

has dimension 29, while EndC2(A) � Mat8(C2) has dimension 4 × 82 = 28. In this case
Cl

(
(Fs)⊥,−Q|(Fs)⊥

)
is isomorphic to the tensor product of the even Clifford algebra, which

is simple, and the two-dimensional center. The existence of θ shows thatCl
(
(Fs)⊥,−Q|(Fs)⊥

)
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is not simple, and hence its center is isomorphic toF×F. It follows thatCl
(
(Fs)⊥,−Q|(Fs)⊥

)

is isomorphic to Mat8(C2) × Mat8(C2).
If C2 is not associative, then it is an eight-dimensional Cayley algebra, and the dimension of

Cl
(
(Fs)⊥,−Q|(Fs)⊥

)
is 213, while the dimension of EndF(A) is 642 = 212. As in the previous

case, we conclude that Cl
(
(Fs)⊥,−Q|(Fs)⊥

)
is isomorphic to Mat64(F) × Mat64(F).

Remark 4.5 In a different setting, the J -ternary algebras obtained from the structurable alge-
bras C1 ⊗ C2 have been considered too in [11].

5 Short (SL2 × SL2)-structures on finite-dimensional simple Lie
algebras

The aim of this section is to take advantage of the description of the short SL2-structures
on the finite-dimensional simple Lie algebras in [25], obtained by a careful analysis of the
5-gradings on these algebras, together with Theorem 3.3, to describe the short (SL2 ×SL2)-
structures on these algebras. All these structures are obtained from the examples considered
in the previous section.

Throughout the section, the ground field F will be assumed to be algebraically closed and
of characteristic 0.

5.1 Special linear Lie algebras

The results in [25, Sect. 4.2] show that for a finite-dimensional simple Lie algebra of type
A (special linear), the only SL2-structures are given by viewing it as sl

(
(V ⊗ W ) ⊕ Z

)
,

where V is our two-dimensional vector space endowed with a nonzero alternating bilinear
form (. | .), and W and Z are two other vector spaces. In this case, the associated J -ternary
algebra (J , T ) is given in Sect. 4.1 (prototypical example), with J = EndF(W )(+) and
T = (W ⊗ Z∗) ⊕ (W ∗ ⊗ Z).

The proper idempotents e �= 0, 1 of EndF(W )(+) exist only if dimF W > 1, and they are
just the projections relative to a splitting W = W1 ⊕ W0: e(w1) = w1 and e(w0) = 0, for
w1 ∈ W1 and w0 ∈ W0. For any such idempotent there is an associated short (SL2 × SL2)-
structure, and the components J1, J0, J 1

2
in (3.1) are the Peirce components relative to e:

J1 = EndF(W1)
(+), J0 = EndF(W0)

(+), and J 1
2

= HomF(W1,W0) ⊕ HomF(W0,W1);

while Ti = (Wi ⊗ Z∗) ⊕ (W ∗
i ⊗ Z), for i = 1, 0.

5.2 Orthogonal Lie algebras

Also, the results in [25, Sect. 4.2] show that for a finite-dimensional simple Lie algebra of type
B or D (orthogonal), the only SL2-structures are given by viewing it as so

(
(V ⊗ W ) ⊥ Z

)
,

with V as above, W endowed with a nondegenerate skew-symmetric bilinear form bW , and
Z endowed with a nondegenerate symmetric bilinear form bZ . The symmetric bilinear form
on (V ⊗ W ) ⊥ Z is the orthogonal sum of (. | .) ⊗ bW and bZ . In this case, Sect. 4.1 shows
that the associated J -ternary algebra (J , T ) is given by J = H

(
EndF(W ), τ

)
, where τ is

the symplectic involution relative to bW , and T = W ⊗ Z .
The Jordan algebra J = H

(
EndF(W )(+), τ

)
contains proper idempotents if and only

if the dimension of W is at least 4 (note that this dimension is always even). Any proper
idempotent is the projection relative to an orthogonal decomposition W = W1 ⊥ W0
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relative to bW . For any such idempotent, the components J1, J0, J 1
2
in (3.1) are the

Peirce components relative to e: J1 = H
(
EndF(W1)

(+), τ
)
, J0 = H

(
EndF(W0)

(+), τ
)
,

and J 1
2

= { f ∈ H
(
EndF(W )(+), τ

) | f (W1) ⊆ W0, f (W0) ⊆ W1}; while Ti = Wi ⊗ Z ,
i = 1, 0.

