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Abstract
The complex orbifold structure of the moduli space of Riemann surfaces of genus g (g ≥
2) produces a stratification into complex subvarieties named equisymmetric strata. Each
equisymmetric stratum is formed by the surfaces where the group of automorphisms acts
in a topologically equivalent way. The Riemann surfaces in the equisymmetric strata of
dimension one are of two structurally different types. Type 1 equisymmetric strata correspond
to Riemann surfaces where the group of automorphisms produces a quotient surface of genus
zero, while those of Type 2 appear when such a quotient is a surface of genus one. Type 1
equisymmetric strata have been extensively studied by the authors of the present work in
a previous recent paper, we now focus on Type 2 strata. We first establish the existence of
such strata and their frequency of occurrence in moduli spaces. As a main result we obtain a
complete description of Type 2 strata as coverings of the sphere branched over three points
(Belyi curves) and where certain isolated points (punctures) have to be eliminated. Finally,
we study in detail the doubly infinite family of Type 2 strata whose automorphism groups
have order the product of two primes.
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1 Introduction

Let g be an integer ≥ 2, the moduli spaceMg is the space of analytic structures on a closed
topological surface of genus g, with suitable analytic structure. The Teichmüller space Tg is
the space of hyperbolic geometric structures modulo isotopy and it is analytically equivalent
to an open subset of C

3g−3 (L. Bers embedding). The mapping class group Mg acts upon Tg

as a properly discontinuous group of bi-holomorphic transformations, more detail is given in
Sect. 2. The quotient map Tg → Tg/Mg yields a regular, branched covering π : Tg → Mg

providing a structure of a complex orbifold on Mg of complex dimension 3g − 3, and
whose singularity set is called the branch locus. (Specifically, the branch locus is the image
in Mg of those points in Tg with non-trivial stabilizers.) The singularity structure of a
complex orbifold produces a stratification of the moduli space into a finite disjoint union of
equisymmetric strata. Each equisymmetric stratum corresponds to a collection of surfaces
whose automorphism groups act in a topologically equivalent way (see Refs. [2, 3] and
[12]).

The zero dimensional strata correspond to the well-studied quasi-platonic surfaces. At the
other extreme are the open, dense stratum of surfaces with no automorphisms, of complex
dimension 3g − 3, and the hyperelliptic locus of dimension 2g − 1.

In this paper we explore the topology of the complex 1-dimensional strata, which are
punctured Riemann surfaces. Our objective is to describe these strata explicitly, as punctured
Riemann surfaces, in terms of the data of the action of the automorphism group.

LetS be a stratum. For every S ∈ S, S/Aut(S) is a surface of genus h and S → S/Aut(S)

is branched over r points. Hence the stratumS is a “covering” of the moduli spaceMh,r of
complex 2-orbifolds of genus h and r conic points. (The “covering” may be branched and
may not be surjective.) Themoduli spaceMh,r is a complex orbifold of dimension 3h−3+r
(see [13]) and this number gives the dimension of the stratumS. If we assume dimCS = 1,
either h = 0, r = 4 or h = 1, r = 1. So, there are two types of strata of dimension 1:

Type 1: If S is a surface in the stratum, S/Aut(S) is the sphere and S → S/Aut(S) is
branched over four points.

Type 2: If S is a surface in the stratum, S/Aut(S) is a torus and S → S/Aut(S) is branched
over one point.

The first type has been studied in detail in [5]. In this paper we address strata of
Type 2.

There are strata formed by surfaces that are regular branched coverings of a torus that are
apparently of Type 2 but are actually of the first type. This phenomenon occurs because of
the algebraic structure of the automorphism group of the covering (Sect. 3.1) and because
the action of the mapping class group is not effective on the Teichmüller space for some
types of orbifolds (see [13]). In Examples 3.2, 3.9 we present a case of an automorphism
group and corresponding stratum that is of Type 2, so showing the existence of such strata.
Immediately following, in Sect. 3.2, we present a summary enumeration of surfaces with
small automorphism groups that are branched regular coverings of a torus and how many are
Type 1 or Type 2.

In Sect. 3.3 we obtain a description of the strata of Type 2 (similar to that obtained in
reference [5] for the strata of Type 1) in terms of the action of the automorphism group of
the surfaces: see Theorem 3.5. As a consequence we have that all the equisymmetric strata
of dimension one are Belyi curves with punctures: see Corollary 3.7.

Finally, in Sect. 4, we give a detailed description of a bi-infinite family of Type 2 strata,
generalizing the case presented in Examples 3.2, 3.9.
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2 Preliminaries

2.1 Riemann surfaces and coverings

A Riemann surface is a connected surface endowed with a complex analytical structure.
Let S be a compact Riemann surface of genus g ≥ 2 and assume that G is a group of
automorphisms of S, i.e, G ≤ Aut(S). Hence S/G is an orbifold, and there is a Fuchsian
group � ≤ P SL(2, R), such that:

H →S = H/π1(S) → S/G = H/�.

The group � is the lifting of G to the universal covering H. Notice that � is isomorphic
to the orbifold fundamental group of S/G.

