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Abstract

For singular n-manifolds in R” % with a corank 1 singular pointat p € M, S"ing we define up to
[(n—1) different axial curvatures at p, where/ = min{n, k+1}. These curvatures are obtained
using the curvature locus (the image by the second fundamental form of the unitary tangent
vectors) and are therefore second order invariants. In fact, in the case n = 2 they generalise
all second order curvatures which have been defined for frontal type surfaces. We relate these
curvatures with the principal curvatures in certain normal directions of an associated regular
(n — 1)-manifold contained in M7, . ‘We obtain many interesting geometrical interpretations
in the cases n = 2, 3. For instance, for frontal type 3-manifolds with 2-dimensional singular
set, the Gaussian curvature of the singular set can be expressed in terms of the axial curvatures.
Similarly for the curvature of the singular set when it is 1-dimensional. Finally, we show that
all the umbilic curvatures which have been defined for singular manifolds up to now can be
seen as the absolute value of one of our axial curvatures.
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1 Introduction

In the last 15 years the study of the differential geometry of singular surfaces has flourished
to be an area of great interest for researchers from many different backgrounds. These objects
are cherished by differential geometers as much as by singularists. Even contact topologists
are encountering singular objects when studying wave fronts and frontals, and Gauss—Bonnet
type theorems provide a link to the geometry. Singularity Theory has proved to be the ideal
framework to study these objects and its approach for regular surfaces (see the recent book
[10]) can be adapted for the singular case. Ways of studying the geometry of the singular
surface are relating it to the geometry of a regular surface from which it is obtained by an
orthogonal projection [2, 16, 19], or studying its contact with planes and spheres [17, 20].
Another way is to define curvatures which give information about the surface. For example,
in [21] a singular and a limiting normal curvature were defined for certain frontal type
singularities and a Gauss—Bonnet theorem was proved using the former. In [9] the intrinsity
of this kind of invariants is studied and in [22] the limiting normal curvature is interpreted as
a principal curvature.

In [12] the authors defined the curvature parabola at a singular corank 1 point in a surface
in R3. This is the image by the second fundamental form of the unitary tangent vectors and
plays an analogous role to the curvature ellipse defined by Little in [11]. Using this parabola
they defined an umbilic curvature which captures the round geometry of the surface and
generalises the limiting normal curvature defined for cuspidal edges in [13]. In [18], the
third author and K. Saji, using the curvature parabola, defined for any corank 1 singular
surface an axial curvature which generalises the singular curvature defined in [21]. The axial
curvature was defined using the properties of the parabola, so it was not clear until now how
to generalise this to higher dimensions.

For p € Ms”ing a corank 1 singular point in an n-manifold in R"*¥ the curvature locus
can have many different topological types and can even have singularities. These types of
loci have been studied in [3] forn =2 and k = 2 and in [2, 4, 5] forn =3 and k = 2.

In this paper, using the curvature locus, we define axial curvatures for any corank 1 singular
n-manifold in R”"** which can be seen as principal curvatures. These curvatures generalise
the umbilic and axial curvatures for surfaces in R3. We define a special adapted frame of axial
vectors {v;, o, vi}, where [ = min{n, k + 1}, in the normal space N, M and for each axial
vector we define the axial curvatures as the critical values of the projection of the curvature
locus onto the direction of the corresponding axial vector.

In Sect. 3, we give the main definitions and show that there can be up to [(n — 1) different
axial curvatures at a point p € M, :ing. Section 4 is devoted to the particular case of surfaces in
R”". We give formulas for the axial curvatures and give geometrical interpretations for them.
For example, we show that for certain surfaces there is a distinguished curve on them with
curvature ¥ which satisfies k2 = (Kal)2 + (/ca2)2, where k4, and k., are the primary and
secondary axial curvatures which generalise the axial and umbilic curvatures from [12, 18],
respectively. In Sect. 5 we study 3-manifolds in R3**. For k = 1, 2 we define adapted frames
and prove the following elegant relation: For a corank 1 singular manifold Ms’ﬁng C Rk it
is possible to take a Monge form

f(xla "'7-x}’l) = (xl’ ---7xn—l, fl(xls "'7x11)?"'5fk+1(x17 "'7x11))7 (1)

where % =0fort =1,....,k+1andi = 1, ..., n. We show that the axial curvatures
corresponding to the axial vector v/, coincide with the v’ -principal curvatures of the regular

(n — 1)-manifold Mr”egl given by f(x1, ..., x,—1,0). In this sense, the axial curvatures can
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be understood as principal curvatures of singular manifolds. Using this relation we obtain
interesting geometrical interpretations. For instance, for frontal type 3-manifolds with a
smooth 2-dimensional singular set, the Gaussian curvature of the singular set can be expressed
in terms of the axial curvatures. The same can be done for the curvature of the singular set
when it is 1-dimensional. This opens countless directions in which to study the differential
geometry of higher dimensional frontals. Finally, in Sect. 6 we give an overview of all
the different umbilic curvatures which have been defined up to now (both in the regular and
singular setting), which are related to the umbilical focus of centers of spheres with degenerate
contact with the manifold, and prove that all of them can be obtained as the absolute value
of an axial curvature.

2 The geometry of singular n-manifolds in R"+k

In this section we review the basic definitions and results related to the second order geometry
of corank 1 singular n-manifolds in R"* For more details see 2, 3,5, 12].

Let Mfmg C R"* be a n-manifold with a singularity of corank 1. We can consider

M:’lng as the image of a smooth map g : M — R"** from a smooth regular n-manifold

M whose differential map has rank > n — 1 at any point such that g(¢g) = p. Consider
¢ : U — R" alocal coordinate system defined in an open neighborhood U of g at M. Using
this construction, we may consider a local parametrisation f = g o ¢~ of M gmg at p (see
the diagram below).

R < UM —5 e Rt

smg
W

Considering dg, : TqM — TI,R’H'I‘ the differential map of g at ¢, the tangent space,
T, MS"ing, at p is given by Im dg, that degenerates to a (n — 1)-space and the normal space

is the k + 1-space of orthogonal directions to T, M"__ in R"** such that

M"
at p, Np sing’ sing

T,M" & N,M" = T,R'*k

sing sing

The first fundamental form of Msmg atp, I : TyM x TyM — Riis given by I(u,v) =
(dgqw),dgs(v)),Yu,veT, M. This induces a pseudometric in T R”" since the image of
at p, 11 : TqM X
T, M — N,M} . is a symmetric bilinear map given by /1 (u, v) = nz(d2f¢(q)(d¢(u, v))),

sing

where 3 : T), Rk N pMﬁng is the orthogonal projection.

non-zero vectors can be zero. The second fundamental form of M, Smg

Given a normal vector v € N, M:‘lng, the second fundamental form along v, 11, : TqM X

TqM — Ris given by 11, (1, v) = (II(u,v),v), forallu,v € TqM.

Let C; = {u € TqI\7I | I(u,u) = 1} be the subset of unit tangent vectors and let
n:Cqy —> NyM Smg be the map given by n(u) = I1(u, u). The curvature locus of MSlng
p, denoted by A, is the subset 7(C,). The curvature locus does not depend on the choice
of the local coordinates of M. Define A ffp as the affine space of minimal dimension which
contains A .

@ Springer
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2.1 Singular surfaces in Rk, k > 1

Let MSZin be acorank 1 surface at p. If {9y, 9y} isabasis for TqM and using the parametrisation
f, the coefficients of the first fundamental form are: E(q) = I(3x,9x) = (fx, fx)(q),
F(q) = 1(3x.3y) = (fx, fs)(@ and G(q) = 1(3y,d,) = (fy, fy)(q) and taking u =
ady + bdy € T,R?,

I(u,u) = a®E(q) + 2abF(q) + b*G(q).

The second fundamental form of M S%ng

11(0y, 0x) = m2(fxx (@(q))), 11(0x,0y) = m2(fxy(#(q))), 11(dy, 8y) = m2(fyy(#(q)))-

atp, I1: TqM X TqM — N[,M2 is given by

sing

The coefficients of 11, with respect to the basis {0y, dy} of TqM are

L(q) = (m2(fax), V)(@(q)), my(q) = (m2(fxy), V)(@(q)),
ny(q) = (T2 (fyy), V) (P (q)).

