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Abstract
For singular n-manifolds inRn+k with a corank 1 singular point at p ∈ Mn

sing we define up to
l(n−1)different axial curvatures at p,where l = min{n, k+1}.These curvatures are obtained
using the curvature locus (the image by the second fundamental form of the unitary tangent
vectors) and are therefore second order invariants. In fact, in the case n = 2 they generalise
all second order curvatures which have been defined for frontal type surfaces. We relate these
curvatures with the principal curvatures in certain normal directions of an associated regular
(n−1)-manifold contained in Mn

sing.We obtain many interesting geometrical interpretations
in the cases n = 2, 3. For instance, for frontal type 3-manifolds with 2-dimensional singular
set, theGaussian curvature of the singular set can be expressed in terms of the axial curvatures.
Similarly for the curvature of the singular set when it is 1-dimensional. Finally, we show that
all the umbilic curvatures which have been defined for singular manifolds up to now can be
seen as the absolute value of one of our axial curvatures.
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1 Introduction

In the last 15 years the study of the differential geometry of singular surfaces has flourished
to be an area of great interest for researchers frommany different backgrounds. These objects
are cherished by differential geometers as much as by singularists. Even contact topologists
are encountering singular objects when studying wave fronts and frontals, and Gauss–Bonnet
type theorems provide a link to the geometry. Singularity Theory has proved to be the ideal
framework to study these objects and its approach for regular surfaces (see the recent book
[10]) can be adapted for the singular case. Ways of studying the geometry of the singular
surface are relating it to the geometry of a regular surface from which it is obtained by an
orthogonal projection [2, 16, 19], or studying its contact with planes and spheres [17, 20].
Another way is to define curvatures which give information about the surface. For example,
in [21] a singular and a limiting normal curvature were defined for certain frontal type
singularities and a Gauss–Bonnet theorem was proved using the former. In [9] the intrinsity
of this kind of invariants is studied and in [22] the limiting normal curvature is interpreted as
a principal curvature.

In [12] the authors defined the curvature parabola at a singular corank 1 point in a surface
in R

3. This is the image by the second fundamental form of the unitary tangent vectors and
plays an analogous role to the curvature ellipse defined by Little in [11]. Using this parabola
they defined an umbilic curvature which captures the round geometry of the surface and
generalises the limiting normal curvature defined for cuspidal edges in [13]. In [18], the
third author and K. Saji, using the curvature parabola, defined for any corank 1 singular
surface an axial curvature which generalises the singular curvature defined in [21]. The axial
curvature was defined using the properties of the parabola, so it was not clear until now how
to generalise this to higher dimensions.

For p ∈ Mn
sing a corank 1 singular point in an n-manifold in R

n+k, the curvature locus
can have many different topological types and can even have singularities. These types of
loci have been studied in [3] for n = 2 and k = 2 and in [2, 4, 5] for n = 3 and k = 2.

In this paper, using the curvature locus, we define axial curvatures for any corank 1 singular
n-manifold in R

n+k which can be seen as principal curvatures. These curvatures generalise
the umbilic and axial curvatures for surfaces inR3.We define a special adapted frame of axial
vectors {v1a, . . . , vla}, where l = min{n, k + 1}, in the normal space NpM and for each axial
vector we define the axial curvatures as the critical values of the projection of the curvature
locus onto the direction of the corresponding axial vector.

In Sect. 3, we give the main definitions and show that there can be up to l(n− 1) different
axial curvatures at a point p ∈ Mn

sing. Section 4 is devoted to the particular case of surfaces in
R
n . We give formulas for the axial curvatures and give geometrical interpretations for them.

For example, we show that for certain surfaces there is a distinguished curve on them with
curvature κ which satisfies κ2 = (κa1)

2 + (κa2)
2, where κa1 and κa2 are the primary and

secondary axial curvatures which generalise the axial and umbilic curvatures from [12, 18],
respectively. In Sect. 5 we study 3-manifolds inR3+k . For k = 1, 2 we define adapted frames
and prove the following elegant relation: For a corank 1 singular manifold Mn

sing ⊂ R
n+k, it

is possible to take a Monge form

f (x1, . . . , xn) = (x1, . . . , xn−1, f1(x1, . . . , xn), . . . , fk+1(x1, . . . , xn)), (1)

where ∂ f�
∂xi

= 0 for � = 1, . . . , k + 1 and i = 1, . . . , n. We show that the axial curvatures

corresponding to the axial vector via coincide with the via-principal curvatures of the regular
(n − 1)-manifold Mn−1

reg given by f (x1, . . . , xn−1, 0). In this sense, the axial curvatures can
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Axial curvatures for corank 1 singular n-manifolds… Page 3 of 25 7

be understood as principal curvatures of singular manifolds. Using this relation we obtain
interesting geometrical interpretations. For instance, for frontal type 3-manifolds with a
smooth 2-dimensional singular set, theGaussian curvature of the singular set can be expressed
in terms of the axial curvatures. The same can be done for the curvature of the singular set
when it is 1-dimensional. This opens countless directions in which to study the differential
geometry of higher dimensional frontals. Finally, in Sect. 6 we give an overview of all
the different umbilic curvatures which have been defined up to now (both in the regular and
singular setting),which are related to the umbilical focus of centers of sphereswith degenerate
contact with the manifold, and prove that all of them can be obtained as the absolute value
of an axial curvature.

2 The geometry of singular n-manifolds inR
n+k

In this section we review the basic definitions and results related to the second order geometry
of corank 1 singular n-manifolds in R

n+k . For more details see [2, 3, 5, 12].
Let Mn

sing ⊂ R
n+k be a n-manifold with a singularity of corank 1. We can consider

Mn
sing as the image of a smooth map g : M̃ → R

n+k from a smooth regular n-manifold

M̃ whose differential map has rank ≥ n − 1 at any point such that g(q) = p. Consider
φ : U → R

n a local coordinate system defined in an open neighborhoodU of q at M̃ . Using
this construction, we may consider a local parametrisation f = g ◦ φ−1 of Mn

sing at p (see
the diagram below).

R
n

f

U ⊂ M̃
gφ

Mn
sing ⊂ R

n+k

Considering dgq : Tq M̃ → TpR
n+k the differential map of g at q, the tangent space,

TpMn
sing, at p is given by Im dgq that degenerates to a (n − 1)-space and the normal space

at p, NpMn
sing, is the k + 1-space of orthogonal directions to TpMn

sing in R
n+k such that

TpMn
sing ⊕ NpMn

sing = TpR
n+k .

The first fundamental form of Mn
sing at p, I : Tq M̃ × Tq M̃ → R is given by I (u, v) =

〈dgq(u), dgq(v)〉, ∀ u, v ∈ Tq M̃ . This induces a pseudometric in TqRn since the image of
non-zero vectors can be zero. The second fundamental form of Mn

sing at p, I I : Tq M̃ ×
Tq M̃ → NpMn

sing is a symmetric bilinear map given by I I (u, v) = π2(d2 fφ(q)(dφ(u, v))),

where π2 : TpR
n+k → NpMn

sing is the orthogonal projection.

Given a normal vector ν ∈ NpMn
sing, the second fundamental form along ν, I Iν : Tq M̃ ×

Tq M̃ → R is given by I Iν(u, v) = 〈I I (u, v), ν〉, for all u, v ∈ Tq M̃ .

Let Cq = {u ∈ Tq M̃ | I (u, u) = 1} be the subset of unit tangent vectors and let
η : Cq → NpMn

sing be the map given by η(u) = I I (u, u). The curvature locus of Mn
sing at

p, denoted by 	p, is the subset η(Cq). The curvature locus does not depend on the choice
of the local coordinates of M̃ . Define A f f p as the affine space of minimal dimension which
contains 	p .
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2.1 Singular surfaces inR2+k, k ≥ 1

LetM2
sing be a corank1 surface at p. If {∂x , ∂y} is a basis forTq M̃ andusing the parametrisation

f , the coefficients of the first fundamental form are: E(q) = I (∂x , ∂x ) = 〈 fx , fx 〉(q),

F(q) = I (∂x , ∂y) = 〈 fx , fy〉(q) and G(q) = I (∂y, ∂y) = 〈 fy, fy〉(q) and taking u =
a∂x + b∂y ∈ TqR2,

I (u, u) = a2E(q) + 2abF(q) + b2G(q).

The second fundamental form of M2
sing at p, I I : Tq M̃ × Tq M̃ → NpM2

sing is given by

I I (∂x , ∂x ) = π2( fxx (φ(q))), I I (∂x , ∂y) = π2( fxy(φ(q))), I I (∂y, ∂y) = π2( fyy(φ(q))).

The coefficients of I Iν with respect to the basis {∂x , ∂y} of Tq M̃ are

lν(q) = 〈π2( fxx ), ν〉(φ(q)), mν(q) = 〈π2( fxy), ν〉(φ(q)),

nν(q) = 〈π2( fyy), ν〉(φ(q)).

Thus, if u = α∂x +β∂y ∈ Tq M̃ and fixing an orthonormal frame {ν1, . . . , νk+1} of NpM2
sing,

the second fundamental form is given by

I I (u, u) =
k+1∑

i=1

I Iνi (u, u)νi =
k+1∑

i=1

(α2lνi (q) + 2αβmνi (q) + β2nνi (q))νi .