The Fuchsian group � is isomorphic to an abstract group Gs with presentation

〈
α1, β1, . . . , αh, βh, γ1, . . . , γr :

h∏
i=1

[αi , βi ]
r∏

i=1

γi = 1, γ m1
1 = · · · = γ mr

r = 1

〉

(2.1)

and we say that � has signature

s = (h; m1, . . . , mr ). (2.2)

There is a surface Fuchsian group� � � (that is, a Fuchsian groupwith signature (g;−)),
isomorphic to π1(S), and there is an epimorphism ξ : � → G such that ker ξ = � (the
monodromy of the covering, see [16]).

Given two Riemann surfaces S1 and S2 and two automorphism groups G1 ≤ Aut(S1)
and G2 ≤ Aut(S2), we will say that the action of G1 is topologically equivalent to the
action of G2 if there is a homeomorphism h : S1 → S2 such that G2 = hG1h−1. In terms
of monodromies: if ξ1 : �1 → �1/�1 ∼= G1 and ξ2 : �2 → �2/�2 ∼= G2, the actions
of G1 and G2 are topologically equivalent if there are isomorphisms σ : �1 → �2 and
τ : G1 → G2 such that ξ2 = τ ◦ ξ1 ◦ σ−1.

Assume now that the quotient orbifold S/G = Tn is a torus with a conic point of order n
(n > 1) with a branched, holomorphic covering:

πG : S → S/G = Tn,

such that πG is branched over a point P with branch index n. The branched covering πG :
S → Tn is determined by a monodromy ξ : π1O(Tn) → G, where π1O(Tn) is the orbifold
fundamental group of Tn .

Hence, given a finite group G and a fixed canonical presentation of π1O(Tn):〈
α, β, γ : [α, β]γ = 1; γ n = 1

〉
,

each monodromy ξ : π1O(Tn) → G is given by a vector

(ξ(α), ξ(β), ξ(γ )) = (a, b, c)

with [a, b]c = 1, cn = 1, and (a, b) is a set of generators of G.
Let gG denote the conjugacy class of an element g of order n in G. For later use, we shall

consider the following subsets of G × G and set of classes:
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KG(1 : gG) = {(a, b) : [a, b]−1 ∈ gG}
K ◦

G(1 : gG) = vectors in KG(1 : gG)generating G

K̃ ◦
G(1 : gG) = {Aut(G) − classes of K ◦

G(1 : gG)},
(see [5]).

2.2 Teichmüller andmoduli spaces

The group Gs , given in (2.1) is an abstract group isomorphic to all the Fuchsian groups of
signature s = (h; m1, ..., mr ). The Teichmüller space of Fuchsian groups of signature s is:

Ts = {ρ : Gs → P SL(2, R) : s(ρ(Gs)) = s}/conjugation in P SL(2, R)

(see [13]). The Teichmüller spaceTs has complex dimension 3g−3+r and is homeomorphic
to an open ball.

Let S be a compact Riemann surface of genus g ≥ 2. If we have a normal inclusion
π1(S) � Gs , then there is a topological action of the group G = Gs/π1(S) on surfaces of
genus g. The inclusion i : π1(S) → Gs produces i∗(Ts) ⊂ Tg in the following way: if
[ρ] ∈ Ts , ρ : Gs → P SL(2, R), we define i∗[ρ] = [ρ ◦ i] where

i : π1(S) → Gs , ρ ◦ i : π1(S) → P SL(2, R)

(see [12] and [13]).
The modular group, Ms , for the signature s of a Fuchsian group �, is the mapping class

group ofH/�, which in turn equals the group of orientation-preserving outer automorphisms
of Gs :

Ms = Aut+(Gs)/Inn(Gs),

where Inn(Gs) is the group of inner automorphisms of Gs (see [13]). The modular group Ms

acts upon Ts as [ρ] → μ∗([ρ]) = [ρ ◦ μ−1] where μ ∈ Ms . The moduli space of signature
s is the quotient space

Ms = Ts/Ms .

The image of i∗(Ts) by Tg → Mg is MG,a
, where MG,a

is the set of Riemann surfaces
with automorphism group containing a subgroup acting in a topologically equivalent way to
the action of G on S given by the inclusion i .

Now, given μ ∈ Ms and an inclusion i : π1(S) → Gs we have a map i∗(μ∗) : i∗(Ts) ⊂
Tg → i∗(Ts) ⊂ Tg given by i∗(μ∗)[ρ ◦ i] = [ρ ◦ μ−1 ◦ i].

3 Type 2: orbit space of genus 1

First of all, we note that there are coverings S → S/G, branched over a point and where S/G
is a torus, that actually define a stratum of the Type 1. These strata do not produce anything
new from what has already been studied in [5]. Our first objective will be to characterise the
situations in which amonodromy given by a class in K̃ ◦

G(1 : gG) actually defines a stratum of
Type 1, and to obtain an example of a stratum of Type 2 monodromy that cannot be extended
to Type 1.