2
sing’

Thus, ifu = ad, + B9, € TqM and fixing an orthonormal frame {vy, ..., vgy1} of Ny M
the second fundamental form is given by

k+1 k+1

I u) =y 1Ly (u, wyvi = ) (@l (q) + 20Bmy, () + B, (@) vi-
i=1

i=1

It is possible to take a coordinate system ¢ and make rotations in the target in order to
obtain a local parametrisation in the Monge form as in (1). In this case C, is two parallel
lines {(£1, y) : y € R}

Taking an orthonormal frame {vy, ..., vgy1} of Ny M,
parametrised by

2
sing» the curvature locus A, can be

k+1
N =Yy +2myy +ny,y)Hvi,

i=1

where each parameter y € R corresponds to a unit tangent direction u = £0; + ydy =
(%1, y) € Cy. We denote by yo, the parameter corresponding to the tangent direction given
by u =9, = (0, 1).

In the case of k = 1, the curvature locus A, is a planar parabola that may degenerate into
a line, a half-line or a point.

When A, degenerates to a line, a half-line or a point, a special adapted frame {v;, v3}
of N, Mszing was defined in [12], and this definition was extended for the case when A, is a
non-degenerate parabola in [ 18], where v, was called the axial vector, v,. With this frame and
u € Cqy, II(u,u) = I1,,(u, u)vy + 11,,(u, u)vs. When A, degenerates to a line, a half-line
or a point [1,,(u, u) does not depend on u up to sign and the umbilic curvature of MSZing
at p is defined in [12] by «, = [(I1(u, u), v3)| = |I1,;(u, u)|. On the other hand the axial
curvature is defined in [18] as k4 (p) = min{K,, () : u € C;} = min{(n(y), vq) : y € R}
where K, (1) = (I1(u, u), v,) = I, (u, u) is the axial normal curvature function.

For k = 2, A, is again a planar parabola that may degenerate into a line, a half-line or
a point, however, this parabola now lies on a plane in R>. In [3], the umbilic curvature was
defined even when A, is a non-degenerate parabola as the height of this plane.
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2.2 Singular 3-manifold in R¥+3

Let MSmg C R**3 be a 3-manifold with a singularity of corank 1 at p € MSing. Let B =
{9y, dy, 9;} be a basis for T,M and u = ad, + pdy + yd. € T,M. The coefficients and
images of the first and second fundamental forms are defined analogously to the surface case.
In particular, for each normal vector v € N, M 3 the coefficients of I I, in terms of local

. sing’
coordinates (x, y, 7) are:

L(q) = (m2(fax), V(@ (@), my(q) = (m2(fiy). v)(@(q)), nv(q) = (ma(fyy), v)(P(q)),

(@) = (m2(fz2). VI(@ (). qv(q) = (m2(fi2), v)(@(q)). 1v(q) = (m2(fy2), V) (P (q)).

3

Fixing an orthonormal frame {vy, ..., viy1} of N Msing, the second fundamental form can

be written as
k+1

IT(u,u) =Y I, (u, u)v;.
i=1

Taking a coordinate system ¢ and making rotations in the target, it is possible to obtain a
local parametrisation in the Monge form as in (1). Hence, the subset of unit tangent vectors C,
is the cylinder given by {(«, 8, y) € TqM . a® + B2 = 1} parallel to the z-axis. Taking an
orthonormal frame {vy, ..., vg41} of N, Msing, the curvature locus A, can be parametrised
by (&, B, y) =

k+1
D @1, (@) + 2aBmy, (@) + By (@) + ¥ o (@) + 204y, (9) + 2By 7 (@) vi
i=1
with 2 4+ g2 = 1.
Throughout the paper, </ = Diff (R", 0) x Diff (R"**,0), i.e. changes of coordinates in
source and target, and 7> represents the 2-jets of elements in 7. All our results are local in
the sense that we are considering germs of manifolds at a certain point.

3 Definition of axial curvatures for M;’ing in R+k
For the case of corank 1 surfaces MSZing C R3 the parametrisation of f can be given at the
origin in Monge form

) 1 1
]2f(0) = (x, 5(a50x2 + 2a111xy + a(l)zy2), i(agoxz + 2a121xy + a§2y2)> . 2)

In [18], when A, is a non-degenerate parabola or a half-line the axial vector is defined using
the direction perpendicular to the directrix of the parabola or the direction of the half-line
and is given by v, = 1 (a(l)z, a(%z). The axial curvature is given by

V(@) +(ak)?

1 2 9
<(aozazo + apayy) —

(al al +112 112 )2
Ka(p)= 0211 0211

1 2 1 2
I (aozy aoz) Il l (a()zy aoz) ”2

For the case when the curvature parabola is a line or half-line, in [12] the authors define the
image by 7 of the direction y,, € T;; M as the direction in which the curvature locus is not
bounded. This was generalized for all .«72-orbits in [18]. The following result which relates

@ Springer



7 Page6of25 P. Benedini Riul et al.

this direction with the axial vector, despite natural and not surprising, had been unnoticed so
far.

For Mfmg C R"** considering the pseudo-metric in TqM , we call null tangent direction
the unitary tangent direction us, € TqM such that 7 (#0, o) = O (it corresponds to yo in
the notation of [12] for Mg, in R?).

Proposition 3.1 Let M2

sing C R3 be such that A p is a non-degenerate parabola or a half-line.

I (oo, ttoo) v

Letuoo € TyM be the null tangent direction, then T = Va-

Proof Consider MSZing given by the image of f in Monge form with j?f as in (2), then
E(q) =1, F(g) = G(g) =0, and usx = (0, 1) corresponds to the null tangent direction.
Then 11 (U0, Uso) = (aéz, a(2)2). O

This result suggests how the axial vector can be defined for higher dimensions. However
the idea of projecting the curvature locus to a certain direction in order to obtain meaningful
curvatures should not be restricted to the axial vector. We shall define several axial vectors
and, consequently, several axial curvatures.

Definition 3.2 Consider MS”in C R"™* | then dim TqM =nanddim N,M{ =k + 1. Let
I = min{n, k + 1}. Define the axial space Ax), C Nngng as Aff,ifdimAff, =1[andas
any [-vector space containing Aff), if dimAff, < [.In the second case Ax,, contains Aff,

and p and in both cases dim Ax, = I (as an affine or vector space respectively).
Our goal is to define an adapted frame as in [18] for Ax,,. We start with a partial definition.

Definition 3.3 Let uy, € TqM be the null tangent vector, and suppose /1 (i, Uxo) 7# O.
Then the primary axial vector is

1. I (oo, Uoo)
M (oo, uso) |

In order to obtain an adapted frame for Ax, we add normal vectors in such a way that

{vt}, R U(l;} is a positively oriented orthonormal frame.

V,

How to complete the basis and how to define an adapted frame when 7/ (4o, o) = 0
will be defined separately for the cases n = 2, 3 in the next sections.

Although Definition 3.3 needs to be completed, we are already in position for our main
definition.

Definition 3.4 Given an adapted frame {v;, o, vfl} of Ax, C NPM:ing,
curvature function is given by

the i-ary normal
va, (w) = {II(w, w), vé) = IIUZ (w, w),
and the i-ary axial curvatures are the numbers
kq; (p) = critical values of val (w) where w € C,.
Taking a Monge form as in (1) for a corank 1 singular manifold MS”ing C R"*K, the subset

of unit tangent vectors is the cylinder givenby C;, = {(x1, ..., x,) € TqM : x12+. . .+x3_1 =
1} € R” parallel to the x,-axis. Under these conditions, we can prove the following.
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Proposition 3.5 There are at most [(n — 1) axial curvatures.

Proof Fix a certain axial vector vfl. To study the critical points of K vl (w) when w € Cy we
want all the 2 x 2 minors of the following matrix to be O:

3K ; 3K ; 0K
Uﬂ L’a Ua
x| e 0Xp—1 0xp .
2x1 ... 2x, 0

where in the second row we have the gradient of the equation for C,. This is a 2 x n
matrix with linear entries in n-variables. The solutions to the system given by the minors is a
homogeneous algebraic variety which is generically a collection of lines through the origin.
The intersection of this lines with the cylinder C, give the critical points of K i (w). Since the
second fundamental form is quadratic homogeneous antipodal points in the cylinder have
the same image, so there are at most as many critical values as lines in the solution to the
system.

On the other hand in Lemma 5.5 of [7], there is a formula for the multiplicity of the ideal
generated by the 2 x 2 minors. Applying this formula to our situation we obtain that the
multiplicity is n, i.e. generically there can be up to n lines through the origin of multiplicity 1

as a solution to our system. However, notice that x; = - -- = x,,_; = 0 is always a solution,
but the line (0, ..., 0, x,,) does not intersect the cylinder. Therefore, there are at most n — 1
critical points and so at most n — 1 critical values.