It is possible to take a coordinate system φ and make rotations in the target in order to
obtain a local parametrisation in the Monge form as in (1). In this case Cq is two parallel
lines {(±1, y) : y ∈ R}.

Taking an orthonormal frame {ν1, . . . , νk+1} of NpM2
sing, the curvature locus 	p can be

parametrised by

η(y) =
k+1∑

i=1

(lνi + 2mνi y + nνi y
2)νi ,

where each parameter y ∈ R corresponds to a unit tangent direction u = ±∂x + y∂y =
(±1, y) ∈ Cq . We denote by y∞ the parameter corresponding to the tangent direction given
by u = ∂y = (0, 1).

In the case of k = 1, the curvature locus 	p is a planar parabola that may degenerate into
a line, a half-line or a point.

When 	p degenerates to a line, a half-line or a point, a special adapted frame {ν2, ν3}
of NpM2

sing was defined in [12], and this definition was extended for the case when 	p is a
non-degenerate parabola in [18], where ν2 was called the axial vector, va .With this frame and
u ∈ Cq , I I (u, u) = I Iva (u, u)ν2 + I Iν3(u, u)ν3. When 	p degenerates to a line, a half-line
or a point I Iν3(u, u) does not depend on u up to sign and the umbilic curvature of M2

sing
at p is defined in [12] by κu = |〈I I (u, u), ν3〉| = |I Iν3(u, u)|. On the other hand the axial
curvature is defined in [18] as κa(p) = min{Kva (u) : u ∈ Cq} = min{〈η(y), va〉 : y ∈ R}
where Kva (u) = 〈I I (u, u), va〉 = I Iva (u, u) is the axial normal curvature function.

For k = 2, 	p is again a planar parabola that may degenerate into a line, a half-line or
a point, however, this parabola now lies on a plane in R

3. In [3], the umbilic curvature was
defined even when 	p is a non-degenerate parabola as the height of this plane.
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2.2 Singular 3-manifold inRk+3

Let M3
sing ⊂ R

k+3 be a 3-manifold with a singularity of corank 1 at p ∈ M3
sing. Let B =

{∂x , ∂y, ∂z} be a basis for Tq M̃ and u = α∂x + β∂y + γ ∂z ∈ Tq M̃ . The coefficients and
images of the first and second fundamental forms are defined analogously to the surface case.
In particular, for each normal vector ν ∈ NpM3

sing, the coefficients of I Iν in terms of local
coordinates (x, y, z) are:

lν(q) = 〈π2( fxx ), ν〉(φ(q)), mν(q) = 〈π2( fxy), ν〉(φ(q)), nν(q) = 〈π2( fyy), ν〉(φ(q)),

pν(q) = 〈π2( fzz), ν〉(φ(q)), qν(q) = 〈π2( fxz), ν〉(φ(q)), rν(q) = 〈π2( fyz), ν〉(φ(q)).

Fixing an orthonormal frame {ν1, . . . , νk+1} of NpM3
sing, the second fundamental form can

be written as

I I (u, u) =
k+1∑

i=1

I Iνi (u, u)νi .

Taking a coordinate system φ and making rotations in the target, it is possible to obtain a
local parametrisation in theMonge form as in (1). Hence, the subset of unit tangent vectorsCq

is the cylinder given by {(α, β, γ ) ∈ Tq M̃ : α2 + β2 = 1} parallel to the z-axis. Taking an
orthonormal frame {ν1, . . . , νk+1} of NpM3

sing, the curvature locus 	p can be parametrised
by (α, β, γ ) �→

k+1∑

i=1

(α2lνi (q) + 2αβmνi (q) + β2nνi (q) + γ 2 pνi (q) + 2αγ qνi (q) + 2βγ rνi (q))νi

with α2 + β2 = 1.
Throughout the paper, A = Diff (Rn, 0) × Diff (Rn+k, 0), i.e. changes of coordinates in

source and target, and A 2 represents the 2-jets of elements in A . All our results are local in
the sense that we are considering germs of manifolds at a certain point.

3 Definition of axial curvatures forMn
sing inR

n+k

For the case of corank 1 surfaces M2
sing ⊂ R

3 the parametrisation of f can be given at the
origin in Monge form

j2 f (0) =
(
x,

1

2
(a120x

2 + 2a111xy + a102y
2),

1

2
(a220x

2 + 2a211xy + a202y
2)

)
. (2)

In [18], when 	p is a non-degenerate parabola or a half-line the axial vector is defined using
the direction perpendicular to the directrix of the parabola or the direction of the half-line
and is given by va = 1√

(a102)
2+(a202)

2
(a102, a

2
02). The axial curvature is given by

κa(p) = 1

‖(a102, a202)‖

(
(a102a

1
20 + a202a

2
20) − (a102a

1
11 + a202a

2
11)

2

‖(a102, a202)‖2
)

.

For the case when the curvature parabola is a line or half-line, in [12] the authors define the
image by η of the direction y∞ ∈ Tq M̃ as the direction in which the curvature locus is not
bounded. This was generalized for all A 2-orbits in [18]. The following result which relates
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7 Page 6 of 25 P. Benedini Riul et al.

this direction with the axial vector, despite natural and not surprising, had been unnoticed so
far.

For Mn
sing ⊂ R

n+k considering the pseudo-metric in Tq M̃, we call null tangent direction

the unitary tangent direction u∞ ∈ Tq M̃ such that I (u∞, u∞) = 0 (it corresponds to y∞ in
the notation of [12] for M2

sing in R
3).

Proposition 3.1 Let M2
sing ⊂ R

3 be such that	p is a non-degenerate parabola or a half-line.

Let u∞ ∈ Tq M̃ be the null tangent direction, then I I (u∞,u∞)
‖I I (u∞,u∞)‖ = va .

Proof Consider M2
sing given by the image of f in Monge form with j2 f as in (2), then

E(q) = 1, F(q) = G(q) = 0, and u∞ = (0, 1) corresponds to the null tangent direction.
Then I I (u∞, u∞) = (a102, a

2
02). ��

This result suggests how the axial vector can be defined for higher dimensions. However
the idea of projecting the curvature locus to a certain direction in order to obtain meaningful
curvatures should not be restricted to the axial vector. We shall define several axial vectors
and, consequently, several axial curvatures.

Definition 3.2 Consider Mn
sing ⊂ R

n+k, then dim Tq M̃ = n and dim NpMn
sing = k + 1. Let

l = min{n, k + 1}. Define the axial space Axp ⊂ NpMn
sing as A f f p if dimA f f p = l and as

any l-vector space containing A f f p if dimA f f p < l. In the second case Axp contains A f f p
and p and in both cases dim Axp = l (as an affine or vector space respectively).

Our goal is to define an adapted frame as in [18] for Axp.We start with a partial definition.

Definition 3.3 Let u∞ ∈ Tq M̃ be the null tangent vector, and suppose I I (u∞, u∞) �= 0.
Then the primary axial vector is

v1a := I I (u∞, u∞)

‖I I (u∞, u∞)‖ .

In order to obtain an adapted frame for Axp we add normal vectors in such a way that
{v1a, . . . , vla} is a positively oriented orthonormal frame.

How to complete the basis and how to define an adapted frame when I I (u∞, u∞) = 0
will be defined separately for the cases n = 2, 3 in the next sections.

Although Definition 3.3 needs to be completed, we are already in position for our main
definition.

Definition 3.4 Given an adapted frame {v1a, . . . , vla} of Axp ⊂ NpMn
sing, the i-ary normal

curvature function is given by

Kvia
(w) = 〈I I (w,w), via〉 = I Ivia (w,w),

and the i-ary axial curvatures are the numbers

κai (p) = critical values of Kvia
(w) where w ∈ Cq .

Taking a Monge form as in (1) for a corank 1 singular manifold Mn
sing ⊂ R

n+k, the subset

of unit tangent vectors is the cylinder given byCq = {(x1, . . . , xn) ∈ Tq M̃ : x21+. . .+x2n−1 =
1} ⊂ R

n parallel to the xn-axis. Under these conditions, we can prove the following.
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Proposition 3.5 There are at most l(n − 1) axial curvatures.

Proof Fix a certain axial vector via . To study the critical points of Kvia
(w) when w ∈ Cq we

want all the 2 × 2 minors of the following matrix to be 0:
(

∂K
via

∂x1
. . .

∂K
via

∂xn−1

∂K
via

∂xn
2x1 . . . 2xn 0

)
,

where in the second row we have the gradient of the equation for Cq . This is a 2 × n
matrix with linear entries in n-variables. The solutions to the system given by the minors is a
homogeneous algebraic variety which is generically a collection of lines through the origin.
The intersection of this lines with the cylinderCq give the critical points of Kvia

(w). Since the
second fundamental form is quadratic homogeneous, antipodal points in the cylinder have
the same image, so there are at most as many critical values as lines in the solution to the
system.

On the other hand in Lemma 5.5 of [7], there is a formula for the multiplicity of the ideal
generated by the 2 × 2 minors. Applying this formula to our situation we obtain that the
multiplicity is n, i.e. generically there can be up to n lines through the origin of multiplicity 1
as a solution to our system. However, notice that x1 = · · · = xn−1 = 0 is always a solution,
but the line (0, . . . , 0, xn) does not intersect the cylinder. Therefore, there are at most n − 1
critical points and so at most n − 1 critical values.