123



One dimensional equisymmetric strata in moduli space... Page 5 of 16 21

3.1 Strata of Type 1 coming from apparent Type 2 strata

Let S be a surface with a group of automorphisms G such that S/G is a torus with a single
conic point. Consider the monodromy of πG : S → S/G = Tn :

ξ : π1O(Tn) = 〈
α, β, γ : αβα−1β−1γ = 1, γ n = 1

〉 → G. (3.1)

We note that the surface S/G has an elliptic involution ι : Tn → Tn fixing the conic point
P and three other points. Choosing the base point P0 to be an appropriately selected fixed
point of ι, we have ι∗ : π1O(Tn) → π1O(Tn):

ι∗(α) = α−1, ι∗(β) = β−1, ι∗(γ ) = (αβ)−1γαβ (3.2)

The quotient Tn/ 〈ι〉 is the sphere and Tn → Tn/ 〈ι〉 has four branch points. The orbifold
Tn/ 〈ι〉 has signature (0; 2, 2, 2, 2n).

If the group G has an automorphism G → G given by:

ξ(α) �−→ ξ(α)−1; ξ(β) �−→ ξ(β)−1,

then the group G is not the full group of automorphisms of the surfaces in the stratum (See
also [15]). There is a group H ⊃ G, such that H acts on S and S is in a stratum of Type 1,
with orbit space of genus 0, i.e. S/H is a sphere, and S → S/H is branched over 4 points
with branch indices (0; 2, 2, 2, 2n) (see [6] and [7]).

Reciprocally, if the action of the group G can be extended to a group of automorphisms
H ⊃ G such that S/H is a sphere and S → S/H is branched over 4 points with branch
indices (0; 2, 2, 2, 2n), then there in an automorphism G → G given by:

ξ(α) �−→ ξ(α)−1, ξ(β) �−→ ξ(β)−1 (3.3)

Example 3.1 Consider the one dimensional stratum in M4 given by the monodromy:

ξ : π1O(T5) =
〈
α, β, γ : αβα−1β−1γ = 1, γ 5 = 1

〉
→ D5 =

〈
s, r : s2 = r5 = (sr)2 = 1

〉
ξ(α) = s; ξ(β) = r; ξ(γ ) = r2

Since the group D5 admits the automorphism s → s−1 = s and r → r−1 the action can be
extended to an action of D10 with quotient orbifold with signature (0; 2, 2, 2, 10) (see [1]).

The following example shows that there are finite groups that do not admit such an
automorphism ξ(α) �−→ ξ(α)−1, ξ(β) �−→ ξ(β)−1.

Example 3.2 Let us consider

G = Cq � C3 = 〈
s, t : sq = t3 = 1, t2st = su 〉

where q ≡ 1mod 3, q prime and with u satisfying u2 ≡ −u −1mod q (example: q = 7, u =
2).

By a straightforward computation and the above presentation of Cq � C3, there is no
automorphism α : Cq � C3 → Cq � C3 such that:

α(ts) = (ts)−1, α(s) = s−1
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The stratum S composed of surfaces of genus 3q−1
2 that are coverings of tori with mon-

odromy:

ξ : π1O(Tq) = 〈
α, β, γ : αβα−1β−1γ = 1, γ q = 1

〉 → Cq � C3

ξ(α) = ts, ξ(β) = s, ξ(γ ) = su+2

is of Type 2 but not of Type 1, since the action cannot be extended.

3.2 Howmany Type 1 and Type 2 actions?

In the two preceding examples we have shown that actions with signature (1; n) can result
in Type 1 and Type 2 actions and strata. We may use computer calculation to find a generous
set of examples of (1; n) actions of various groups G that lift to (0; 2, 2, 2, 2n) actions
(extensible) and those that do not (inextensible). We used the Magma [14] small group data
base to systematically search the 6064 groups with order in the range 2 ≤ |G| ≤ 200 for
such actions. The main purpose of our calculation was to get some sense on the proportion
of Type 1 vs Type 2. The results are in Tables 1 and 2. The Magma code for the calculations
are on this website [4].

Before explaining the tables, let us preview a construction of a stratummodelB thatwewill
use in Theorem 3.5, so that we can see the general nature of the model and its use in studying
group actions on surfaces. Let s be any signature and Gs , Ts , Ms , Ms be the abstract group
and spaces introduced in Sect. 2.2. We define the sets K ◦

G(s) and K̃ ◦
G(s) similarly to the sets

defined in Sect. 2. These K -sets are in 1-1 correspondence with monodromies ξ : Gs → G
and their Aut(G) classes. The action of Ms on K̃ ◦

G(s) is defined through the action on
monodromies. We define:

BG,s = (
Ts × K̃ ◦

G(s)
)
/Ms,

Table 1 Action classes

|G| # Groups Type1 Type2 Total % Type1 % Type2

2–50 264 858 120 978 87.7 12.3

51–100 791 3207 740 4037 81.7 18.3

101–150 2834 6250 1624 7874 79.4 20.6

151–200 2183 10235 3320 13555 75.5 24.5

Total 6064 20640 5804 26444 78.1 21.9

Table 2 Number of strata

|G| # Groups Type1 Type2 Total % Type1 % Type2

2–50 256 112 8 120 93.3 6.7

51–100 791 276 37 313 88.2 11.8

101–150 2834 408 55 463 88.1 11.9

151–200 2183 532 105 637 83.5 16.5

Total 6064 1328 205 1533 86.6 13.4
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with covering map

ηG,s : BG,s → Ms, ([ρ], [v]) → [ρ]Ms,

where [ρ]Ms is the Ms equivalence class of [ρ], and [v] is an Aut(G) class of generating vec-
tors corresponding to an Aut(G) class of monodromies ξ . Each element of BG,s corresponds
uniquely to a conformal equivalence class of quotient maps H/ρ(ker ξ) → H/ρ(Gs), and
every such map is captured by BG,s . In other words, BG,s classifies, uniquely, conformal
equivalence classes of G actions with signature s, up to Aut(G) equivalence. The orbits of
Ms on K̃ ◦

G(s) correspond to the components of BG,s . The behaviour of ηG,s over the sin-
gular set classifies those surfaces S for which there is a normalizing overgroup H � G of
automorphisms of S. Non-normal overgroups need to be dealt with in other ways.