Since we have [ axial vectors, the result follows. ]

Remark3 6 (i) When there is more than 1 axial curvature for each i we will denote them by
k2, 1 < j <n —1.On the other hand, it is possible that no axial curvature exists for
a certain i. Notice that in this case, saying that an axial curvature exists is equivalent to
saying it is finite.

(i) In the particular case of Mgln C R3, the primary axial curvature coincides with the
axial curvature «, defined in [18] and the absolute value of the secondary axial curvature
coincides with the umbilic curvature «, defined in [12] (see Sect. 2).

For a corank 1 singular n-manifold parametrised in Monge form as above, the null tangent
vector is given by Uso = (0,...,0,1). Consider the immersed (n — 1)-manifold in R+
given by f(x1,...,x,-1,0). Then T, Mr”egl = u TqM N {x, = 0}, and the pseudo-
metric induces a metric here. Let A, : T, Mr”egl - T Mr"egl be the associated shape operator
along the normal vector field v such that (A, (w), w) = (II(w, w), v), where w € uolo
There exists an orthonormal basis {ey, ..., e,_1} of Ty M, reg Uof eigenvectors of A, and the
corresponding eigenvalues |, ..., k,_; are the v-principal curvatures.

We will show in Sect. 5 that, for n = 3 at least, when n — 1 i-ary axial curvatures are

finite they coincide with the eigenvalues of Avé , 1.e. the vfl-principal curvatures of regular

(n — 1)-dimensional manifold Mr”egl.

4 Axial curvatures for M2 ing iN R2+k

We start by defining the adapted frame for Ax,. Here dim Ax, = [ = 2 so it is enough to
define the primary axial vector in order to obtain an adapted frame. For surfaces, as in [3, 12],
the curvature locus can be a non-degenerate parabola, a half-line, a line or a point. Given the
null tangent vector u, € TqM, when 11 (4o, Uso) # O, v; is defined as in Definition 3.3
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7 Page8of25 P. Benedini Riul et al.

Fig.1 Axial curvatures for 2
M3, CR® when A isa N,M;..
half-line
A,
K, |~ >

2

Vi

and we can complete the basis in a unique way such that {v/, vZ} is a positively oriented
orthonormal frame of Ax ). This includes the cases where A, is a non-degenerate parabola
or a half-line.

When 1] (1o, o) = 0, define v,i as the direction of A}, when itis aline and if A is a
point y # p, then vi is orthogonal to vg = y/|y|. If y = p, then any orthonormal frame is
an adapted frame.

Given the nature of the curvature locus for singular surfaces (a non-degenerate parabola,
a half-line, a line or a point), there will only be one axial curvature for each i = 1, 2. When
A, is aline k,, is not defined (there is no critical point of the primary axial normal curvature
function). When A, is a point «,, = 0. When A, is a non-degenerate parabola, «,, is not
defined (there is no critical point of the secondary axial normal curvature function). When
A, is a point k4, = || p||. In general we can write

Kay (p) = min{K,1(w) : w € Cy},
Kay(p) = K2(w) forany w € Cy.

See Fig. 1 for the case when A, is a half-line.

Proposition 4.1 Let p be the origin in R*** and Mszmg be given by the image of f in Monge
form such that

PO =& 210, fir1(0)), 3)
where jzfg(O) = %(aéoxz + Zaf]xy + aézyz) for £ = 1,...,k + 1. Denote ajj =
(al.lj, e af‘;rl), then 11 (oo, Uso) = Qg2, Where U is the null tangent direction.

(a) Ifagy # 0 (i.e. Ap is a non-degenerate parabola or a half-line) then
1 (ag2, an1)?
Kay(P) = —— ((aoz, ay) - ————>— |-
llaoz I llaoz I

Furthermore, if agz x a11 =0 (i.e. A, is a half-line), then

lagz x azoll
llao2 |l

(b) Ifagz =0andayy # 0 (i.e. Ay is aline), then

Ka, (P) =

llazo < apq|
llaza |l

Proof The proof for «,, follows the same idea as the proof of Proposition 4.3 in [18]. When
f is given as above, the curvature locus is parameterised by

Kay (p) =

n(y) = (a210 + 2ahy +a(§2y2, e, a12<0+1 + 2a/ffr1y +a§§r1y2).
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When agy # 0, the primary axial vector is given by v} = 22 g0 K, (») =), vy, A

~ llaozll”
direct computation shows that yp = — <a|‘|’;"):ﬁ1> is the minimal critical point of K, and the

primary axial curvature is given by k., (p) = K ol (vo).

Moreover, as agz # 0 we can suppose without loss of generality that ag;r ! # 0. Using
smooth changes of coordinates in the source and isometries in the target we can reduce j2 f
to the form

. 1 _ -
]Z.fe(q)zi(a§0x2+2af1xy) fort =1,...,k

. 1 _ _ _
P fienr(@) = 5 sy ' + 224 ey + ag ). @
If agz x aj1 = 0, we can reduce (4), using smooth changes of coordinates in the source and
isometries in the target, to the form jzf[(q) =0fort=1,...,k—1, jsz(q) — %5]2(0162,
and j2 fig1(q) = S@5g" x> +2ak " xy + ag; ' y?), where
~k llazo x ag2 ||
do=—"""7 1
llaoz I

We have v} = (0,...,0, 1), v2=(0,...,0, —1,0) and
n() = ,...,0,a, a" +2a "y +ag 'y,

Therefore «,, = —5’2‘0.

(b) When ag2 = 0 and aj; # O, then /7(u,u) = 0. We can suppose without loss
of generality that a%l # 0 then using smooth changes of coordinates in the source and
isometries in the target, we can reduce j2f to the form j2 fi(g) = %(d%oxz + Zc'zf 1XY),
72 f(q) = $a3x?, and j2 fy(q) = 0for € =3, ...,k + 1, where

o llaze x an|
a0 ="
llagz |l

Here the primary axial vector is v}l = (1,0,...,0) we obtain vg = (0,1,0...,0) and
kay (p) = K2 (w) = a3 0

Remark 4.2 (i) In the previous proof the isometries may change the orientation of the basis
of NyM, Szing. On the other hand, the adapted frame is constructed using the locus. So the
sign of «,, may change if the new orientation of the basis of N, MSZing
with the positive orientation of the adapted frame.

(i1) The previous formulas confirm what was announced in Remark 3.6, i.e. for the particular
case of Mrzeg C R? k,, and kg, recover the axial and umbilic curvatures in [12, 18]. In
fact, the formulas for «,, give explicit formulas for «,, which were not given in [12].

does not coincide

We now give some geometrical interpretations for the axial curvatures.

Proposition 4.3 Let f be the parametrisation of a corank 1 singular surface in R* such that
J2f ~.2 (x,¥%,0,0). Then the curvature « of the regular curve y(t) = f(t,0) at the
origin satisfies k> = (Kal)2 + (Ka2)2.

Proof As j>f ~ 2 (x, y2,0,0) we can take f parametrised by

1 2
a a
(x,y) (x, %xz + 32+ p(x, y), %xz +q(x,y), r(x, y))
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7 Page100f25 P. Benedini Riul et al.

where p,q,r € M% (see Lemma 3.7 in [3]). Here the curvature parabola is parameterised
by n(y) = (a210 + 2y2, a%o, 0), then k4, = “%0 and by Proposition 4.1 we get k,, = azlo.
Furthermore, when y = 0 the curvature of the regular curve y(t) = f(z,0) satisfies the
desired result. O

Remark 4.4 This formula generalizes the formula given in [13, p. 455] for the case of frontals
in R where it was proved that k> = k2 + k2, where « is the curvature of the cuspidal edge
curve, K, is the singular curvature and «,, is the limiting normal curvature.

Example 4.5 Consider the singular surface parameterised by

2 3
f(x,y)=<x %xhry, > X2, §°x2+y>

which can be seen as a surface in R* with a cuspidal edge. The curvature parabola is a half-
line parameterised by n(y) = (a;o + 2y2, a%o, ago). By Proposition 4.1, k4, (p) = “50 and
Kay (P) = [ (a3y)? + (a%o)z. The regular curve y (t) = f(t, 0) has curvature ¥ = ||azg||, and
hence k% = (lcal)2 + (Kaz)z.