Since we have l axial vectors, the result follows. ��
Remark 3.6 (i) When there is more than 1 axial curvature for each i we will denote them by

κ
j
ai , 1 ≤ j ≤ n − 1. On the other hand, it is possible that no axial curvature exists for
a certain i . Notice that in this case, saying that an axial curvature exists is equivalent to
saying it is finite.

(ii) In the particular case of M2
sing ⊂ R

3, the primary axial curvature coincides with the
axial curvature κa defined in [18] and the absolute value of the secondary axial curvature
coincides with the umbilic curvature κu defined in [12] (see Sect. 2).

For a corank 1 singular n-manifold parametrised inMonge form as above, the null tangent
vector is given by u∞ = (0, . . . , 0, 1). Consider the immersed (n − 1)-manifold in R

n+k

given by f (x1, . . . , xn−1, 0). Then TqMn−1
reg = u⊥∞ = Tq M̃ ∩ {xn = 0}, and the pseudo-

metric induces a metric here. Let Aν : TqMn−1
reg → TqMn−1

reg be the associated shape operator

along the normal vector field ν such that 〈Aν(w),w〉 = 〈I I (w,w), ν〉, where w ∈ u⊥∞.

There exists an orthonormal basis {e1, . . . , en−1} of TqMn−1
reg of eigenvectors of Aν and the

corresponding eigenvalues κν
1 , . . . , κν

n−1 are the ν-principal curvatures.
We will show in Sect. 5 that, for n = 3 at least, when n − 1 i-ary axial curvatures are

finite they coincide with the eigenvalues of Avia
, i.e. the via-principal curvatures of regular

(n − 1)-dimensional manifold Mn−1
reg .

4 Axial curvatures forM2
sing inR

2+k

We start by defining the adapted frame for Axp. Here dim Axp = l = 2 so it is enough to
define the primary axial vector in order to obtain an adapted frame. For surfaces, as in [3, 12],
the curvature locus can be a non-degenerate parabola, a half-line, a line or a point. Given the
null tangent vector u∞ ∈ Tq M̃, when I I (u∞, u∞) �= 0, v1a is defined as in Definition 3.3
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Fig. 1 Axial curvatures for
M2
sing ⊂ R

3 when 	p is a
half-line

and we can complete the basis in a unique way such that {v1a, v2a} is a positively oriented
orthonormal frame of Axp. This includes the cases where 	p is a non-degenerate parabola
or a half-line.

When I I (u∞, u∞) = 0, define v1a as the direction of 	p when it is a line and if 	p is a
point y �= p, then v1a is orthogonal to v2a = y/|y|. If y = p, then any orthonormal frame is
an adapted frame.

Given the nature of the curvature locus for singular surfaces (a non-degenerate parabola,
a half-line, a line or a point), there will only be one axial curvature for each i = 1, 2. When
	p is a line κa1 is not defined (there is no critical point of the primary axial normal curvature
function). When 	p is a point κa1 = 0. When 	p is a non-degenerate parabola, κa2 is not
defined (there is no critical point of the secondary axial normal curvature function). When
	p is a point κa2 = ‖p‖. In general we can write

κa1(p) = min{Kv1a
(w) : w ∈ Cq},

κa2(p) = Kv2a
(w) for any w ∈ Cq .

See Fig. 1 for the case when 	p is a half-line.

Proposition 4.1 Let p be the origin in R2+k and M2
sing be given by the image of f in Monge

form such that

j2 f (0) = (x, j2 f1(0), . . . , j
2 fk+1(0)), (3)

where j2 f�(0) = 1
2 (a

�
20x

2 + 2a�
11xy + a�

02y
2) for � = 1, . . . , k + 1. Denote aij =

(a1i j , . . . , a
k+1
i j ), then I I (u∞, u∞) = a02, where u∞ is the null tangent direction.

(a) If a02 �= 0 (i.e. 	p is a non-degenerate parabola or a half-line) then

κa1(p) = 1

‖a02‖
(

〈a02, a20〉 − 〈a02, a11〉2
‖a02‖2

)
.

Furthermore, if a02 × a11 = 0 (i.e. 	p is a half-line), then

κa2(p) = ‖a02 × a20‖
‖a02‖ .

(b) If a02 = 0 and a11 �= 0 (i.e. 	p is a line), then

κa2(p) = ‖a20 × a11‖
‖a11‖ .

Proof The proof for κa1 follows the same idea as the proof of Proposition 4.3 in [18]. When
f is given as above, the curvature locus is parameterised by

η(y) = (a120 + 2a111y + a102y
2, . . . , ak+1

20 + 2ak+1
11 y + ak+1

02 y2).
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When a02 �= 0, the primary axial vector is given by v1a = a02‖a02‖ , so Kv1a
(y) = 〈η(y), v1a〉. A

direct computation shows that y0 = −〈a02,a11〉‖a02‖ is the minimal critical point of Kv1a
and the

primary axial curvature is given by κa1(p) = Kv1a
(y0).

Moreover, as a02 �= 0 we can suppose without loss of generality that ak+1
02 �= 0. Using

smooth changes of coordinates in the source and isometries in the target we can reduce j2 f
to the form

j2 f�(q) = 1

2
(ā�

20x
2 + 2ā�

11xy) for � = 1, . . . , k

j2 fk+1(q) = 1

2
(āk+1

20 x2 + 2āk+1
11 xy + āk+1

02 y2). (4)

If a02×a11 = 0, we can reduce (4), using smooth changes of coordinates in the source and
isometries in the target, to the form j2 f�(q) = 0 for � = 1, . . . , k − 1, j2 fk(q) = 1

2 ã
k
20x

2,

and j2 fk+1(q) = 1
2 (ã

k+1
20 x2 + 2ãk+1

11 xy + ãk+1
02 y2), where

ãk20 = −‖a20 × a02‖
‖a02‖ .

We have v1a = (0, . . . , 0, 1), v2a = (0, . . . , 0,−1, 0) and

η(y) = (0, . . . , 0, ãk20, ã
k+1
20 + 2ãk+1

11 y + ãk+1
02 y2),

Therefore κa2 = −ãk20.
(b) When a02 = 0 and a11 �= 0, then I I (u, u) = 0. We can suppose without loss

of generality that a111 �= 0 then using smooth changes of coordinates in the source and
isometries in the target, we can reduce j2 f to the form j2 f1(q) = 1

2 (ā
1
20x

2 + 2ā111xy),
j2 f2(q) = 1

2 ā
2
20x

2, and j2 f�(q) = 0 for � = 3, . . . , k + 1, where

ā220 = ‖a20 × a11‖
‖a11‖ .

Here the primary axial vector is v1a = (1, 0, . . . , 0) we obtain v2a = (0, 1, 0 . . . , 0) and
ka2(p) = Kv2a

(w) = ā220. ��
Remark 4.2 (i) In the previous proof the isometries may change the orientation of the basis

of NpM2
sing. On the other hand, the adapted frame is constructed using the locus. So the

sign of κa2 may change if the new orientation of the basis of NpM2
sing does not coincide

with the positive orientation of the adapted frame.
(ii) The previous formulas confirm what was announced in Remark 3.6, i.e. for the particular

case of M2
reg ⊂ R

3 κa1 and κa2 recover the axial and umbilic curvatures in [12, 18]. In
fact, the formulas for κa2 give explicit formulas for κu which were not given in [12].

We now give some geometrical interpretations for the axial curvatures.

Proposition 4.3 Let f be the parametrisation of a corank 1 singular surface in R4 such that
j2 f ∼A 2 (x, y2, 0, 0). Then the curvature κ of the regular curve γ (t) = f (t, 0) at the
origin satisfies κ2 = (κa1)

2 + (κa2)
2.

Proof As j2 f ∼A 2 (x, y2, 0, 0) we can take f parametrised by

(x, y) �→
(
x,

a120
2

x2 + y2 + p(x, y),
a220
2

x2 + q(x, y), r(x, y)

)
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where p, q, r ∈ M3
2 (see Lemma 3.7 in [3]). Here the curvature parabola is parameterised

by η(y) = (a120 + 2y2, a220, 0), then κa2 = a220 and by Proposition 4.1 we get κa1 = a120.
Furthermore, when y = 0 the curvature of the regular curve γ (t) = f (t, 0) satisfies the
desired result. ��
Remark 4.4 This formula generalizes the formula given in [13, p. 455] for the case of frontals
in R3 where it was proved that κ2 = κ2

s + κ2
ν , where κ is the curvature of the cuspidal edge

curve, κs is the singular curvature and κν is the limiting normal curvature.

Example 4.5 Consider the singular surface parameterised by

f (x, y) =
(
x,

a120
2

x2 + y2,
a220
2

x2,
a320
2

x2 + y3
)

which can be seen as a surface in R4 with a cuspidal edge. The curvature parabola is a half-
line parameterised by η(y) = (a120 + 2y2, a220, a

3
20). By Proposition 4.1, κa1(p) = a120 and

κa2(p) =
√

(a220)
2 + (a320)

2. The regular curve γ (t) = f (t, 0) has curvature κ = ‖a20‖, and
hence κ2 = (κa1)

2 + (κa2)
2.