Modular Companions
Any two surfaces S1 and S2 lying over the same quotient H/ρ(Gs), but not conformally
equivalent, correspond to distinct points ([ρ], [v]) and μ∗([ρ], [v]) for some μ ∈ Ms . The
quotient orbifolds are the same since ρ(Gs) and ρ(μ(Gs)) are conjugate subgroups. But
the surfaces are not conformally equivalent since the kernels ker ξ([ρ],[v]), ker ξμ∗([ρ],[v]) are
different. We call the surfaces S1 and S2 modular companions since they have the same
quotient orbifolds and their monodromies are modularly equivalent. They both lie in a single
fibre of ηG,s but in the same connected component of BG,s . It can be shown that for such
surfaces there is a closed loop inMs such that the surface S2 is obtained from S1 by “analytic
continuation” along the path.

Enumeration of group action classes
Our first enumeration summary is the number of Aut(G) classes of (1; n) generating vectors
of G, with n varying over all possibilities. There may be several classes for the same group,
they are all counted separately. For a given group G, representatives of each Aut(G) class
of (1; n) generating vectors are computed, and then tested to see if there is a lift of the
elliptic involution. For each group, a summary file was produced listing representatives, the
automorphism that enabled the lift of the elliptic involution (if it existed), and the genus of
the surface produced. For each genus so calculated the number of classes of vectors were
recorded and enumerated. The genus counts are incomplete since

|G| = 2g − 2

1 − 1
n

,

and for a given genus g, |G| could be out of range. Many groups tested were rejected out
of hand without calculating: abelian, requiring more than 2 elements to generate G, or an
automorphism group that is too large. Since G = 〈a, b〉 for a generating vector (a, b, c), an
automorphism class of generating vectors is of size at most |G|2 and so |Aut(G)| ≤ |G|2 is
a restriction.

Enumeration of “strata”
Our next calculation was the number of strata, or more precisely the number of components
of BG,s . For those actions that have a lift of the elliptic involution, the components of BG,s

are not technically strata though each element of such a component defines a unique action
on S of a unique overgroup H with G � H , |H/G| = 2, and signature (2, 2, 2, 2n). We
did not determine the exact relation between the components of BG,s and the strata of the
(2, 2, 2, 2n) action of H , though they are closely related.

Note the increasing percentage of Type 2 strata shown in the last columns in Tables 1 and
2.

123



21 Page 8 of 16 S. A. Broughton et al.

Remark 3.3 It is a curiosity that only one group, namely SmallGroup (200,44) of order 200,
had both Type 1 and Type 2 actions.

Remark 3.4 Any finite group G that is the full group of automorphisms of surfaces in a Type
2 stratum is also the full group of automorphisms of surfaces of a Type 1 stratum. Assume
G has an action on genus g surfaces producing a stratum of Type 2 in Mg and given by the
monodromy:

ξ : π1O(Tn) = 〈
α, β, γ : αβα−1β−1γ = 1, γ n = 1

〉 → G.

We can construct another monodromy

ξ ′ : π1(Ĉ − {z1, z2, z3, z4}) → G

defined by:

ξ ′(γ1) = ξ(α), ξ ′(γ2) = ξ(β), ξ ′(γ3) = ξ(γ )

Note that ξ ′(γ4) cannot be 1. Themonodromy ξ ′ defines a stratum of Type 1. By the Riemann-
Hurwitz formula the surfaces uniformized by ker ξ ′ have genus g′ satisfying 1

3g + 2
3 ≤ g′ <

3g − 2.

Note: We are using monodromy in two different senses. One as a epimorphism from an
orbifold fundamental group to G, the second as an epimorphism from the fundamental group
of a punctured sphere to G.

3.3 Strata of Type 2

Let S be a surface with a group of automorphisms G such that S/G is a torus and πG : S →
S/G is a covering branched over one point with branch index n. We denote S/G = Tn the
orbifold induced by πG . We consider the monodromy of πG : S → Tn :

ξ : π1O(Tn) = 〈
α, β, γ : αβα−1β−1γ = 1, γ n = 1

〉 → G.

Note: In the remainder of this section we assume that the finite group G does not admit an
automorphism G → G satisfying:

ξ(α) �−→ ξ(α)−1; ξ(β) �−→ ξ(β)−1.

The structures of Tn are given by the moduli space M(1;n). Note that M(1;n) = M1, i.e.
the position of the branch point in Tn does not play any role, all the points are conformally
equivalent. Remember the well-known equality betweenmodular groups: M(1;n) = M1 (pag.
54-55 of [10] or [2, 12]).