Remark 4.6 For M2 C R* a singular corank 1 surface at p, in [3, p. 782] the authors

sing
associate a regular surface M reg C R* whose second order geometries is strongly related

to the one of MSmg C R*. Tt can be seen that the Gaussian curvature of a projection of this

surface to R3 coincides with the primary axial curvature.
Proposition 5.2 in [18] can be easily extended for R”.

Proposition 4.7 If f satisfies that A, is a non-degenerate parabola or a half-line, the </ -

singularities of h,,, the height function in the direction v;, are
a

(1) AT ifand only if k4, (p) > 0,

(2) Ay ifand only if kg, (p) < O,

(3) Ass ifand only if ka4 (p) = 0.

Proof The proof is analogous to the proof in [18]. Following Lemma 3.6 and Lemma 3.7
in [18], for any smooth map f : R? — R¥*2 with ¢ € R? a corank 1 singular point of f
there exists a coordinate system (x, y) which satisfies fx(q) # 0, fy(g) = 0, | fx(g)| =
| fxx(@)] = L and (fx(q), fyy(g)) = 0. In such a coordinate system

Kay (P) = ((Frxs Foy) = (Feys Fon) (@)

The right hand side of the formula does not depend on the coordinate system as long as
it satisfies the above conditions, so in particular one can chose f such that j2f(0) =
@, j2f1(0), ... j? fir1(0)). where

2aft al
7 fe(0) = <a20x2+ Uy + 2 y2>

llaoz |l llagz |l

for£ =1,...,k+ 1 (ap2 # 0 because A, is a non- degenerate parabola or a half-line).
Now con31der contact with the plane orthogonal to v ThlS contact is measured by the
o/ -singularity of the height function &, 1 (f@)=(f (q) v ) Direct computation shows

ka (p) = Hess(h,1 (£(9)))
and the result follows. O

We will give a geometrical interpretation for «,, in Sect. 6.
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Table 1 Conditions over the

co%fﬁcients of the 2-jet for the /-normal form Conditions

ﬁip_cgl::;ifgs;()& (i)c%{gf’ko; (x,y,x2,2%) rank(A) = 2 and ||agg2|l > 0
(x,y,x2,y2) rank(A) = 2 and ||agg2| =0
(x,y,22,0) rank(A) = 1 and ||agez| > O
(x,y,xz,0) rank(A) = 1 and ||agg2|| =0
(x,5,0,0) rank(A) =0

5 Axial curvatures for M;"ing in R3+k

5.1 Curvature loci and adapted frames

As in the previous section, we start by defining the adapted frame for Ax,. When k = 1,
then/ =2, if k > 1, then / = 3 and so we must distinguish these two possibilities.

Given a smooth map f : R? — R3* with ¢ € R3 a corank 1 singular point of f, there
exists a coordinate system in Monge form such that

f,y, )=,y ilx,y,2), ..., fir1(x,y,2) 5)
where j2 fi(q) = %(aﬁooxz + 2af10xy + aézoy2 + Zafmxz + Zaényz + agozzz) for ¢ =
1,...,k + 1. Consider the notation apqr = (a},qr, el a’l‘,;rl) with p,q,r =0, 1,2 and the
matrix

A = [a1o1 2011 2002 | . (6)

We start with the case of 3-manifolds in R* with a corank 1 singular point. In order to
define the adapted frame we need to understand the types of curvature locus that can appear.
For this we classify first the 2-jet orbits under «7-equivalence. We denote by J2(3, 3 + k) the
subspace of 2-jets j2 £(0) of map germs f : (R?,0) — (R3*%,0) and by £'J2(3,3 + k)
the subset of 2-jets of corank 1.

Proposition 5.1 There are five o/ -orbits in T1J2(3, 4):
(x,y.x2,2%), (¥, y,x2,y2), (x,y,2%,0), (x,y,xz,0)and (x,y,0,0).
Proof The proof is analogous to the one in Proposition 4.7 in [5]. O

Remark 5.2 Considering f : (R3,0) — (R*, 0) a corank 1 map germ given in Monge form
as in (5) and the matrix A given as in (6), Table 1 presents conditions on the coefficients to
identify when the 2-jet is equivalent to one of the five normal forms of Proposition 5.1.

Lemma5.3 Let MS3ing be a corank 1 surface in R3** given by the image of Monge form f as

(5). If |lagoz || # O then using smooth changes of coordinates in the source and isometries in
the target, we can reduce j> f to the form

. 1 _ _ - - .

72 fe(@) = 5 (@300x + 2110y + Aigy? + 24122 + 21 y2) for b =1,....k (])
and

. 1 _ _
2@ = 5(a§0+01x2 +2ak xy +aky + 2, ®)
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where
gt 1 ( (3002, B200) (3002,3101)2>
200 — -
lago2 ' llagoz 1>
1 < (ago2 3011>2>
_k+1 E)
gy = (agoz, a020) — ———5—
0207 | agoz | ’ lago2 12
ka1 1 (a002, a101) (2002, 011)
110 = (a002, a110) — B
lagoz| llago2 |

Moreover, when rank(A) = 1, where A is given as in (0), the coefficients 5%01 and ‘3511 are
zerofor{ =1,... k.

Proof Consider ||aggz]| # 0. Suppose, without loss of generality, that al&;rzl # 0. Taking the

1
rotation in R3*¥ of angle y = arctan (‘?—%) we can eliminate the coefficient of z2 of f;. In
a,

002
this case, we denote by f the new normal form and by &fj « the coefficients of its 2-jet. After

successive rotations in RT3 with angle y = arctan [ 2% |, m = 2, ..., k, we eliminate

@002
all the coefficients of z? of the normal form, except in the last coordinate. So the 2-jet is

1 . - - - -
E(agooxz + Zafloxy + a&oyz + Zafmxz + 2a611y2)
in coordinates £ =1, ..., k and

1
~k+1_2 ~k+1 ~k+1_2 ~k+1 ~k+1 ~k+1_2
5(“200 x° 4 2ay g Xy + agyg y© 42450, X2 + 247 yz 4 dggp 2°)

~k+1
in the last coordinate. Considering the changes of coordinates in the source z = 7’ — a_‘,?jrl X —
k+1 2 002
11y and then 7/ = ——— 7 we obtain the desired normal form.
a0, llagoz l
_ ¢ k10 k41l 0kl
M(])Creover, when rank(A) = 1 we have that ajy,ap5, — appp@9; = 0 and ag; ang,
agozaofrll =0for¢ =1, ..., k. Since the coefficients Ezfm and ‘_1((;11 contain these components
as a factor in their expressions, they are O for £ =1, ..., k. O
Remark 5.4 Taking normal sections of M Sing with the normal form from Lemma 5.3 we obtain
a singular surface MS2ing C R**3 with primary axial vector given by v! = (0,...,0,1).

Notice that the coefficients 5112‘(')’61 and &g%l coincide with the primary axial curvatures of the
normal sections obtained by {y = 0} and {x = 0} respectively (see Proposition 4.1).

An analysis of the conditions in Table 1 can shred some light on the type of loci we can
have in each orbit by following the ideas in the proof of Theorem 3.9 in [5], however, there is
amore geometrical way of doing this. Consider a tangent direction u € T, M, :ing, and we call
Sing Sing 1N the direction u. Following

the proof of Theorem 3.3 in [2], we have that the curvature locus of Ms31ng is generated by
the union of the curvature loci of the normal sections. All the normal sections are corank 1
singular surfaces in R? and the type of locus which can appear have been studied in [12]. We

can use this information to get the following.

the singular surface M N{u = 0} the normal section of M
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Proposition 5.5 Let M;ng C R?* be parametrised by f, then
i) j2f(0) ~z2 (x,y,xz, z%) if and only if Ap is a planar region,
(i) j2£(0) ~ 2 (x,y,xz,yz) ifand only if A, is a plane,
(iii) j2f(0) ~z2 (x,y, 22, 0) if and only if Ap is a half-strip (which may degenerate to a
half-line),
(iv) j2f(0) ~z2 (x,y,x2,0) if and only if A, is a strip (which may degenerate to a
line),
) j2f(0) ~2 (x,¥,0,0) if and only if A, is the curvature locus of a regular surface
in R* (ellipse, segment or point).