Remark 4.6 For M2
sing ⊂ R

4 a singular corank 1 surface at p, in [3, p. 782] the authors

associate a regular surface M2
reg ⊂ R

4 whose second order geometries is strongly related

to the one of M2
sing ⊂ R

4. It can be seen that the Gaussian curvature of a projection of this

surface to R
3 coincides with the primary axial curvature.

Proposition 5.2 in [18] can be easily extended for Rn .

Proposition 4.7 If f satisfies that 	p is a non-degenerate parabola or a half-line, the A -
singularities of hv1a

, the height function in the direction v1a, are

(1) A+
1 if and only if κa1(p) > 0,

(2) A−
1 if and only if κa1(p) < 0,

(3) A≥2 if and only if κa1(p) = 0.

Proof The proof is analogous to the proof in [18]. Following Lemma 3.6 and Lemma 3.7
in [18], for any smooth map f : R2 → R

k+2 with q ∈ R
2 a corank 1 singular point of f

there exists a coordinate system (x, y) which satisfies fx (q) �= 0, fy(q) = 0, | fx (q)| =
| fxx (q)| = 1 and 〈 fx (q), fyy(q)〉 = 0. In such a coordinate system

κa1(p) = (〈 fxx , fyy〉 − 〈 fxy, fyy〉2)(q).

The right hand side of the formula does not depend on the coordinate system as long as
it satisfies the above conditions, so in particular one can chose f such that j2 f (0) =
(x, j2 f1(0), . . . , j2 fk+1(0)), where

j2 f�(0) = 1

2

(
a�
20x

2 + 2a�
11√‖a02‖ xy + a�

02

‖a02‖ y
2

)

for � = 1, . . . , k + 1 (a02 �= 0 because 	p is a non-degenerate parabola or a half-line).
Now consider contact with the plane orthogonal to v1a . This contact is measured by the
A -singularity of the height function hv1a

( f (q)) = 〈 f (q), v1a〉. Direct computation shows

κa1(p) = Hess(hv1a
( f (q)))

and the result follows. ��
We will give a geometrical interpretation for κa2 in Sect. 6.
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Table 1 Conditions over the
coefficients of the 2-jet for the
A 2-classification of corank 1
map germ (R3, 0) → (R4, 0)

A 2-normal form Conditions

(x, y, xz, z2) rank(A) = 2 and ‖a002‖ > 0

(x, y, xz, yz) rank(A) = 2 and ‖a002‖ = 0

(x, y, z2, 0) rank(A) = 1 and ‖a002‖ > 0

(x, y, xz, 0) rank(A) = 1 and ‖a002‖ = 0

(x, y, 0, 0) rank(A) = 0

5 Axial curvatures forM3
sing inR

3+k

5.1 Curvature loci and adapted frames

As in the previous section, we start by defining the adapted frame for Axp. When k = 1,
then l = 2, if k > 1, then l = 3 and so we must distinguish these two possibilities.

Given a smooth map f : R3 → R
3+k with q ∈ R

3 a corank 1 singular point of f , there
exists a coordinate system in Monge form such that

f (x, y, z) = (x, y, f1(x, y, z), . . . , fk+1(x, y, z)) (5)

where j2 f�(q) = 1
2 (a

�
200x

2 + 2a�
110xy + a�

020y
2 + 2a�

101xz + 2a�
011yz + a�

002z
2) for � =

1, . . . , k + 1. Consider the notation apqr = (a1pqr , . . . , a
k+1
pqr ) with p, q, r = 0, 1, 2 and the

matrix

A = [
a101 a011 a002

]
. (6)

We start with the case of 3-manifolds in R
4 with a corank 1 singular point. In order to

define the adapted frame we need to understand the types of curvature locus that can appear.
For this we classify first the 2-jet orbits underA -equivalence. We denote by J 2(3, 3+ k) the
subspace of 2-jets j2 f (0) of map germs f : (R3, 0) → (R3+k, 0) and by 
1 J 2(3, 3 + k)
the subset of 2-jets of corank 1.

Proposition 5.1 There are five A 2-orbits in 
1 J 2(3, 4):
(x, y, xz, z2), (x, y, xz, yz), (x, y, z2, 0), (x, y, xz, 0) and (x, y, 0, 0).

Proof The proof is analogous to the one in Proposition 4.7 in [5]. ��
Remark 5.2 Considering f : (R3, 0) → (R4, 0) a corank 1 map germ given in Monge form
as in (5) and the matrix A given as in (6), Table 1 presents conditions on the coefficients to
identify when the 2-jet is equivalent to one of the five normal forms of Proposition 5.1.

Lemma 5.3 Let M3
sing be a corank 1 surface in R

3+k given by the image of Monge form f as
(5). If ‖a002‖ �= 0 then using smooth changes of coordinates in the source and isometries in
the target, we can reduce j2 f to the form

j2 f�(q) = 1

2
(ā�

200x
2 + 2ā�

110xy + ā�
020y

2 + 2ā�
101xz + 2ā�

011yz) for � = 1, . . . , k (7)

and

j2 fk+1(q) = 1

2
(āk+1

200 x
2 + 2āk+1

110 xy + āk+1
020 y2 + z2), (8)
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where

āk+1
200 = 1

‖a002‖
(

〈a002, a200〉 − 〈a002, a101〉2
‖a002‖2

)
,

āk+1
020 = 1

‖a002‖
(

〈a002, a020〉 − 〈a002, a011〉2
‖a002‖2

)
,

āk+1
110 = 1

‖a002‖
(

〈a002, a110〉 − 〈a002, a101〉〈a002, a011〉
‖a002‖2

)
.

Moreover, when rank(A) = 1, where A is given as in (6), the coefficients ā�
101 and ā

�
011 are

zero for � = 1, . . . , k.

Proof Consider ‖a002‖ �= 0. Suppose, without loss of generality, that ak+1
002 �= 0. Taking the

rotation in R3+k of angle γ = arctan

(
a1002
ak+1
002

)
we can eliminate the coefficient of z2 of f1. In

this case, we denote by f̃ the new normal form and by ã�
i jk the coefficients of its 2-jet. After

successive rotations in R
k+3 with angle γ = arctan

(
ãm002
ãk+1
002

)
, m = 2, . . . , k, we eliminate

all the coefficients of z2 of the normal form, except in the last coordinate. So the 2-jet is

1

2
(ã�

200x
2 + 2ã�

110xy + ã�
020y

2 + 2ã�
101xz + 2ã�

011yz)

in coordinates � = 1, . . . , k and

1

2
(ãk+1

200 x
2 + 2ãk+1

110 xy + ãk+1
020 y2 + 2ãk+1

101 xz + 2ãk+1
011 yz + ãk+1

002 z
2)

in the last coordinate. Considering the changes of coordinates in the source z = z′− ãk+1
101

2ãk+1
002

x−
ãk+1
011

2ãk+1
002

y and then z′′ = 1√‖a002‖ z
′ we obtain the desired normal form.

Moreover, when rank(A) = 1 we have that a�
101a

k+1
002 − a�

002a
k+1
101 = 0 and a�

011a
k+1
002 −

a�
002a

k+1
011 = 0 for � = 1, . . . , k.Since the coefficients ā�

101 and ā
�
011 contain these components

as a factor in their expressions, they are 0 for � = 1, . . . , k. ��
Remark 5.4 Taking normal sections ofM3

sing with the normal form fromLemma5.3we obtain

a singular surface M2
sing ⊂ R

k+3 with primary axial vector given by v1a = (0, . . . , 0, 1).

Notice that the coefficients āk+1
200 and āk+1

020 coincide with the primary axial curvatures of the
normal sections obtained by {y = 0} and {x = 0} respectively (see Proposition 4.1).

An analysis of the conditions in Table 1 can shred some light on the type of loci we can
have in each orbit by following the ideas in the proof of Theorem 3.9 in [5], however, there is
a more geometrical way of doing this. Consider a tangent direction u ∈ TpM3

sing, and we call

the singular surface M3
sing∩{u = 0} the normal section of M3

sing in the direction u. Following

the proof of Theorem 3.3 in [2], we have that the curvature locus of M3
sing is generated by

the union of the curvature loci of the normal sections. All the normal sections are corank 1
singular surfaces inR3 and the type of locus which can appear have been studied in [12]. We
can use this information to get the following.
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Proposition 5.5 Let M3
sing ⊂ R

4 be parametrised by f , then

(i) j2 f (0) ∼A 2 (x, y, xz, z2) if and only if 	p is a planar region,
(ii) j2 f (0) ∼A 2 (x, y, xz, yz) if and only if 	p is a plane,
(iii) j2 f (0) ∼A 2 (x, y, z2, 0) if and only if 	p is a half-strip (which may degenerate to a

half-line),
(iv) j2 f (0) ∼A 2 (x, y, xz, 0) if and only if 	p is a strip (which may degenerate to a

line),
(v) j2 f (0) ∼A 2 (x, y, 0, 0) if and only if 	p is the curvature locus of a regular surface

in R
4 (ellipse, segment or point).