Given a ∈ Aut(π1O(Tn)) we shall denote by A the corresponding element in
Aut(π1O(Tn))/Inn(π1O(Tn)). Let us consider the elements x, y ∈ Aut(π1O(Tn)) defined
in the following table: two dots and full stop, then the table and after the sentence: The

θ α β γ

x θ(x, α) = β θ(x, β) = α−1 θ(x, γ ) = α−1γα

y β α−1β α−1γα

xy α−1 β−1α−1 β−1α−1γαβ
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elements X , Y given by x, y provide the following presentation:

M(1;n) = 〈
X , Y : X4 = Y 6 = 1, X2 = Y 3〉 � SL(2, Z).

In M(1;n) we have X4 = Y 6 = 1 and X2 = Y 3 (= − IdSL(2,Z), in the center of SL(2, Z),
and remark that this relation is not satisfied by x , y). Note that the action of M(1;n) is not
effective in T(1;n) (see [13], the element X2 = Y 3 acts as the identity on T(1;n)).

The action θ of M(1;n) on π1O(Tn) induces an action � on K̃ ◦
G(1 : gG) via the mon-

odromies as follows. First we define ξ(a,b) : π1O(Tn) → G, by ξ(a,b)(α) = a and
ξ(a,b)(β) = b. If μ ∈ M(1;n) and [(a, b)] ∈ K̃ ◦

G(1 : gG), the action of M(1;n) on K̃ ◦
G(1 : gG)

is:

� : (μ, [(a, b)]) → [(ξ(a,b)(μ
−1(α)), ξ(a,b)(μ

−1(β)))],
([.] means Aut(G) − class in K̃ ◦

G(1 : gG)).

Note that

ξ(ξ(a,b)(μ
−1(α)),ξ(a,b)(μ

−1(β))) = ξ(a,b) ◦ μ−1

and ker ξ(ξ(a,b)(μ
−1(α)),ξ(a,b)(μ

−1(β))) = μ(ker ξ(a,b)).

Remark that the element X2 = Y 3 does not act as the identity on K̃ ◦
G(1 : gG) if

ξ(α) �−→ ξ(α)−1; ξ(β) �−→ ξ(β)−1

defines an automorphism of G.
The moduli space M(1;n) is a non-compact orbifold of complex dimension 1 with two

conic points PX and PY of order 2 and 3, that are the projections by T(1;n) → M(1;n) of the
fixed points of X and Y in T(1;n), and a puncture, denoted by ∞. ThenM(1;n) − {PX , PY } is
isomorphic to C − {zX , zY } and

M(1;n)/
〈
X2 = Y 3〉 = π1O(M(1;n)) ∼= π1(C − {zX , zY }, z0)/

〈
γ 2

X , γ 3
Y

〉
)

where γX and γY are represented by loops around the points zX , zY respectively and based
at z0 ∈ C − {zX , zY }.

3.4 Main theorem and consequences

Theorem 3.5 Let G be a finite group and [(a0, b0)] be an element of K̃ ◦
G(1 : gG). Let S

be a Riemann surface, uniformized by a surface Fuchsian group � (S = H/�) such that
S/Aut(S) = H/� where � has signature (1; n). We assume that ξ� : � → �/� ∼= G is a
monodromy and that there is a canonical presentation of �〈

α, β, γ : αβα−1β−1γ = 1, γ n = 1
〉

such that (ξ�(α), ξ�(β)) ∈ [(a0, b0)] ∈ K̃ ◦
G(1 : gG).

Let S be the 1-dimensional stratum of Type 2 containing the surface S. Then, there is a
Riemann surface B such that S is isomorphic to B − I where I is a set of isolated points in
B.

The surface B is a finite covering η : B → M(1;n) branched over {PX , PY } such that:

(1) Let O = {o1 = [(a0, b0)], ..., ol} be the orbit of the action � on K̃ ◦
G(1 : gG) containing

[(a0, b0)]. The degree of the covering η is the size of the orbit O, i.e., l.
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(2) The monodromy of the covering η : B → M(1,n) is

ω� : 〈X , Y 〉 = π1(M(1;n) − {PX , PY }) → M(1;n)
�→ �|O|

where � has been defined above and B is the completion to a branched covering of
M(1;n) of the unbranched covering defined by ω−1

� (Stab(o1)).

Proof Let G(1;n) be an abstract group with presentation given by the signature (1; n):〈
α, β, γ : αβα−1β−1γ = 1, γ n = 1

〉
Let

R = {ρ : G(1;n) → ρ(G(1;n)) ≤ P SL(2, R) :
ρ(G(1;n)) is a Fuchsian group of signature (1; n)},

so that T(1;n)= R/conjugation on P SL(2, R). Let ρ� : G(1;n) → ρ�(G(1;n)) = � ≤
P SL(2, R), where S/Aut(S) = H/� and ξ� : � → G where S = H/ ker ξ� ,
(ξ�(α), ξ�(β)) = (a0, b0). Hence ξ(a0,b0) = ξ� ◦ ρ� : G(1;n) → G.

The actions of M(1;n) on T(1;n) and K̃ ◦
G(1 : gG) produce a natural product action on

T(1;n) × O ={([ρ], [(a, b)])}. If μ ∈ M(1;n),

μ∗([ρ], [a, b]) = ([ρ ◦ μ−1], [(ξ(a,b)(μ
−1(α)), ξ(a,b)(μ

−1(β)))])
= ([ρ ◦ μ−1],�(μ, [(a, b)]))
∈ T(1;n) × K̃ ◦

G(1 : gG).