Proof When j2 f(0) ~ 2 (x,y,xz, z%), all normal sections of type y = Ax give corank 1
surfaces whose 2-jet is .o/ 2—equivalent to (x, xz, z2). The curvature locus of these sections is
a non-degenerate parabola with axial vector (0, 1) in the normal plane. The normal section
x = 0 gives a 2-jet «72-equivalent to (y, 0, z>), whose curvature locus is a half line in the
direction (0, 1). The union of all these curvature loci gives a “parabolic” planar region. This
region is not the whole plane because the 2-jet of the last component of the parametrisation
of the curvature locus by Lemma 5.3 can be taken to a%oox2 + 2a1210xy + 61(2)20 y% + 2% where
X2+ y2 = 1, which is a bounded function plus z2, which is positive, so it is bounded on the
bottom.

When j2 £(0) ~ 2 (x,y,xz, yz), the normal section x = 0 gives a 2-jet o/ %-equivalent
to (y, 0, yz), whose curvature locus is a line in the direction (0, 1) and the section y = 0
gives a 2-jet ,sz-equivalent to (x, xz,0), whose curvature locus is a line in the direction
(1, 0). The rest of normal sections give lines in any direction between (0, 1) and (1, 0), so
the curvature locus of the 3-manifold is the whole plane.

When j2 fO) ~ 2 (x,y, 22, 0), all normal sections have a half-line in the direction
(1, 0) as curvature loci. By Lemma 5.3, the curvature locus of the 3-manifold can be taken
to (a2100x2 + Zallloxy + aézoy2 + 22, a%oox2 + 2a%10xy + aézoyz) where x2 + y2 = 1. The
curvature locus is bounded in the direction (0, 1) because the last component of the curvature
locus is a bounded function. On the other hand the component in the direction (1, 0) is a
bounded function plus z2, which is positive, so it is bounded on the left. We therefore have
a strip bounded on the left, which can degenerate to a half-line.

When j 2 f@©O) ~_2 (x,y,xz,0), all normal sections have lines in the direction (1, 0)
as curvature loci, except for the section x = 0, whose curvature locus is a point. The
curvature locus of the 3-manifold is a strip unbounded in the direction (1, 0). By item (e)
in Proposition 4.13 in [5] adapted for k = 1 (the proof is the same), the last component of
the curvature locus can be taken to a%oox2 + 2a1210xy + a(z)zoy2 where x2 + y2 = 1, so the
curvature locus is bounded in the direction (0, 1).

When j2f(0) ~_2 (x,y,0,0), by item (f) in Proposition 4.13 in [5] adapted for k = 1
(the proof is the same), the curvature locus coincides with the curvature locus of a parametri-
sation of type (x, y, %(aéooxz + 2a1110xy + a(l)zon), %(a%ooxz + 2a1210xy + a%zoyz)), and
so the curvature locus can be any type of curvature locus of a regular surface in R?, i.e. a
non-degenerate ellipse, a segment or a point. O

Example 5.6 We shall present examples of curvature locus for each possibility in Proposi-
tion 5.5. Let M2 C R* be locally parametrised by f : (R, 0) — (R*, 0).

sing

(i) Taking f(x,y,2) = (x, y, %xZ +xy+ %yz + %zz, x4 %yz + %xz), A, is a planar
region (Fig. 2 Planar region);
(i) Taking f(x,y,z) = (x,y, %xz + %xy + %yz + %yz, X2+ %yz + %xz), A, is aplane;
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Planar region Half-strip Strip

Fig.2 Curvature loci for the different orbits for M, s3ing CcR*

(i) For f(x,y,2) = (x,y, 30 +xy + 357 + 322, 5% + 33%), A is a half-strip (Fig. 2
Half-strip);
(iv) For f(x,y,2) = (x,y, 3x2 4 lxy + lyz, X2+ §y2 + l)cz) A, is a strip (Fig. 2
2 2 2 2 2 p
Strip);
(v) Finally, taking f(x,y,z) = (x, y, %xz +xy + %yz, x2 4+ %yz), A, is an ellipse.

The curvature loci are not completely depicted in Fig. 2, the planar region and the half-strip
should be extended infinitely on the right and the strip should be extended infinitely up and
down.

Now we can define our adapted frame for Ax,. Here [ = 2, so it is enough to define the
primary axial vector.

(i) When 11 (tco, tso) # O, v; is defined as in Definition 3.3 and we can complete the
basis in a unique way such that {vé, vZ} is a positively oriented orthonormal frame of
Axp. This includes the first and third orbits in Proposition 5.1.

(i) If Il (4o, Uxo) = 0, then f is either in the second, fourth or fifth orbit in Propo-
sition 5.1. In the orbit (x, y, xz, yz) the curvature locus is a plane and we take any
orthonormal frame as an adapted frame.

(iii) For the orbit (x, y, xz, 0) we take as v; the direction in which A, is not bounded, i.e.
the direction of the strip.

(iv) Finally, for (x, y, 0, 0), if A}, is a non-degenerate ellipse, take as v} and vZ the unitary
vectors in the directions of the semi-major and semi-minor axes, respectively, such
that {v;, v(%} is a positively oriented orthonormal frame of Ax . If A, is a segment,
take as v! the direction of the segment and complete to obtain an orthonormal basis.
If A, isapoint y # p take vé such that vg = y/|y|. If y = p any orthonormal frame
is an adapted frame.

When n = 5, ] = 3, so we have to define an adapted frame with 3 axial vectors. In [5]
there is a result similar to Proposition 5.1.

Proposition 5.7 [5] There are six a?-orbits in ! J2(3, 5):

(x,y,%2,y2,2%), (x,y,2%,y2,0), (x,,x2,z,0), (x,y,2°,0,0),
(x,y,x2,0,0) and (x, y,0,0,0).

With a discussion similar to Proposition 5.5 we can see what type of curvature locus there

is in each orbit. The normal sections for 3-manifolds in R with a corank 1 singular point are
corank 1 singular surfaces in R*, which have been studied in [3].
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(i) For the orbit (x, y, xz, yz, z%), the primary axial vector v} can be defined as in Def-
inition 3.3. By Lemma 5.3 the parametrisation of the first two components of the
curvature locus can be taken to “;00)‘2 + 2a1110xy + aézoy2 + Zallmxz + 2a(])] 1yz and
01%00952 +2a%10xy —l—atézoy2 +2a%01xz +2a§1 1Yz, where x>+y>=1landz € R. Since
in this orbit a{m #0 # aéll, these are two unbounded functions so we can choose
any orthonormal basis of this plane to complete the adapted frame {v], vg, vg }.

(ii) For the orbit (x, y, 72, vz, 0), v}, can be defined as in Definition 3.3. By item (b) in
Proposition 4.13 in [5] there is a direction perpendicular to v u' such that the curvature
locus is unbounded in both sides. Choose this unbounded direction as v2. We complete
with a third vector to obtain our orthonormal adapted frame.

(iii) For the orbit (x, y, xz, yz, 0), the curvature locus is unbounded in a plane, so we
choose any orthonormal frame to be {v,i, v%} and complete in a unique way to obtain
v} Notice that in the direction of v the curvature locus is bounded.

(iv) For the orbit (x, y, 22,0, 0), v; can be defined as in Definition 3.3. By Lemma 5.3 (or
Proposition 4.13 in [5]), any germ in this orbit can be taken by changes of coordinates
in the source and rotations in the target to the form (x, y, %(a%ooxz + Za{mxy +
Aoy’ + agepz®)s 5(a3p0x> + 2a710xy + gy, 5 (@5p0x" + 2a7 00y + agyy?).
Th;, curvatuge lozcus3is %iven lgy (aéooxi + 226111]0xy +2 a(lnozy2 + a(lmzz, a%oo)c2 +
2ay,0Xy + aggy*s 00X " +2a7,0xXy +aggy”) where x“ + y“ = 1. For z = 0 we get
the curvature ellipse (maybe degenerate) of the regular surface given by f(x, y, 0).
For any other constant zg, 11(C,N{z = zo}) is the same curvature ellipse translated by
(z0, 0, 0), i.e. a translation in the direction of the primary axial vector. This means that
the curvature locus is a half-strip contained in a plane. Choose vg to be the orthogonal
vector to v} in this plane. Finally, v} is the vector perpendicular to this plane. When
the strip degenerates to a half-line choose the plane that contains the locus and the
origin in order to define vg, and vs follows as above. If the origin lies in the line that
contains the half-line, choose any plane that contains the curvature locus and proceed
as above.

(v) For the orbit (x, y, xz, 0, 0), take vé as the direction in which the curvature locus is
unbounded. Arguing as for the previous orbit, the curvature locus is a strip contained
in a plane unbounded in the direction of v}. Choose v2, v3 as in the previous case.