Proof When j2 f (0) ∼A 2 (x, y, xz, z2), all normal sections of type y = λx give corank 1
surfaces whose 2-jet isA 2-equivalent to (x, xz, z2). The curvature locus of these sections is
a non-degenerate parabola with axial vector (0, 1) in the normal plane. The normal section
x = 0 gives a 2-jet A 2-equivalent to (y, 0, z2), whose curvature locus is a half line in the
direction (0, 1). The union of all these curvature loci gives a “parabolic” planar region. This
region is not the whole plane because the 2-jet of the last component of the parametrisation
of the curvature locus by Lemma 5.3 can be taken to a2200x

2 + 2a2110xy + a2020y
2 + z2 where

x2 + y2 = 1, which is a bounded function plus z2, which is positive, so it is bounded on the
bottom.

When j2 f (0) ∼A 2 (x, y, xz, yz), the normal section x = 0 gives a 2-jet A 2-equivalent
to (y, 0, yz), whose curvature locus is a line in the direction (0, 1) and the section y = 0
gives a 2-jet A 2-equivalent to (x, xz, 0), whose curvature locus is a line in the direction
(1, 0). The rest of normal sections give lines in any direction between (0, 1) and (1, 0), so
the curvature locus of the 3-manifold is the whole plane.

When j2 f (0) ∼A 2 (x, y, z2, 0), all normal sections have a half-line in the direction
(1, 0) as curvature loci. By Lemma 5.3, the curvature locus of the 3-manifold can be taken
to (a1200x

2 + 2a1110xy + a1020y
2 + z2, a2200x

2 + 2a2110xy + a2020y
2) where x2 + y2 = 1. The

curvature locus is bounded in the direction (0, 1) because the last component of the curvature
locus is a bounded function. On the other hand the component in the direction (1, 0) is a
bounded function plus z2, which is positive, so it is bounded on the left. We therefore have
a strip bounded on the left, which can degenerate to a half-line.

When j2 f (0) ∼A 2 (x, y, xz, 0), all normal sections have lines in the direction (1, 0)
as curvature loci, except for the section x = 0, whose curvature locus is a point. The
curvature locus of the 3-manifold is a strip unbounded in the direction (1, 0). By item (e)
in Proposition 4.13 in [5] adapted for k = 1 (the proof is the same), the last component of
the curvature locus can be taken to a2200x

2 + 2a2110xy + a2020y
2 where x2 + y2 = 1, so the

curvature locus is bounded in the direction (0, 1).
When j2 f (0) ∼A 2 (x, y, 0, 0), by item (f) in Proposition 4.13 in [5] adapted for k = 1

(the proof is the same), the curvature locus coincides with the curvature locus of a parametri-
sation of type (x, y, 1

2 (a
1
200x

2 + 2a1110xy + a1020y
2), 1

2 (a
2
200x

2 + 2a2110xy + a2020y
2)), and

so the curvature locus can be any type of curvature locus of a regular surface in R
4, i.e. a

non-degenerate ellipse, a segment or a point. ��
Example 5.6 We shall present examples of curvature locus for each possibility in Proposi-
tion 5.5. Let M3

sing ⊂ R
4 be locally parametrised by f : (R3, 0) → (R4, 0).

(i) Taking f (x, y, z) = (x, y, 3
2 x

2 + xy + 1
2 y

2 + 1
2 z

2, x2 + 5
2 y

2 + 1
2 xz), 	p is a planar

region (Fig. 2 Planar region);
(ii) Taking f (x, y, z) = (x, y, 3

2 x
2 + 1

2 xy+ 1
2 y

2 + 1
2 yz, x

2 + 5
2 y

2 + 1
2 xz), 	p is a plane;
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Fig. 2 Curvature loci for the different orbits for M3
sing ⊂ R

4

(iii) For f (x, y, z) = (x, y, 3
2 x

2 + xy + 1
2 y

2 + 1
2 z

2, x2 + 5
2 y

2), 	p is a half-strip (Fig. 2
Half-strip);

(iv) For f (x, y, z) = (x, y, 3
2 x

2 + 1
2 xy + 1

2 y
2, x2 + 5

2 y
2 + 1

2 xz) 	p is a strip (Fig. 2
Strip);

(v) Finally, taking f (x, y, z) = (x, y, 3
2 x

2 + xy + 1
2 y

2, x2 + 5
2 y

2), 	p is an ellipse.

The curvature loci are not completely depicted in Fig. 2, the planar region and the half-strip
should be extended infinitely on the right and the strip should be extended infinitely up and
down.

Now we can define our adapted frame for Axp. Here l = 2, so it is enough to define the
primary axial vector.

(i) When I I (u∞, u∞) �= 0, v1a is defined as in Definition 3.3 and we can complete the
basis in a unique way such that {v1a, v2a} is a positively oriented orthonormal frame of
Axp. This includes the first and third orbits in Proposition 5.1.

(ii) If I I (u∞, u∞) = 0, then f is either in the second, fourth or fifth orbit in Propo-
sition 5.1. In the orbit (x, y, xz, yz) the curvature locus is a plane and we take any
orthonormal frame as an adapted frame.

(iii) For the orbit (x, y, xz, 0) we take as v1a the direction in which 	p is not bounded, i.e.
the direction of the strip.

(iv) Finally, for (x, y, 0, 0), if	p is a non-degenerate ellipse, take as v1a and v2a the unitary
vectors in the directions of the semi-major and semi-minor axes, respectively, such
that {v1a, v2a} is a positively oriented orthonormal frame of Axp. If 	p is a segment,
take as v1a the direction of the segment and complete to obtain an orthonormal basis.
If 	p is a point y �= p take v1a such that v

2
a = y/|y|. If y = p any orthonormal frame

is an adapted frame.

When n = 5, l = 3, so we have to define an adapted frame with 3 axial vectors. In [5]
there is a result similar to Proposition 5.1.

Proposition 5.7 [5] There are six A 2-orbits in 
1 J 2(3, 5):
(x, y, xz, yz, z2), (x, y, z2, yz, 0), (x, y, xz, yz, 0), (x, y, z2, 0, 0),

(x, y, xz, 0, 0) and (x, y, 0, 0, 0).

With a discussion similar to Proposition 5.5 we can see what type of curvature locus there
is in each orbit. The normal sections for 3-manifolds inR5 with a corank 1 singular point are
corank 1 singular surfaces in R

4, which have been studied in [3].
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(i) For the orbit (x, y, xz, yz, z2), the primary axial vector v1a can be defined as in Def-
inition 3.3. By Lemma 5.3 the parametrisation of the first two components of the
curvature locus can be taken to a1200x

2 + 2a1110xy + a1020y
2 + 2a1101xz + 2a1011yz and

a2200x
2+2a2110xy+a2020y

2+2a2101xz+2a2011yz,where x
2+ y2 = 1 and z ∈ R. Since

in this orbit a1101 �= 0 �= a2011, these are two unbounded functions so we can choose
any orthonormal basis of this plane to complete the adapted frame {v1a, v2a, v3a}.

(ii) For the orbit (x, y, z2, yz, 0), v1a can be defined as in Definition 3.3. By item (b) in
Proposition 4.13 in [5] there is a direction perpendicular to v1a such that the curvature
locus is unbounded in both sides. Choose this unbounded direction as v2a .Wecomplete
with a third vector to obtain our orthonormal adapted frame.

(iii) For the orbit (x, y, xz, yz, 0), the curvature locus is unbounded in a plane, so we
choose any orthonormal frame to be {v1a, v2a} and complete in a unique way to obtain
v3a . Notice that in the direction of v3a the curvature locus is bounded.

(iv) For the orbit (x, y, z2, 0, 0), v1a can be defined as in Definition 3.3. By Lemma 5.3 (or
Proposition 4.13 in [5]), any germ in this orbit can be taken by changes of coordinates
in the source and rotations in the target to the form (x, y, 1

2 (a
1
200x

2 + 2a1110xy +
a1020y

2 + a1002z
2), 1

2 (a
2
200x

2 + 2a2110xy + a2020y
2), 1

2 (a
3
200x

2 + 2a3110xy + a3020y
2)).

The curvature locus is given by (a1200x
2 + 2a1110xy + a1020y

2 + a1002z
2, a2200x

2 +
2a2110xy+a2020y

2, a3200x
2 +2a3110xy+a3020y

2) where x2 + y2 = 1. For z = 0 we get
the curvature ellipse (maybe degenerate) of the regular surface given by f (x, y, 0).
For any other constant z0, I I (Cq∩{z = z0}) is the same curvature ellipse translated by
(z0, 0, 0), i.e. a translation in the direction of the primary axial vector. This means that
the curvature locus is a half-strip contained in a plane. Choose v2a to be the orthogonal
vector to v1a in this plane. Finally, v3a is the vector perpendicular to this plane. When
the strip degenerates to a half-line choose the plane that contains the locus and the
origin in order to define v2a, and v3a follows as above. If the origin lies in the line that
contains the half-line, choose any plane that contains the curvature locus and proceed
as above.

(v) For the orbit (x, y, xz, 0, 0), take v1a as the direction in which the curvature locus is
unbounded. Arguing as for the previous orbit, the curvature locus is a strip contained
in a plane unbounded in the direction of v1a . Choose v2a, v

3
a as in the previous case.