The quotient T(1;n) × K̃ ◦
G(1 : gG) by the action of �−1(Stab(o1)) yields the Riemann

surface B and the covering B → M(1;n) is:

η : B = T(1;n) × K̃ ◦
G(1 : gG)/�−1(Stab(o1)) → T(1;n)/M(1;n) = M(1;n)

The map ξ∗ : T(1;n) × K̃ ◦
G(1 : gG)/M(1;n) → Mg , is given by ξ∗([ρ], [(a, b)]) =

[H/ρ(ker ξ(a,b))] ∈ Mg .
If

([ρ�], [(a0, b0)]) = μ∗([ρ�], [(a0, b0)])
= ([ρ� ◦ μ−1], [(ξ(a0,b0)(μ

−1(α)), ξ(a0,b0)(μ
−1(β)))]))

(i.e. μ ∈ �−1(Stab(o1))) then:
1. [ρ�] = [ρ� ◦ μ−1] and the Fuchsian groups � and ρ� ◦ μ−1(G(1;n)) are conjugate

in P SL(2, R), so the Riemann orbifolds H/� and H/(ρ� ◦ μ−1(G(1;n))) are conformally
equivalent.

2. [(a0, b0)] = [ξ(a0,b0)(μ
−1(α)), ξ(a0,b0)(μ

−1(β))] implies there is δ ∈ Aut(G) such that
ξ(a0,b0) = δ ◦ ξ(a0,b0) ◦ μ−1, then the coverings

H/ρ�(ker ξ(a0,b0)) = H/ ker ξ� → H/�

and

H/ρ� ◦ μ−1(ker ξ(a0,b0) ◦ μ−1) → H/ρ� ◦ μ−1(G(1;n))

are conformally equivalent.
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3. Finally,

ρ� ◦ μ−1(ker ξ(a0,b0) ◦ μ−1) = ρ� ◦ μ−1(μ(ker ξ(a0,b0)))

= ρ�(ker ξ(a0,b0))

so H/ρ� ◦ μ−1(ker ξ(a0,b0) ◦ μ−1) and H/ρ�(ker ξ(a0,b0)) correspond to the same point of
S ⊂Mg .

Now we study when the map ξ∗ : T(1;n) × K̃ ◦
G(1 : gG)/M(1;n) → Mg , is not injective.

Assume ξ∗([ρ], [(a, b)]) = ξ∗([ρ′], [(a′, b′)]), if ([ρ], [(a, b)]) �= ([ρ′], [(a′, b′)]) then there
are two different actions on H/ρ(ker ξ) = H/ρ′(ker ξ) of two groups of automorphisms
isomorphic toG. Hence themap ξ∗ is injective up to the preimage of surfacesW ∈ ξ∗(T(1;n)×
K̃ ◦

G(1 : gG)/M(1;n)) ⊂ Mg with Aut(W ) � G, and these surfaces are not in S.
Let Y be the set of points in Mg corresponding to surfaces R such that Aut(R) � H

where the action of H on R is topologically equivalent to the action of G on S. Note that
these points are surfaces such that R/Aut(R) is a sphere and the covering R → R/Aut(R)

has three branch points, so that the set Y is a finite set of points.
We then have an isomorphism:

T(1;n) × K̃ ◦
G(1 : gG)/M(1;n) − ξ−1∗ (Y) = B−I → S ⊂ Mg.

��

3.4.1 Genus of the stratum

As in [5] we can use the monodromy operators to compute the genus of the stratum, i.e.,
the genus of the projective completion of S. According to Theorem 3.5, the stratum S is
a Zariski open set of the Riemann surface B for which there is an unbranched cover from
an open subset η : B◦ → C− {PX , PY }, a thrice punctured sphere. The degree of the cover
is l, and the monodromy of the cover is a transitive subgroup of �l , defined by the action
of M(1,n) on O. The lifted monodromies of appropriately oriented small circles surrounding
the punctures PX , PY , ∞ are conjugates of the action of X , Y , and (XY )−1 on the orbit
O. Let lX , lY and l∞ denote the number of orbits corresponding to the X , Y and (XY )−1

monodromies. Then the Riemann Hurwitz equation for the genus of the stratum, gS = gB,

is:

gS = 1 + l − lX − lY − l∞
2

. (3.4)

In Example 3.9, later in the paper, we get as claimed:

gS = 1 + 8 − 2 − 2 − 2

2
= 2.

Remark 3.6 (Belyi cover) Note that B is a finite covering of M(1,n) and that B can be com-
pleted to B which is a covering of the sphere branched on three points (B is a Belyi curve.)
By [5] for Type 1 strata and Theorem 3.5 for Type 2 we have the following corollary:

Corollary 3.7 All one dimensional strata in the moduli space of Riemann surfaces are Belyi
curves with punctures.