(vi) For the orbit (x, y, 0, 0, 0), the curvature locus can be any curvature locus of a regular
surface in R (an ellipse, a segment or a point). Choose v; to be the semi-major axis
if it is an ellipse, the direction of the segment if it is a segment, or any direction
perpendicular to the point otherwise. Consider the plane that contains the ellipse, the
plane that contains the locus and the origin if it is a segment, or any plane that contains
vtll, the locus and the origin if it is a point, and define vg, vg as in the previous two

orbits. If the line that contains the segment contains the origin, choose any plane that
contains the segment. If the point is the origin, choose any plane.

Example 5.8 Similarly to Example 5.6, we can illustrate some types of curvature loci for
3-manifolds in R> with a corank 1 singular point. Let M3 C R’ be locally parametrised

sing
by f: (R3,0) = (R, 0).

(i) Let f(x,y,2) = %(x, y,x2 + zz,xy + xz,3x% + y2 + yz), whose 2-jet is o2
equivalent to (x, y, xz, yz, z2). The curvature locus is shown in Fig. 3;

(i) Consider f(x,y,z) = %(x, y, Xz, yz, X2 4 3xy + y2). In this case, j2 f(0) is «72-
equivalent to (x, y, xz, yz, 0) and the curvature locus is shown in Fig. 4;
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Fig.5 Different views of A in Example 5.8(iii)

(iii) Finally, consider f(x, y,2) = 5(x, y, 3x2 4 2xy + y? + 22, 2x% + 5y%, x2 4+ 2y?),
whose 2-jet is dz-equivalent to (x,y, z2,0,0). In this case, Fig. 5 illustrates the
curvature locus, a half-strip.

5.2 Geometrical interpretations

Theorem 5.9 Let Msing C R3** be given in Monge form (5). Consider the regular surface
Mr2eg C R¥** given by f(x,y,0). If I1(uso, tios) = |lagez]| # O, then the primary axial
3

Sing coincide with the U;—principal curvatures at p € M>

curvatures at p € M fes
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Proof Followmg the discussion at the end of Sect. 3, T, M reg is identified with TqM N{z=

0} = uZ and the unitary tangent vectors are given by Cy N ul ={x,y) e T, Mrzeg :

x2 +y? =1} = S'. Therefore, the curvature ellipse of Mfeg C R3+k at p is contained in the
3 3+k
curvature locus of MSmg C R™ at p.

Given the primary normal curvature function K, 1 (w) ={II(w, w),v ;) seen as a function

from R? to R, the primary axial curvatures are given by the critical values of K, ilc,- The
critical points of this function are given by the 2 x 2 minors of the following matrix

AK 1 0K 1 9K 4
Vg Vg Vg
ox ay 0z ,
2x 2y 0

where in the second row we have the gradient of the equation of Cy, i.e. x2+3y2=1.50

3K | 3K |
the primary axial curvatures are given by the solutions of the system 2( a;’” y— a}‘f“ X) =
K ol aKvl
a — a —

0,2x —* =0and 2y—*+ = 0.

On the other hand, the eigenvalues of the shape operator A, Mrzeg - T Mreg are
given by the critical values of (Aua 1(w), w) = ({1 (w, w), va) where weS cT, Mrzeg are
the unitary tangent vectors. So these are the critical values of K, |1 = Ky1|¢c,nyL - Which

are given by the determinant of
0K | 0K 1 0K
Ya Vg Ya

ax dy 0z
2x 2y 0 )
0 0 1

where the last row is the gradient of the equation for C, Nu, i.e. z = 0. Therefore, the v;-

P 2 34k oKy
principal curvatures of Mg, C R e x) = 0.
Now if 11 (1o, o) 7 0, then ||agez2| # 0, so we can use the normal form in Lemma 5.3.

Now v} = (0,...,0, 1) and K 1 () = a2 1 2a x4 a2 4 2 with a2 +y2 = 1,
0K 1
SO T = 2z and this is 0 if and only if z = 0.
In conclusion, we have that the critical points of K, 1 Ic, coincide with the critical points
of K v |Cqﬂu§o O

Theorem 5.10 Let M2 = C R3** k = 1, 2 and suppose that f lies in the orbit (x, y, z2, 0) or

sing

(x,y,72,0,0) (depending on k = 1 or2), then the secondary axial curvatures at p € Msmg

coincide with the v} 2_principal curvatures at p € Mrzeg

Proof Consider the Monge form as in Lemma 5.3. We prove it for k = 1, the proof for k = 2
is analogous. In the orbit (x, y, z2, 0), the curvature locus is given by 2(aé00x2 + allloxy +
a(l)zoyz, a%oox2 + alzloxy + a(z)zoy2 + z%) where x? + y? = 1. For z = 0 we get the curvature
ellipse (maybe degenerate) of the regular surface given by f (x, y, 0). For any other constant
20, 11(Cy N {z = zo}) is the same curvature ellipse translated by (zo, 0), i.e. a translation
in the direction of the primary axial vector. Therefore the critical values of K v2 Ic, coincide
with the critical values of K,2|c, L - O

Remark5.11 When k > 2, similarly to Proposition 5.1 there is an orbit of type
(x,y,2%,0,...,0). Here the secondary axial curvatures coincide with the v2-principal cur-
vatures. Notice also that in this case there may exist 3-ary axial curvatures, but the tangent

space of Mrzcg is 2-dimensional.
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Theorem 5.12 Let M;ng C R3** k > 1and suppose that f lies in the orbit (x, y,0, ..., 0),
3

then the primary and secondary axial curvatures at p € Msing coincide with the v}l and vg-

principal curvatures at p € Mrzeg (resp.).

Proof 1In this orbit the curvature locus of the 3-manifold is precisely the curvature locus of
the regular manifold so the result follows. In this case, with any other choice of adapted frame
the result would still hold. O

Remark 5.13 Similar results to Theorems 5.9, 5.10 and 5.12 can be proven for singular corank
1 n-manifolds in general. In fact, we believe that when i < n — 1, then, in the orbits where
n — 1 i-ary axial curvatures are finite they coincide with the vz -principal curvatures of the
associated regular (n — 1)-manifold. However, our proofs depend on the type of curvature
locus and certain normal forms, so we do not have a general proof at the moment.

Example 5.14 Consider f(x, y, z) = (x, y, %xz +xy+ %yz + %yz, x4+ %yz + %xz), which
lies in the orbit (x, y, xz, yz). Here the curvature locus is the whole plane and we can choose
the adapted frame given by v)l = (1,0) and vﬁ = (0, 1). One can check that KUA 0, ¢) hasa
critical point with critical value k,, = 3. However, the v} -principal curvatures of f(x, y, 0)
are given by 2 & +/2 and do not coincide with Kay -

It is possible to find an adapted frame such that at least one of the principal curvatures
in the direction of one of the vectors of the frame of the regular manifold coincides with an
axial curvature, but it seems unlikely to be able to obtain a general result as Theorem 5.9.
However, we have the following partial result.

Proposition 5.15 Let Msing CR* k=1,2, if the curvature locus is unbounded on both

sides in the direction of a certain axial vector Ué’ then there is exactly 1 axial curvature in
that direction. In particular, if there is exactly 1 direction v; in which the curvature locus is
unbounded on both sides and f is given in Monge form such that vfl is one of the coordinate
axes, then the corresponding component can be taken to

_ 1. A . 4
iy, = E(ﬂllzoox2 + 2al 10xy + ajpgy® + 2a]y;x2).

and the unique axial curvature in that direction is given by k,, = aézo. Furthermore, in this
case, if ay,, = O then it coincides with 1 v,-principal curvature of the associated regular
surface.

Proof First suppose there is a unique direction corresponding to vé such that the curvature
locus is unbounded on both sides. This is the case of the orbits (x, y, 72, xz)and (x, y, xz,0)
when £k = 1 and the orbits (x, y, z2,x2,0) and (x, v, xz,0,0) when k = 2. By Proposi-
tion 4.13 in [5], for k = 2 the component corresponding to v’ can be taken, by changes of
variable in the source and isometries in the target, to

. » ~ ~ ,
iy, 2) = E(aiooxz + 2a} 10Xy + ahpgy” + 2a0,x2).