(vi) For the orbit (x, y, 0, 0, 0), the curvature locus can be any curvature locus of a regular
surface in R

5 (an ellipse, a segment or a point). Choose v1a to be the semi-major axis
if it is an ellipse, the direction of the segment if it is a segment, or any direction
perpendicular to the point otherwise. Consider the plane that contains the ellipse, the
plane that contains the locus and the origin if it is a segment, or any plane that contains
v1a, the locus and the origin if it is a point, and define v2a, v

3
a as in the previous two

orbits. If the line that contains the segment contains the origin, choose any plane that
contains the segment. If the point is the origin, choose any plane.

Example 5.8 Similarly to Example 5.6, we can illustrate some types of curvature loci for
3-manifolds in R

5 with a corank 1 singular point. Let M3
sing ⊂ R

5 be locally parametrised

by f : (R3, 0) → (R5, 0).

(i) Let f (x, y, z) = 1
2 (x, y, x

2 + z2, xy + xz, 3x2 + y2 + yz), whose 2-jet is A 2-
equivalent to (x, y, xz, yz, z2). The curvature locus is shown in Fig. 3;

(ii) Consider f (x, y, z) = 1
2 (x, y, xz, yz, x

2 + 3xy + y2). In this case, j2 f (0) is A 2-
equivalent to (x, y, xz, yz, 0) and the curvature locus is shown in Fig. 4;
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Fig. 3 Different views of 	p in Example 5.8(i)

Fig. 4 Different views of 	p in Example 5.8(ii)

Fig. 5 Different views of 	p in Example 5.8(iii)

(iii) Finally, consider f (x, y, z) = 1
2 (x, y, 3x

2 + 2xy + y2 + z2, 2x2 + 5y2, x2 + 2y2),
whose 2-jet is A 2-equivalent to (x, y, z2, 0, 0). In this case, Fig. 5 illustrates the
curvature locus, a half-strip.

5.2 Geometrical interpretations

Theorem 5.9 Let M3
sing ⊂ R

3+k be given in Monge form (5). Consider the regular surface

M2
reg ⊂ R

3+k given by f (x, y, 0). If I I (u∞, u∞) = ‖a002‖ �= 0, then the primary axial

curvatures at p ∈ M3
sing coincide with the v1a-principal curvatures at p ∈ M2

reg.
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Proof Following the discussion at the end of Sect. 3, TqM2
reg is identified with Tq M̃ ∩ {z =

0} = u⊥∞ and the unitary tangent vectors are given by Cq ∩ u⊥∞ = {(x, y) ∈ TqM2
reg :

x2 + y2 = 1} ≡ S
1. Therefore, the curvature ellipse of M2

reg ⊂ R
3+k at p is contained in the

curvature locus of M3
sing ⊂ R

3+k at p.

Given the primary normal curvature function Kv1a
(w) = 〈I I (w,w), v1a〉 seen as a function

from R
3 to R, the primary axial curvatures are given by the critical values of Kv1a

|Cq . The
critical points of this function are given by the 2 × 2 minors of the following matrix

(
∂K

v1a
∂x

∂K
v1a

∂ y

∂K
v1a

∂z
2x 2y 0

)
,

where in the second row we have the gradient of the equation of Cq , i.e. x2 + y2 = 1. So

the primary axial curvatures are given by the solutions of the system 2(
∂K

v1a
∂x y − ∂K

v1a
∂ y x) =

0, 2x
∂K

v1a
∂z = 0 and 2y

∂K
v1a

∂z = 0.
On the other hand, the eigenvalues of the shape operator Av1a

: TqM2
reg → TqM2

reg are

given by the critical values of 〈Av1a
(w),w〉 = 〈I I (w,w), v1a〉 where w ∈ S

1 ⊂ TqM2
reg are

the unitary tangent vectors. So these are the critical values of Kv1a
|S1 = Kv1a

|Cq∩u⊥∞ , which
are given by the determinant of

⎛

⎜⎝

∂K
v1a

∂x

∂K
v1a

∂ y

∂K
v1a

∂z
2x 2y 0
0 0 1

⎞

⎟⎠ ,

where the last row is the gradient of the equation for Cq ∩ u⊥∞, i.e. z = 0. Therefore, the v1a-

principal curvatures ofM2
reg ⊂ R

3+k at p are given by the solutions to 2(
∂K

v1a
∂x y− ∂K

v1a
∂ y x) = 0.

Now, if I I (u∞, u∞) �= 0, then ‖a002‖ �= 0, so we can use the normal form in Lemma 5.3.
Now v1a = (0, . . . , 0, 1) and Kv1a

(w) = āk+1
200 x

2+2āk+1
110 xy+ āk+1

020 y2+ z2 with x2+ y2 = 1,

so
∂K

v1a
∂z = 2z and this is 0 if and only if z = 0.

In conclusion, we have that the critical points of Kv1a
|Cq coincide with the critical points

of Kv1a
|Cq∩u⊥∞ . ��

Theorem 5.10 Let M3
sing ⊂ R

3+k, k = 1, 2 and suppose that f lies in the orbit (x, y, z2, 0) or

(x, y, z2, 0, 0) (depending on k = 1 or 2), then the secondary axial curvatures at p ∈ M3
sing

coincide with the v2a-principal curvatures at p ∈ M2
reg.

Proof Consider the Monge form as in Lemma 5.3. We prove it for k = 1, the proof for k = 2
is analogous. In the orbit (x, y, z2, 0), the curvature locus is given by 2(a1200x

2 + a1110xy +
a1020y

2, a2200x
2 + a2110xy + a2020y

2 + z2) where x2 + y2 = 1. For z = 0 we get the curvature
ellipse (maybe degenerate) of the regular surface given by f (x, y, 0). For any other constant
z0, I I (Cq ∩ {z = z0}) is the same curvature ellipse translated by (z0, 0), i.e. a translation
in the direction of the primary axial vector. Therefore the critical values of Kv2a

|Cq coincide
with the critical values of Kv2a

|Cq∩u⊥∞ . ��
Remark 5.11 When k > 2, similarly to Proposition 5.1 there is an orbit of type
(x, y, z2, 0, . . . , 0). Here the secondary axial curvatures coincide with the v2a-principal cur-
vatures. Notice also that in this case there may exist 3-ary axial curvatures, but the tangent
space of M2

reg is 2-dimensional.
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Theorem 5.12 Let M3
sing ⊂ R

3+k, k ≥ 1 and suppose that f lies in the orbit (x, y, 0, . . . , 0),

then the primary and secondary axial curvatures at p ∈ M3
sing coincide with the v1a and v2a-

principal curvatures at p ∈ M2
reg (resp.).

Proof In this orbit the curvature locus of the 3-manifold is precisely the curvature locus of
the regular manifold so the result follows. In this case, with any other choice of adapted frame
the result would still hold. ��
Remark 5.13 Similar results to Theorems 5.9, 5.10 and 5.12 can be proven for singular corank
1 n-manifolds in general. In fact, we believe that when i ≤ n − 1, then, in the orbits where
n − 1 i-ary axial curvatures are finite they coincide with the via-principal curvatures of the
associated regular (n − 1)-manifold. However, our proofs depend on the type of curvature
locus and certain normal forms, so we do not have a general proof at the moment.

Example 5.14 Consider f (x, y, z) = (x, y, 3
2 x

2+ xy+ 1
2 y

2+ 1
2 yz, x

2+ 5
2 y

2+ 1
2 xz),which

lies in the orbit (x, y, xz, yz).Here the curvature locus is the whole plane and we can choose
the adapted frame given by v1a = (1, 0) and v2a = (0, 1). One can check that Kv1a

(θ, φ) has a

critical point with critical value κa1 = 3. However, the v1a-principal curvatures of f (x, y, 0)
are given by 2 ± √

2 and do not coincide with κa1 .

It is possible to find an adapted frame such that at least one of the principal curvatures
in the direction of one of the vectors of the frame of the regular manifold coincides with an
axial curvature, but it seems unlikely to be able to obtain a general result as Theorem 5.9.
However, we have the following partial result.

Proposition 5.15 Let M3
sing ⊂ R

3+k, k = 1, 2, if the curvature locus is unbounded on both

sides in the direction of a certain axial vector via, then there is exactly 1 axial curvature in
that direction. In particular, if there is exactly 1 direction via in which the curvature locus is
unbounded on both sides and f is given in Monge form such that via is one of the coordinate
axes, then the corresponding component can be taken to

j2 fi (x, y, z) = 1

2
(ai200x

2 + 2ai110xy + ai020y
2 + 2ai101xz),

and the unique axial curvature in that direction is given by κai = ai020. Furthermore, in this
case, if ai110 = 0 then it coincides with 1 via-principal curvature of the associated regular
surface.

Proof First suppose there is a unique direction corresponding to via such that the curvature
locus is unbounded on both sides. This is the case of the orbits (x, y, z2, xz) and (x, y, xz, 0)
when k = 1 and the orbits (x, y, z2, xz, 0) and (x, y, xz, 0, 0) when k = 2. By Proposi-
tion 4.13 in [5], for k = 2 the component corresponding to via can be taken, by changes of
variable in the source and isometries in the target, to

j2 fi (x, y, z) = 1

2
(ai200x

2 + 2ai110xy + ai020y
2 + 2ai101xz).