Remark 3.8 The elliptic involution ι on Tn acts upon monodromies as in equation (3.3). It
follows that for every Aut(G) monodromy class [ξ ] is paired with another class [ξ ◦ ι∗]. It
can be shown that [ξ ] and [ξ ◦ ι∗] both belong to the same orbit of M(1;n), acting upon classes
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of monodromies. Therefore, the map, [ξ ] → [ξ ◦ ι∗] is an involution fixing the components
B and is also deck transformation of η : B → M(1;n). The involution [ξ ] → [ξ ◦ ι∗] has
no fixed points because of the automorphism restriction on Type 2 actions - at least over
the non-branch points of η : B → M(1;n). It would be interesting to understand how the
involution [ξ ] → [ξ ◦ ι∗] interacts with the “dessin d’enfant” (see [11]) defining the Belyi
curve B.

Open question Which Belyi curves appear as one dimensional equisymmetric strata? (We
remark that all Belyi curves appear as Hurwitz spaces [8].)

We now apply Theorem 3.5 to construct the stratum corresponding to the Type 2 action
defined in Example 3.2:

Example 3.9 We consider again the groups

G = Cq � C3 = 〈
s, t : sq = t3 = 1, t2st = su 〉

where q ≡ 1mod 3, q prime and with u satisfying u2 ≡ −u − 1mod q .
The points inS correspond to surfaces of genus 3q−1

2 . Any generating vector for a mon-
odromy giving surfaces in the stratum is conjugate to (t, ts). There are eight Aut(G)−classes
of generating vectors in K̃ ◦

G(1 : gG) with representatives:

Class number in O Representative generating vector:

1 (t, ts)
2 (t, t2s)
3 (t2, ts)
4 (t2, t2s)
5 (s, t)
6 (s, t2)
7 (t, s)
8 (t2, s)

Now, the transitive action of the modular group M(1;q) on the monodromies is as follows:

(1) �(X) = (1, 2, 4, 3)(7, 6, 8, 5),
(2) �(Y ) = (1, 7, 6, 4, 8, 5)(3, 2), and
(3) �(XY ) = (1, 3, 7, 4, 2, 8)(5, 6).

So, S is contained in a covering of degree 8 of M(1;q) that is a Belyi curve of genus 2.
The monodromy group has order 24 and is isomorphic to SL(2, 3).

4 Type 2 actions of non-abelian pq groups

We give a detailed analysis of Type 2 actions of non-abelian groups of order pq . We consider
these examples since they are uncomplicated examples of non-abelian groups that yield
Type 2 actions. There is a single stratum and we can get nice formulas for the number of
epimorphisms, the genus of the stratum, and the monodromy of the cover B → M(1;q).
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Example 3.2 is a special, and exceptional, case with p = 3. The groups were extensively
studied by Wolfart and Streit in [17] in the context of dessins d’enfant.

We perform this analysis in the following steps: introduce non-abelian pq groups, identify
and enumerate the generating vectors, identify K̃ ◦(1; yG), determine the modular action, and
then summarize all results in Proposition 4.2.

Definition and properties of pq groups
Let p < q be two primes such that p divides q − 1. It is well known that there is exactly one
isomorphism class of non-abelian groups of order pq , all isomorphic to Cq � C p . We shall
call such groups (non-abelian) pq groups. The groups have the following properties most of
which we leave to the reader to prove or may be found in [9].

(1) A non-abelian pq group G has a presentation

G = 〈
x, y : x p = yq = 1, yx = yr 〉 , (4.1)

where 1 < r < q and r p = 1 mod q .
(2) The non-trivial elements comprise (p − 1)q elements of order p and q − 1 elements of

order q .
(3) The order of the automorphism group Aut(G) is q(q − 1), consisting of the products

Uu Vv , 0 ≤ u < q , 1 ≤ v < q , where Uu : x → x yu = xyu−ru , y → y and
Vv : x → x, y → yv .

(4) The last item follows easily from the fact that Aut(G) acts trivially on the abelianization
G = G/[G, G] = G/ 〈y〉.

Identifying generating vectors
In order to find Type 2 actions of G, we need to be able to identify generating vectors. If
(a, b, c) is a Type 2 generating vector for G then c−1 = [a, b] ∈ 〈y〉 and so the signature of
the action is (1; q), Hence the genus of the constructed surface is:

g = p(q − 1) + 2

2
.

Let us calculate the sizes of K (1; yG), K ◦(1; yG), and K̃ ◦(1; yG). To this end, let a = xu yv

and b = xw yz . Then

c = [a, b]−1 = bab−1a−1

= xw yz xu yv y−z x−w y−vx−u

= xwxu(yru z yv y−z)x−w y−vx−u

= xwxu x−w(yru z yv y−z)r−w

y−vx−u

= xwxu x−wx−u((yru z yv y−z)r−w

y−v)r−u

= ((yru z yv y−z)r−w

y−v)r−u

The exponent on y is

(r−w−u)
(
ru z + v − z

) − r−uv

= r−w−u(v − z) + r−wz − r−uv

= (r−w−u − r−u)v − (r−w−u − r−w)z

= r−u(r−w − 1)v − r−w(r−u − 1)z (4.2)
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Assume for the moment that u �= 0 mod p. Then, r−u �= 1 mod q and equating the term of
(4.2) to zero mod q yields:

z = r−w−u − r−u

r−w−u − r−w
v = r−u(r−w − 1)

r−w(r−u − 1)
v (4.3)

So, c = 1 if and only if (4.3) holds. There is a similar equation if w �= 0 mod p. So, for the
p2q2 potential choices for (a, b) we must remove q2 choices for u = w = 0 mod p and q
choices if at least one of u �= 0, w �= 0 holds. The total remaining is:∣∣∣K (1; yG)