The proof of Proposition 4.13 is valid for the two orbits in k = 1 too. The normal curvature
function in the unbounded direction is given by

cos ¢

Kvi(w) = (n(w), vé) = aéoo cos? 0 + 2a’i10 cosfsinf + ‘1620 sin® 6 + cos § .

sin ¢
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Taking the partial with respect to ¢ equal to O we get cos® = 0 and so sinf = *1. Therefore
the unique critical value is k4, = aézo.

On the other hand, if aj,, = 0 the end points of the projection of the curvature ellipse of
the associated regular surface in the direction v}, (i.e. the v),-principal curvatures) are given
by aéoo and a(i)zo~

Now suppose that there are more than one axial vectors in which the curvature locus
is unbounded on both sides. This is the case of the orbits (x, y, xz, yz) when k = 1 or
(x,y,x2,yz, zz) and (x, y, xz, yz, 0) when k = 2. In the plane in which the curvature locus
is unbounded we can chose any orthonormal frame to be part of the adapted frame. Take a
vector vfl = (a, B) (itk =1, (a, B, 0) if k = 2) and, by Proposition 4.13 in [5] (the proof is
also valid for the orbit (x, y, xz, yz)), we can consider the normal curvature function

K, (w) = (n(w), v)

cos
= <a200 cos? 6 + 2a110 cos @ sin 6 + a020 sin® @ + cos 0 z + 2a011 sin @ Z’b>
+8 (a’za“()l cos2 6 + 2aﬁr01 cos @ sin6 + aéerol sin2 0 + Za’OJlrl1 né C?Sz> .
sin

The partial derivative with respect to ¢ is 0 if and only if & cos 6 + 2(066161 1+ B aéﬂ) sinf =
((a, 2(aa61] + ﬂaf)’ﬁl)) (cos B, sinf)) = 0, so there are two values of 6 for which we may
have critical points. Substituting « cos 6 + 2(ozaoll + /3‘1011 )sinf = 0 in KU, (w) we can
see that the critical value does not depend on ¢. The critical points are two lines of antipodal
points in the cylinder Cy . Since the second fundamental form is quadratic homogeneous, the
image of antipodal points is the same, so the image of the two lines is the same and there is
only 1 critical value. o

Corollary 5.16 For Ms3ing C R3*X there are at least 2 and at most 4 axial curvatures when
k = 1 and at least 4 and at most 5 axial curvatures when k = 2, which may coincide in
degenerate cases.

Proof From Proposition 3.5, [(n — 1) is a higher bound for the number of axial curvatures.

For k = 1, I = 2 and so there are at most 4 axial curvatures. This higher bound is attained
in orbits suchas (x, y, 72, 0) or (x, y, 0, 0), where the axial curvatures coincide with principal
curvatures of the associated regular surfaces (by Theorems 5.9, 5.10, and 5.12). On the other
hand, there are at most 2 directions in which the curvature locus is unbounded on both sides
(i.e.in the orbit (x, y, xz, yz)) and by Proposition 5.15, there will be exactly 1 axial curvature
in each.

Fork = 2,1 = 3. However, the higher bound 6 is not attained since by the way the adapted
frame is chosen, whenever there are 2 primary and 2 secondary axial curvatures, there is only
one 3-ary axial curvature (vg is perpendicular to the plane that contains the curvature locus,
and so the projection to this direction gives only 1 value). On the other hand, there are at
most two directions in which the curvature locus is unbounded on both sides of the direction
of the axial vector (in the orbits (x, y, xz, yz, z2) and (x, v, Xz, yz, 0)) by Proposition 5.15
there is only 1 axial curvature in each of these directions. In the remaining direction there
will be 2 axial curvatures.

In degenerate cases, when the curvature locus is a segment, for example, two i-ary cur-
vatures might coincide. In this case, there might be only 3 different axial curvatures when
k=2. O
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As corollaries of Theorems 5.9, 5.10, 5.12 and Proposition 5.15 we get some interesting
geometrical interpretations.

Corollary5.17 Let M3 . C R* and suppose that f lies in the orbits (x,y,z?,0) or

sing
(x,,0,0), the Gaussian curvature of the regular surface given by f(x,y,0) is given by

_ 1 2 1,2
K =k, k4 +KgyKg,-
In particular, this includes when f is a frontal and f(x,y,0) is a cuspidal surface or a
cuspidal surface with a curve of cuspidal cross-caps.

Proof Given a regular surface in R* and {v1, v2} an orthonormal basis of the normal plane,
by Theorem 1 in [1] (which can be found as Theorem 7.1 in [10]), the Gaussian curvature
is K = K| + K3, where K; is the Gaussian curvature of the regular surface in R3 given
by the projection in the normal direction orthogonal to v;. Given the adapted frame {vé, vZ}
of NyM, then K; is the product of the vé-principal curvatures, i = 1, 2. Therefore, by
Theorems 5.9, 5.10 and 5.12, we get K = Kallicgl + Kalzlcgz. o
Corollary 5.18 Let M;ng c R* and suppose that f lies in the orbits (x,y,xz, 22) or
(x,y,x2,0). If f is given in Monge form and a(z)zo = 0, then the curvature of the curve
[0, y,0) is equal to k4, if f lies in the first orbit and equal to k4, otherwise. In particular,
this is the curvature of the curve of cross-caps when f is in the orbit (x, y, xz, z%) and it is
the curvature of the curve of swallowtail points for the corresponding example in the orbit

(x,y,xz,0).

Proof The 2-jet of the curve f(0, y, 0) is given by (0, y, a(1)20 y2, 0). The result now follows
by Proposition 5.15. O

The following result gives a formula to calculate the axial curvatures.

Proposition 5.19 Let M3 =~ C R3*K be given by the image of f in Monge form as in

sing

Lemma 5.3. Suppose /cjl (p) and Kgl (p) are defined (i.e. finite), then:

(1) When (5116;01 - 5112‘301) #0.If leﬁol # 0, there exist two primary axial curvatures given
by

ki () =Koy (0.5 ).

where (Hi, %) are two critical points of

K1 (w) = (n(w), va) = @550 cos” 0 + aj sin(20) + agy' sin® 0 + cot’ ¢.

. e
In particular, ifaj|, =0, then

1 kel 2 _ kel
Ka (P) = ayyy  and kg (p) = dgy -

—k+1 ~k+1
(2) When agyy = dyy

1 2 ~k+1 ~k+1
Kq, (P) = kg, (p) = Gypy — layyy |-
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Proof By Lemma 5.3, we can consider the primary axial vector as v, = (0, ..., 0, 1) and
—k+1 _k+1 —k+1
N(w) = (k, ..., x @sg o + 24\ ap + gy B2 + v,
where w = (o, B, ¥) € C,;. Then the axial normal curvature at the direction vy, is given by

Kp(w) = (n(w), v}) = asgo® + 23\ e + agzy B + v

As a? + ,32 =1, we can take @« = cos 6, B = sinf, y = cot¢, then
K1 (w) = (n(w), v}) = dagy cos> 6 +2ay}y cosOsin6 + gy sin® 0 + cot’p.

The critical points of K v} are the points (6, %) such that 6 satisfies the equation

(@ — asgh sin(26) 4 23k cos(26) = 0.
We have the following cases:

_k+1
(1) When (@5 —aki!) # 0, then sin(26) = (akf,lilgﬂ,) c0s(20). Thus, if cos(26) # 0, we
200 —“020
—k+1

. 24\ . .
obtain 6 = % arctan <,k+1a‘7‘f’k+l) . Note that there are four possibles values of 6, which
200 ~%020
. ~k+1 ~k+1 ~k+1
we call 0;, i = 1,2,3,4, such that K, (6;, 7/2) = agyy + (dap0 — dgng ) €0s>(G;) +
é]ffrol sin(26;) is a critical value, but there are only two critical values. Here the axial

curvatures are given by
K= {KU; (9,~, %) | fori = 1,2,3,4].