The proof of Proposition 4.13 is valid for the two orbits in k = 1 too. The normal curvature
function in the unbounded direction is given by

Kvia
(w) = 〈η(w), via〉 = ai200 cos

2 θ + 2ai110 cos θ sin θ + ai020 sin
2 θ + cos θ

cosφ

sin φ
.
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Taking the partial with respect to φ equal to 0 we get cos θ = 0 and so sin θ = ±1. Therefore
the unique critical value is κai = ai020.

On the other hand, if ai110 = 0 the end points of the projection of the curvature ellipse of
the associated regular surface in the direction via (i.e. the via-principal curvatures) are given
by ai200 and a

i
020.

Now suppose that there are more than one axial vectors in which the curvature locus
is unbounded on both sides. This is the case of the orbits (x, y, xz, yz) when k = 1 or
(x, y, xz, yz, z2) and (x, y, xz, yz, 0) when k = 2. In the plane in which the curvature locus
is unbounded we can chose any orthonormal frame to be part of the adapted frame. Take a
vector via = (α, β) (if k = 1, (α, β, 0) if k = 2) and, by Proposition 4.13 in [5] (the proof is
also valid for the orbit (x, y, xz, yz)), we can consider the normal curvature function

Kvia
(w) = 〈η(w), via〉

= α

(
ai200 cos

2 θ + 2ai110 cos θ sin θ + ai020 sin
2 θ + cos θ

cosφ

sin φ
+ 2ai011 sin θ

cosφ

sin φ

)

+β

(
ai+1
200 cos2 θ + 2ai+1

110 cos θ sin θ + ai+1
020 sin2 θ + 2ai+1

011 sin θ
cosφ

sin φ

)
.

The partial derivative with respect to φ is 0 if and only if α cos θ +2(αai011 +βai+1
011 ) sin θ =

〈(α, 2(αai011 + βai+1
011 )), (cos θ, sin θ)〉 = 0, so there are two values of θ for which we may

have critical points. Substituting α cos θ + 2(αai011 + βai+1
011 ) sin θ = 0 in Kvia

(w) we can
see that the critical value does not depend on φ. The critical points are two lines of antipodal
points in the cylinder Cq . Since the second fundamental form is quadratic homogeneous, the
image of antipodal points is the same, so the image of the two lines is the same and there is
only 1 critical value. ��

Corollary 5.16 For M3
sing ⊂ R

3+k there are at least 2 and at most 4 axial curvatures when
k = 1 and at least 4 and at most 5 axial curvatures when k = 2, which may coincide in
degenerate cases.

Proof From Proposition 3.5, l(n − 1) is a higher bound for the number of axial curvatures.
For k = 1, l = 2 and so there are at most 4 axial curvatures. This higher bound is attained

in orbits such as (x, y, z2, 0) or (x, y, 0, 0),where the axial curvatures coincidewith principal
curvatures of the associated regular surfaces (by Theorems 5.9, 5.10, and 5.12). On the other
hand, there are at most 2 directions in which the curvature locus is unbounded on both sides
(i.e. in the orbit (x, y, xz, yz)) and by Proposition 5.15, there will be exactly 1 axial curvature
in each.

For k = 2, l = 3.However, the higher bound 6 is not attained since by the way the adapted
frame is chosen, whenever there are 2 primary and 2 secondary axial curvatures, there is only
one 3-ary axial curvature (v3a is perpendicular to the plane that contains the curvature locus,
and so the projection to this direction gives only 1 value). On the other hand, there are at
most two directions in which the curvature locus is unbounded on both sides of the direction
of the axial vector (in the orbits (x, y, xz, yz, z2) and (x, y, xz, yz, 0)) by Proposition 5.15
there is only 1 axial curvature in each of these directions. In the remaining direction there
will be 2 axial curvatures.

In degenerate cases, when the curvature locus is a segment, for example, two i-ary cur-
vatures might coincide. In this case, there might be only 3 different axial curvatures when
k = 2. ��

123



7 Page 20 of 25 P. Benedini Riul et al.

As corollaries of Theorems 5.9, 5.10, 5.12 and Proposition 5.15 we get some interesting
geometrical interpretations.

Corollary 5.17 Let M3
sing ⊂ R

4 and suppose that f lies in the orbits (x, y, z2, 0) or
(x, y, 0, 0), the Gaussian curvature of the regular surface given by f (x, y, 0) is given by

K = κ1
a1κ

2
a1 + κ1

a2κ
2
a2 .

In particular, this includes when f is a frontal and f (x, y, 0) is a cuspidal surface or a
cuspidal surface with a curve of cuspidal cross-caps.

Proof Given a regular surface in R
4 and {v1, v2} an orthonormal basis of the normal plane,

by Theorem 1 in [1] (which can be found as Theorem 7.1 in [10]), the Gaussian curvature
is K = K1 + K2, where Ki is the Gaussian curvature of the regular surface in R

3 given
by the projection in the normal direction orthogonal to vi . Given the adapted frame {v1a, v2a}
of NpM, then Ki is the product of the via-principal curvatures, i = 1, 2. Therefore, by
Theorems 5.9, 5.10 and 5.12, we get K = κ1

a1κ
2
a1 + κ1

a2κ
2
a2 . ��

Corollary 5.18 Let M3
sing ⊂ R

4 and suppose that f lies in the orbits (x, y, xz, z2) or

(x, y, xz, 0). If f is given in Monge form and a2020 = 0, then the curvature of the curve
f (0, y, 0) is equal to κa2 if f lies in the first orbit and equal to κa1 otherwise. In particular,
this is the curvature of the curve of cross-caps when f is in the orbit (x, y, xz, z2) and it is
the curvature of the curve of swallowtail points for the corresponding example in the orbit
(x, y, xz, 0).

Proof The 2-jet of the curve f (0, y, 0) is given by (0, y, a1020y
2, 0). The result now follows

by Proposition 5.15. ��

The following result gives a formula to calculate the axial curvatures.

Proposition 5.19 Let M3
sing ⊂ R

3+k be given by the image of f in Monge form as in

Lemma 5.3. Suppose κ1
a1(p) and κ2

a1(p) are defined (i.e. finite), then:
(1) When (āk+1

020 − āk+1
200 ) �= 0. If āk+1

110 �= 0, there exist two primary axial curvatures given
by

κ i
a1(p) = Kv1a

(
θi ,

π

2

)
,

where
(
θi ,

π
2

)
are two critical points of

Kv1a
(w) = 〈η(w), va〉 = āk+1

200 cos2 θ + āk+1
110 sin(2θ) + āk+1

020 sin2 θ + cot2 φ.

In particular, if āk+1
110 = 0, then

κ1
a1(p) = āk+1

200 and κ2
a1(p) = āk+1

020 .

(2) When āk+1
020 = āk+1

200 ,

κ1
a1(p) = κ2

a1(p) = āk+1
200 − |āk+1

110 |.
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Proof By Lemma 5.3, we can consider the primary axial vector as va1 = (0, . . . , 0, 1) and

η(w) = (∗, . . . , ∗, āk+1
200 α2 + 2āk+1

110 αβ + āk+1
020 β2 + γ 2),

where w = (α, β, γ ) ∈ Cq . Then the axial normal curvature at the direction va1 is given by

Kv1a
(w) = 〈η(w), v1a〉 = āk+1

200 α2 + 2āk+1
110 αβ + āk+1

020 β2 + γ 2.

As α2 + β2 = 1, we can take α = cos θ, β = sin θ, γ = cotφ, then

Kv1a
(w) = 〈η(w), v1a〉 = āk+1

200 cos2 θ + 2āk+1
110 cos θ sin θ + āk+1

020 sin2 θ + cot2φ.

The critical points of Kv1a
are the points (θ, π

2 ) such that θ satisfies the equation

(āk+1
020 − āk+1

200 ) sin(2θ) + 2āk+1
110 cos(2θ) = 0.

We have the following cases:

(1) When (āk+1
020 − āk+1

200 ) �= 0, then sin(2θ) = 2āk+1
110

(āk+1
200 −āk+1

020 )
cos(2θ). Thus, if cos(2θ) �= 0,we

obtain θ = 1
2 arctan

(
2āk+1

110

āk+1
200 −āk+1

020

)
. Note that there are four possibles values of θ, which

we call θi , i = 1, 2, 3, 4, such that Kv1a
(θi , π/2) = āk+1

020 + (āk+1
200 − āk+1

020 ) cos2(θi ) +
āk+1
110 sin(2θi ) is a critical value, but there are only two critical values. Here the axial

curvatures are given by

κ i
a1 =

{
Kv1a

(
θi ,

π

2

)
| for i = 1, 2, 3, 4

}
.

In particular, āk+1
110 = 0 if and only if sin(2θ) = 0. When this is the case (0, π

2 ), (π, π
2 )

and ( π
2 , π

2 ), ( 3π2 , π
2 ) are the critical points, so

κ1
a1(p) = āk+1

200 and κ2
a1(p) = āk+1

020 .

(2) If āk+1
020 = āk+1

200 and āk+1
110 �= 0, we get

cos(2θ) = 0. Thus, if āk+1
110 > 0, ( 3π4 , π

2 ) and ( 7π4 , π
2 ) are critical points and if āk+1

110 < 0,
the critical points are ( π

4 , π
2 ) and ( 5π4 , π

2 ), in both cases

κ1
a1(p) = κ2

a1(p) = āk+1
200 − |āk+1

110 |.
In particular, when āk+1

110 = 0, (θ, π/2) are critical points of Kv1a
for all θ ∈ [0, 2π) and

the axial curvature is κ1
a1 = κ2

a1 = āk+1
020 = āk+1

200 .