∣∣∣ = p2q2 − q2 − (p2 − 1)q = (p2 − 1)q(q − 1)

All of these are generating (1; q) vectors since 〈c〉 = 〈y〉 and one of a, b has a nontrivial x
factor. Finally we determine∣∣∣K (1; yG)

∣∣∣ =
∣∣∣K ◦(1; yG)

∣∣∣ = (p2 − 1)q(q − 1) (4.4)

and

K̃ ◦(1; yG) = (p2 − 1)q(q − 1)

Aut(G)
= (p2 − 1)q(q − 1)

q(q − 1)
= p2 − 1. (4.5)

Classes of generating vectors and the modular action
Before proceeding we make a remark on the identification M(1,q) and M1,1 with M1.

Remark 4.1 Let T be the smooth underlying space of Tq . The map Tq → T induces a
map π1O(Tq) → π1(T ) which is simply the abelianization map α, β, γ → α, β, 0. Any
monodromy ξ : π1O(Tq) → G, produces an abelianized monodromy ξ(α) = ξ(α) and
ξ(β) = ξ(β). It follows that the M1,q action on π1O(Tq) induces the following action of
M1 = SL(2, Z) on generating vectors in G × G by

[
a b
c d

]
· (u, v) =

[
a b
c d

] [
u
v

]
.

Next we need to determine the Aut(G) classes of generating vectors. Suppose (a, b) =
(xu yv, xw yz) a generating (1; q) vector. Letting g → g be the abelianization map, we may
identify (a, b)with (u, w)mod p.By previous discussion (u, w) �= (0, 0)mod p. According
to the list of properties of pq groups, Aut(G) acts trivially on G so the totality of (a, b)Aut(G)

maps to (u, w) under abelianization. From (4.3) we see that q2 − q of the remaining vectors
are generating vectors. By cardinality arguments all of these vectors form a single Aut(G)

class.
According to the discussion in the last paragraph, the orbits of the modular action on

Aut(G) classes are determined entirely by the orbits of the action of SL2(Z) on C p × C p.

Since SL2(Z) → SL2(Zp) is surjective and the action factors through SL2(Zp) we need
only determine the SL2(Zp) orbits.

One of the matrices

[
u 1
v 0

]
,

[
u 0
v 1

]
is invertible so that (u, v) is in the GL2(C p) orbit

of (1, 0). Thus the nonzero vectors of Zp× Zp form a single GL2(Zp) orbit. Setting V0
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= (1, 0) we easily compute ∣∣Stab(GL2(Zp), V0)
∣∣ = p(p − 1),∣∣Stab(SL2(Zp), V0)
∣∣ = p,∣∣GL2(Zp)

∣∣∣∣SL2(Zp)
∣∣ = p − 1.

It follows that SL2(Zp) · V0 = GL2(Zp) · V0 = Zp× Zp − (0, 0). Thus, all Aut(G) classes
of generating vectors are equivalent under the modular action on π1O(Tn).

By inspection, matrices representing X , Y and XY acting upon Zp× Zp are:

X =
[
0 −1
1 0

]
, Y =

[
0 −1
1 1

]
, XY =

[−1 −1
0 −1

]
.

The number of orbits for operators are: TABLE The formula for the genus gives us gS = 2

Operator p = 3 p > 3

X 2 orbits of size 4 p2−1
4 orbits of size 4

Y 1 orbit of size 6 p2−1
6 orbits of size 6

1 orbit of size 2

XY 1 orbit of size 6 p−1
2 orbits of size 2p

1 orbit of size 2 p−1
2 orbits of size 2

for p = 3 as previously computed, and for primes > 3:

gS = 1 + p2 − 1 − p2−1
4 − p2−1

6 − (p − 1)

2

= 1 + 7p2 − 12p + 5

24

= 1 + (7p − 5) (p − 1)

24
(4.6)

It is easily shown that for odd integers not divisible by 3, the expression is an integer.
Let us verify orbit sizes in the table. In the first two cases, if an orbit size is less than an

element order, then a power of the operator fixes a non-zero vector. It follows that 1 is a zero
mod p of the characteristic polynomial of the operator power. There are five cases to check
and the only non-trivial powers with fixed vectors are Y 2, Y 4 and p = 3. For XY the orbits
of size 2p have the form

{(u + kv, v) : 0 ≤ k < p} ∪ {(−u − kv,−v) : 0 ≤ k < p}
unless v = 0. There are p−1

2 of these orbits, one for each pair {v,−v}. If v = 0 we get p−1
2

orbits of the form {(u, 0), (−u, 0)}.
We summarize the foregoing discussion in the following proposition.

Proposition 4.2 Let G be a non-abelian pq-group formed from odd primes satisfying p < q
and p|(q − 1). Then, there is a one dimensional stratum, S, of surfaces of genus 1+ (p−1)q

2
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with a (1; q) action of G. The stratum has genus 2 if p = 3, and otherwise has genus
1 + (7p−5)(p−1)

24 . The map S → P1(C) is a non-regular branched covering of the sphere,
of degree p2 − 1, branched over three points. The full monodromy group of the covering is
SL(2, p).
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