In particular, dll‘f[)l = 0 if and only if sin(26) = 0. When this is the case (0, %), (7, %)
and (%, 3), (37”, 7) are the critical points, so

1 ~k+1 2 ~k+1
Kq (P) = 359 and kg (p) = dgyg -
) Ifaly, = aki) andal i # 0, we get
cos(20) = 0. Thus, if @)}y > 0, (¥, Z) and (I, %) are critical points and if aj ;| < 0,
the critical points are (7, 5) and (57”, 7), in both cases
1 2 ~k+1 ~k+1
Ka, (p) = Kq, (p) = aygq —layjy |-

In particular, when Ezlff{f =0, (0, m/2) are critical points of K, 1 for all 6 € [0, 2r) and

: PO I, R o' RS o5 |
the axial curvature is Kq, = Kg, = dgpy = dag -

[m}

Corollary 5.20 Let M3 C R* be given by the image of f in Monge form as in Lemma 5.3

sing
when rank(A) = 1, i.e. f lies in the orbit (x, y, z2,0), then:

(1) When (&620 - é%oo) # 0. If &1110 # 0, then there exist at most two secondary axial
curvatures given by

Ky (P) = K2 (6:),
where 6; are critical points of

K2 (w) = (n(w), v3) = — (@3 c0s” 0 + aj o 5in(20) + agy sin” ).
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In particular, iféll10 =0, then
k) (p)=—aly, and k2 (p) = —a,
a\P) = —axy a\P) = —Apyo-
(2) When ajy, = ayy,.
Kay (P) = 1, (p) = — (@300 — laf1)-

Proof The prooffollows from the fact v; = (0, 1)and v‘% = (0, —1) and analogous arguments
to the proof of Proposition 5.19. O
Remark 5.21 The obstruction to generalizing the above result for M sm c R3** withk > 1
is the secondary axial vector may not coincide with one of the axes in that coordinate system
(although with the normal form of Lemma 5.3 v; =(0,...,0, D).

Example 5.22 (i) Consider the frontal 3-manifold given by (x,y, %(a%ooxz + aézoy2 +
z2), %(a%ooxz + “(%20)’2 + yz3)). Here (x, 0, %aéooxz, %a%ooxz) is a curve of cuspidal
cross-cap points. Let k¥ be the curvature of this curve, then, by Proposition 5.19 and
Corollary 5.20 k% = (k) )* + (k),)*.

(ii) Consider the frontal 3-manifold given by (x, y, §(agox? + af gxy + adyyy?> + 2xz +
423), $(@3p0x? + a2 gxy +x2% +3z%). Here (0, y, Jaly,y?, 0) is a curve of swallowtail
points and by Proposition 5.15 the curvature of this curve is given by kg .

Example 5.23 Consider M3 c R* given by

sing

£y, e I 2oy ey 1),
X, v,2)=(x,y, =x Coxlax
y:z yZ 2y B y 2)7 B

Observe that f lies in the orbit (x, y, z2,0) and the primary axial vector is v = (0, 1). Direct

calculation shows (%, 5), (5§T , 5) are critical points of K ») and Kal (p) = 1 +5sin(26;) +

2 cos2(6;), so for 6 = %, %" K;l(p) =2+ +/2and /{21 (p) =2— V2, respectively. For
the secondary axial vector v2 = (—1,0), we get & = 0, Z are critical points of K, 2. So

K;Z (p) = —1and /(32 (p) = —7. It follows from Corollary 5.17 that the Gaussian curvature
of the regular surface f(x, y, 0) is

K=k ko +kpkoy=Q2+V2) - 2=V + (=) (-1) =2+7=09.

Remark 5.24 In Theorem 3.3 in [2] it is proved that the curvature locus of Msmg is generated
by the union of the curvature parabolas of the normal sections. Therefore, the critical values
of the function given by the i- ary axial curvatures of the normal sections coincide with the

i-ary axial curvatures at p € Mglng

6 Relation of axial curvatures and umbilic curvatures

Throughout the literature the umbilic curvature has been defined in many different contexts,
both for regular and singular manifolds. It was first defined by Montaldi in [15] for semi-
umbilic points in M2, C R*. Then it was defined by Mochida, Romero Fuster and Ruas

reg
in [14] for M. reg c R>. More recently, Deolindo-Silva and Oset Sinha in [8] defined it for

M:eg C R (in [6] Binotto, Costa and Romero Fuster mention focal spheres but do not define
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the umbilic curvature). It has also been defined for singular manifolds, namely, Martins and
Nuiio-Ballesteros in [12] defined it for Mszin CR3 (it was also defined in the frontal context
by Martins and Saji in [13] where they called it the limiting normal curvature) and finally,
Benedini Riul, Oset Sinha and Ruas for M Szing c R*in [3]. The name “umbilic” is not casual,
this curvature defines the centre of a sphere with degenerate contact with the manifold at
p, also known as an umbilical focus and umbilical focal hyperspheres. For surfaces it is a
sphere with corank 2 contact (i.e. corank 2 singularity of the distance squared function), for
3-manifolds it is a sphere with corank 3 contact. This was proved in the previous references
when it was defined, except for the case Mszing C R*, where it was proved by Deolindo-Silva
and Oset Sinha in [8].

The umbilic curvature has been defined in many different ways but all definitions can be
unified in the following way. Given M" C R"** (regular or singular) the umbilic curvature
is given by k,(p) = d(p, Affp). If dim N, M > n this definition makes sense always, if
dim N, M < n, this is only defined when the curvature locus is degenerate. For example,
Montaldi only defined this curvature when the curvature locus is a segment. Similarly, Mar-
tins and Nufio-Ballesteros also defined the umbilic curvature when the curvature locus is a
degenerate parabola. However, Benedini Riul, Oset Sinha and Ruas defined it even for non-
degenerate parabolas, following the ideas of Mochida, Romero Fuster and Ruas. Another
way of defining this curvature is by projecting to a direction perpendicular to Aff}, (since
d(p, Affp) is the shortest distance from p to points in Aff),).

Focusing now on the singular case, in most cases, the umbilic curvature is one of our axial
curvatures.

Proposition 6.1 Ifn > dim N,M = k + 1, when «, is defined, k, = || for some i =
2,..., 1. More precisely, if Af fp has codimensionr < k + 1in NyM, then iy, = |Kkg;_, |-
When r = k + 1, the curvature locus is a point and k, = |kg,| by definition.

Proof We have defined our adapted frame only in Ax,,, and so we only have / axial vectors.
Ifn >dimN,M =k + 1, then/ = k+ 1, and so Ax, = N, M. In this case, k, is only
defined when the curvature locus is degenerate, i.e. Aff), is not the whole N, M. So «,, is the
projection of the curvature locus onto a direction perpendicular to Aff,. The way in which
the adapted frame has been defined, this direction is one of the axial vectors. In fact, when
Affp is a hyperplane, this direction is vfl and so k; = |kg|. If Aff), has codimension 2 in
N, M then this direction is vfl‘l, ky = lkq_,| and k4 = 0. This goes on until codimension
k. When r = k + 1, the curvature locus is a point and «, = |k, | by definition (there is no
need for the absolute value here because «,, is defined as norm in this case). O

If n < dim Ny,M = k + 1 there are less axial vectors than the dimension of the normal
space, and so the umbilic curvature may be given by a projection to a normal direction which
is not in Ax,. However, consider the (k + 1 — [)-vector space of orthogonal directions to
the directions in Ax,. The intersection of this vector space and Ax), is a point. Consider the
direction between this point and p. We call the unitary vector in this direction v/;*!. Notice
that the projection of the curvature locus onto this direction is constant. We call this constant
€yl

Proposition6.2 If n < dimN,M = k + 1 then k, = |Kv1“+1| when dim Aff, = [ and
Ky = |Kkg;| for some i =2, ..., 1 otherwise.

Proof In this case,! = n. Whendim Aff, <[, then Ax, contains Aff,, and p, so, similarly
to the above Proposition, «, = |k, | for some i = 2,...,]. When dim Aff, = [, then
Axp = Affp and so d(p, Affp) coincides with |k +1| by definition. O

@ Springer



7 Page24of25 P. Benedini Riul et al.

Example 6.3 1In [3] the umbilic curvature «, was defined for MSZlng C R* Here Ax p isaplane

with adapted frame {v;, vg}. When the curvature parabola is degenerate (a half-line, a line
or a point) k, = |kg,|. When the curvature parabola is non-degenerate, «,, is the height of
Affp = Ax)p and s0 k, = |K,3| as defined above.

Remark 6.4 In the same way as for all other situations where the umbilic curvature has been
defined, a geometric interpretation of the umbilical curvature for M3 sing € R> can be given.
For example, when dim Aff), = 2 (i.e. the curvature locus is a planar region), then there
exists a unique umbilical focus at p given by

1
a:p—}——vg‘

u

In fact, here «, = |, 3| Similar results can be obtained when dim Aff, < 2, although
instead of one umbilical focus there may be a line of umbilical foci. The proof relies on the
analysis of the Hessian of the distance squared function and is analogous to the proof of
Proposition 6.6 in [8].
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