��
Corollary 5.20 Let M3

sing ⊂ R
4 be given by the image of f in Monge form as in Lemma 5.3

when rank(A) = 1, i.e. f lies in the orbit (x, y, z2, 0), then:
(1) When (ā1020 − ā1200) �= 0. If ā1110 �= 0, then there exist at most two secondary axial

curvatures given by

κ i
a2(p) = Kv2a

(θi ) ,

where θi are critical points of

Kv2a
(w) = 〈η(w), v2a〉 = −(ā1200 cos

2 θ + ā1110 sin(2θ) + ā1020 sin
2 θ).
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In particular, if ā1110 = 0, then

κ1
a2(p) = −ā1200 and κ2

a2(p) = −ā1020.

(2) When ā1020 = ā1200,

κ1
a2(p) = κ2

a2(p) = −(ā1200 − |ā1110|).

Proof Theproof follows from the factv1a = (0, 1) andv2a = (0,−1) and analogous arguments
to the proof of Proposition 5.19. ��
Remark 5.21 The obstruction to generalizing the above result for M3

sing ⊂ R
3+k with k > 1

is the secondary axial vector may not coincide with one of the axes in that coordinate system
(although with the normal form of Lemma 5.3 v1a = (0, . . . , 0, 1)).

Example 5.22 (i) Consider the frontal 3-manifold given by (x, y, 1
2 (a

1
200x

2 + a1020y
2 +

z2), 1
2 (a

2
200x

2 + a2020y
2 + yz3)). Here (x, 0, 1

2a
1
200x

2, 1
2a

2
200x

2) is a curve of cuspidal
cross-cap points. Let κ be the curvature of this curve, then, by Proposition 5.19 and
Corollary 5.20 κ2 = (κ1

a1)
2 + (κ1

a2)
2.

(ii) Consider the frontal 3-manifold given by (x, y, 1
2 (a

1
200x

2 + a1110xy + a1020y
2 + 2xz +

4z3), 1
2 (a

2
200x

2 +a2110xy+ xz2 +3z4)).Here (0, y, 1
2a

1
020y

2, 0) is a curve of swallowtail
points and by Proposition 5.15 the curvature of this curve is given by κa1 .

Example 5.23 Consider M3
sing ⊂ R

4 given by

f (x, y, z) =
(
x, y,

1

2
x2 + 7

2
y2,

3

2
x2 + xy + 1

2
y2 + 1

2
z2

)
.

Observe that f lies in the orbit (x, y, z2, 0) and the primary axial vector is v1a = (0, 1).Direct
calculation shows ( π

8 , π
2 ), ( 5π8 , π

2 ) are critical points of Kv1a
and κ i

a1(p) = 1 + sin(2θi ) +
2 cos2(θi ), so for θ = π

8 , 5π
8 κ1

a1(p) = 2 + √
2 and κ2

a1(p) = 2 − √
2, respectively. For

the secondary axial vector v2a = (−1, 0), we get θ = 0, π
2 are critical points of Kv2a

. So

κ1
a2(p) = −1 and κ2

a2(p) = −7. It follows from Corollary 5.17 that the Gaussian curvature
of the regular surface f (x, y, 0) is

K = κ1
a1κ

2
a1 + κ1

a2κ
2
a2 = (2 + √

2) · (2 − √
2) + (−1) · (−7) = 2 + 7 = 9.

Remark 5.24 In Theorem 3.3 in [2] it is proved that the curvature locus of M3
sing is generated

by the union of the curvature parabolas of the normal sections. Therefore, the critical values
of the function given by the i-ary axial curvatures of the normal sections coincide with the
i-ary axial curvatures at p ∈ M3

sing.

6 Relation of axial curvatures and umbilic curvatures

Throughout the literature the umbilic curvature has been defined in many different contexts,
both for regular and singular manifolds. It was first defined by Montaldi in [15] for semi-
umbilic points in M2

reg ⊂ R
4. Then it was defined by Mochida, Romero Fuster and Ruas

in [14] for M2
reg ⊂ R

5. More recently, Deolindo-Silva and Oset Sinha in [8] defined it for

M3
reg ⊂ R

6 (in [6] Binotto, Costa and Romero Fuster mention focal spheres but do not define
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the umbilic curvature). It has also been defined for singular manifolds, namely, Martins and
Nuño-Ballesteros in [12] defined it for M2

sing ⊂ R
3 (it was also defined in the frontal context

by Martins and Saji in [13] where they called it the limiting normal curvature) and finally,
Benedini Riul, Oset Sinha and Ruas for M2

sing ⊂ R
4 in [3]. The name “umbilic” is not casual,

this curvature defines the centre of a sphere with degenerate contact with the manifold at
p, also known as an umbilical focus and umbilical focal hyperspheres. For surfaces it is a
sphere with corank 2 contact (i.e. corank 2 singularity of the distance squared function), for
3-manifolds it is a sphere with corank 3 contact. This was proved in the previous references
when it was defined, except for the case M2

sing ⊂ R
4, where it was proved by Deolindo-Silva

and Oset Sinha in [8].
The umbilic curvature has been defined in many different ways but all definitions can be

unified in the following way. Given Mn ⊂ R
n+k (regular or singular) the umbilic curvature

is given by κu(p) = d(p, A f f p). If dim NpM > n this definition makes sense always, if
dim NpM ≤ n, this is only defined when the curvature locus is degenerate. For example,
Montaldi only defined this curvature when the curvature locus is a segment. Similarly, Mar-
tins and Nuño-Ballesteros also defined the umbilic curvature when the curvature locus is a
degenerate parabola. However, Benedini Riul, Oset Sinha and Ruas defined it even for non-
degenerate parabolas, following the ideas of Mochida, Romero Fuster and Ruas. Another
way of defining this curvature is by projecting to a direction perpendicular to A f f p (since
d(p, A f f p) is the shortest distance from p to points in A f f p).

Focusing now on the singular case, in most cases, the umbilic curvature is one of our axial
curvatures.

Proposition 6.1 If n ≥ dim NpM = k + 1, when κu is defined, κu = |κai | for some i =
2, . . . , l. More precisely, if A f f p has codimension r < k + 1 in NpM, then κu = |κal−r+1 |.
When r = k + 1, the curvature locus is a point and κu = |κa2 | by definition.
Proof We have defined our adapted frame only in Axp, and so we only have l axial vectors.
If n ≥ dim NpM = k + 1, then l = k + 1, and so Axp = NpM . In this case, κu is only
defined when the curvature locus is degenerate, i.e. A f f p is not the whole NpM . So κu is the
projection of the curvature locus onto a direction perpendicular to A f f p. The way in which
the adapted frame has been defined, this direction is one of the axial vectors. In fact, when
A f f p is a hyperplane, this direction is vla and so κu = |κal |. If A f f p has codimension 2 in
NpM then this direction is vl−1

a , κu = |κal−1 | and κal = 0. This goes on until codimension
k. When r = k + 1, the curvature locus is a point and κu = |κa2 | by definition (there is no
need for the absolute value here because κa2 is defined as norm in this case). ��

If n < dim NpM = k + 1 there are less axial vectors than the dimension of the normal
space, and so the umbilic curvature may be given by a projection to a normal direction which
is not in Axp. However, consider the (k + 1 − l)-vector space of orthogonal directions to
the directions in Axp. The intersection of this vector space and Axp is a point. Consider the
direction between this point and p. We call the unitary vector in this direction vl+1

a . Notice
that the projection of the curvature locus onto this direction is constant. We call this constant
κ
vl+1
a

.

Proposition 6.2 If n < dim NpM = k + 1 then κu = |κ
vl+1
a

| when dim A f f p = l and
κu = |κai | for some i = 2, . . . , l otherwise.

Proof In this case, l = n.When dim A f f p < l, then Axp contains A f f p and p, so, similarly
to the above Proposition, κu = |κai | for some i = 2, . . . , l. When dim A f f p = l, then
Axp = A f f p and so d(p, A f f p) coincides with |κ

vl+1
a

| by definition. ��
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Example 6.3 In [3] the umbilic curvature κu was defined for M2
sing ⊂ R

4.Here Axp is a plane

with adapted frame {v1a, v2a}. When the curvature parabola is degenerate (a half-line, a line
or a point) κu = |κa2 |. When the curvature parabola is non-degenerate, κu is the height of
A f f p = Axp and so κu = |κv3a

| as defined above.

Remark 6.4 In the same way as for all other situations where the umbilic curvature has been
defined, a geometric interpretation of the umbilical curvature for M3

sing ⊂ R
5 can be given.

For example, when dim A f f p = 2 (i.e. the curvature locus is a planar region), then there
exists a unique umbilical focus at p given by

a = p + 1

κu
v3a .

In fact, here κu = |κv3a
|. Similar results can be obtained when dim A f f p < 2, although

instead of one umbilical focus there may be a line of umbilical foci. The proof relies on the
analysis of the Hessian of the distance squared function and is analogous to the proof of
Proposition 6.6 in [8].
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