5.3 Symplectic Lie algebras

Finally, [25, Sect. 4.2] shows that for a finite-dimensional simple Lie algebra of type C
(symplectic), the only SL2-structures are given by viewing it as sp

(
(V ⊗ W ) ⊥ Z

)
, with V

as above, W endowed with a nondegenerate symmetric bilinear form bW , and Z endowed
with a nondegenerate skew-symmetric bilinear form bZ . The skew-symmetric bilinear form
on (V ⊗ W ) ⊥ Z is the orthogonal sum of (. | .) ⊗ bW and bZ . In this case, Sect. 4.1 shows
that again the associated J -ternary algebra (J , T ) is given by J = H

(
EndF(W ), τ

)
, where

τ is the orthogonal involution relative to bW , and T = W ⊗ Z .
The Jordan algebra J = H

(
EndF(W )(+), τ

)
contains proper idempotents if and only

if dimF W > 1. Any proper idempotent is again the projection relative to an orthogonal
decompositionW = W1 ⊥ W0 relative to bW . For any such idempotent, the components J1,
J0, J 1

2
in (3.1) are the Peirce components relative to e: J1 = H

(
EndF(W1)

(+), τ
)
, J0 =

H
(
EndF(W0)

(+), τ
)
, and J 1

2
= { f ∈ H

(
EndF(W )(+), τ

) | f (W1) ⊆ W0, f (W0) ⊆ W1};
while Ti = Wi ⊗ Z , i = 1, 0.

5.4 Exceptional Lie algebras

The results in [25, Sect. 4.3] show that for any of the finite-dimensional exceptional simple
Lie algebras there is a short SL2-structure whose associated Jordan algebra J is just the
ground field F. Then T , endowed with the skew-symmetric bilinear form 〈. | .〉 and the triple
product [x, y, z] := dx,y(z) is a symplectic triple system (see [28]). Alternatively (see [14,
Theorem 4.7]), the triple product {x, y, z} := dx,y(z)−〈x | z〉y−〈y | z〉x , is either trivial or
endows T with the structure of aFreudenthal triple system (see [24]). The classification of the
finite-dimensional simple symplectic triple systems may be consulted in [13, Theorem 2.21].
With one exception, they are obtained from the simple structurable algebras whose subspace
of skew-symmetric elements has dimension one.

Apart from the short SL2-structures above, where the Jordan algebra J has dimension 1
and hence has no proper idempotent, [25, Sect. 4.3] shows that there is no other short SL2-
structure for the simple Lie algebra of type G2, and exactly one other short SL2-structure
in the remaining cases: F4, E6, E7, and E8. Therefore, Sect. 4.2 shows that the associated
J -ternary algebra (J , T ) can be obtained from a structurable algebra A = C1 ⊗ C2, for a
Cayley algebra C1 and a unital composition algebra C2 of dimension 1 for case F4, dimension
2 for E6, dimension 4 for E7, and dimension 8 for E8. In all these cases, the Jordan algebraJ
is the Jordan algebra of a quadratic form, and there is a unique orbit, under its automorphism
group, of proper idempotents. As above, for any such idempotent, the componentsJ1,J0,J 1

2
in (3.1) are the Peirce components relative to e:J1 = Fe,J0 = F(1−e) [recall that the unity
1 is the element c in (4.14)], and J 1

2
= (

Fe+ F(1− e)
)⊥; while Ti = {x ∈ T | e • x = i x},

i = 1, 0.
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