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Abstract
In this work we study the space of derivations of non-degenerate evolution algebras. We
improve some results obtained recently in the literature and, as a consequence, we advance
in the description of the derivations for n-dimensionalVolterra evolution algebras. In addition,
we introduce the notion of loopof an evolution algebra andwe analyze underwhich conditions
the set of loops is invariant under change of basis.
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1 Introduction

1.1 Evolution algebras and its derivations

The evolution algebras are non-associative algebras introduced by Tian and Vojte-
chovsky [16], who established the theoretical foundations of these structures. In addition
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to emerging to model non-Mendelian genetic, in Tian [15] identified a whole series of con-
nectionswith other areas such as graph theory, group theory and discrete-timeMarkov chains,
among others. For a recent review of the advances in this type of algebras, we refer the reader
to Ceballos et al. [10].

In this work, we are interested in studying the space of derivations of some evolution
algebras. We point out that although there are many works describing partially such a space,
by using different approaches, a complete characterization is still an unfinished task. For any
evolution algebra, Tian [15] described the derivations in terms of a system of equations which
becomes the starting point for the characterization of the derivations for different families
of evolution algebras. The study of the derivations of evolution algebras with non-singular
structure matrices was done in [8] for complex algebras and extended in [12] for algebras
over a field with any characteristic. While [9] gave a complete characterization for the space
of derivations of two-dimensional evolution algebras, Alsarayreh et al. [1] studied the deriva-
tions of certain three-dimensional evolution algebras (solvable and nilpotent). Later, Qaralleh
andMukhamedov [13] provided a description of the derivations of three-dimensionalVolterra
evolution algebras. In [7] the authors provided a characterization for the case of evolution
algebras associated to graphs over a field of zero characteristic, which was generalized later
for fields of any characteristic in [14]. The novelty in the approach developed in [7, 14] rely
on the connection between the set of equation mentioned above and the structural properties
of the considered graph. Such an approach was explored in [3], where the authors studied
the space of derivations of some non-degenerate irreducible evolution algebras depending on
the twin partition of an associated directed graph.

One of the contributions of our work is to provide a characterization, in a sense to be
defined later, of the space of derivations of non-degenerate evolution algebras. We improve
some results obtained recently in the literature and, as a consequence, we advance in the
description of the derivations for n-dimensional Volterra evolution algebras.

1.2 Loops of an evolution algebra

Our approach to dealingwith derivations is inspired by a combination of arguments developed
by [3, 4].While the former explores the structure of a directed graph associated to an evolution
algebra, the last relies on a partition of the considered basis. One of the peculiarities of
evolution algebras is that they are not defined by identities, so their study usually follows a
different strategy than the one associated to other non-associative algebras like Jordan, Lie
or power-associative algebras. A usual approach to deal with an evolution algebra is to fix
its natural basis. However, many properties are not invariant through the chosen basis. Some
examples of this are the connectedness of the associated direct graph (see [11, Example 2.5])
or the skew-symmetry of the structure matrix (see Example 2.1). Therefore an interesting
task is to know which properties are invariant under the chosen basis. Motivated by this
question we study the phenomenon showed in Example 2.1, where we change the basis of a
Volterra evolution algebra and as a consequence, we verify that each element of the diagonal
of the structure matrix remains equal to zero. We prove that this is true in general for Volterra
evolution algebras. Moreover, it was trying to answer this question that we solve a more
general problem; namely, when the number of zeros in the diagonal of a structure matrix
of an evolution algebra is invariant under the change of natural basis. We point out that this
problem has been addressed previously in [4, Proposition 2.13] for the case where the algebra
is perfect.
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The nonzero elements belonging to the diagonal of the structure matrix are what we call
the loops of an evolution algebra. Although our results related to this part of the paper are of
independent interest, we observe that knowing the loops of an evolution algebra was useful
to the study of its derivations in [3].

1.3 Organization of the paper

Now, we will show how this paper is organized. In Sect. 2 we introduce the preliminary
definitions and notations. Taking into account [2, Theorem 2.11] we define a natural decom-
position of a natural basis of an evolution algebra which will be an important tool for later
results.

We begin Sect. 3 by establishing a characterization of space of derivations for a non-
degenerate evolution algebra in Proposition 3.1. As a consequence, the Corollary 3.4 proves
that the derivation is a block matrix, up to reordering. The Proposition 3.5 gives a connection
between the set of derivations and the fact of having a unique natural basis (in the sense
that whatever other natural basis can obtain by permutations or product by scalars). This fact
generalizes the results of [8, Theorem 2.1], [12, Theorem 4.1 item (1)] and [3, Theorem 1].
In the particular case of dim(A2) = 1 and the product of any two square elements of basis
is different from zero, we provide necessary and sufficient conditions for a linear operator
to be a derivation (Proposition 3.8). In fact, we show in Corollary 3.9 that, up to reordering,
the derivation is a skew-symmetric matrix. One of the requirements is related to the fact that
the matrix of derivation is a diagonal matrix. For this reason, we ask, on the one hand when
the derivation will have, under suitable conditions, some of the entries of the main diagonal
equals and, on the other hand, the main diagonal null. Proposition 3.12 and Theorem 3.13
answer these questions, respectively.

The Sect. 4 is devoted to studying of derivations in the case of Volterra evolution algebras.
In the same way as before, we show a characterization of the space of derivations for this
specific case. Fixed a Volterra evolution algebra and verifying that the product of any two
square of elements of basis is different from zero, themain result of this section (Theorem4.4)
provides a way of finding another Volterra evolution algebra with structure matrix diagonal
and space of derivations the same as the Volterra evolution algebra original. As the structure
matrix is diagonal, calculating the set of derivations is equivalent to calculating the set of
derivations over certain evolution ideals of the algebra (Corollary 3.2). In fact, what we need
is to find conditions that ensure that themain diagonal of derivations is null. In Proposition 4.6
we claim that the requirement imposed on the elements of the natural basis in the Theorem 4.4
canbe replacedbyother properties related to the structure constants. Particularly, Propositions
4.9 and 4.11 give conditions underwhich there exists a derivation of a non-degenerateVolterra
evolution algebra is not a diagonal matrix.

In Sect. 5 we start by defining the loops of an evolution algebra and study when this set
is invariant under change of natural basis. First, we will consider the set of no loops and
we prove in Theorem 5.3 that if an element of a natural decomposition is contained within
the set of no-loops then its corresponding element in another natural decomposition is also
contained within it. Next, we will focus on the set of loops and we have that if an evolution
algebra has no loops relative to a natural basis then it has no loops relative to any natural
basis (Corollary 5.5), as we have said before. Moreover, the Theorem 5.7 and Proposition
5.9 provide convenient criteria in terms of the elements of the natural decomposition for the
number of loops to be invariant. By contrast, we also give in Theorem 5.8 some conditions to
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find a new natural basis such that the number of loops does not stay constant. A summarizing
of conditions for invariability of the number of loops can be seen in Corollary 5.12.

2 Preliminaries

In what follows K will denote, unless we state otherwise, a field such that char(K) = 0.
In order to state the first definitions let � := {1, . . . , n}. An n-dimensional K-algebra A is
called evolution algebra if it admits a basis B = {ei }i∈� such that ei e j = 0 whenever i �= j .
A basis with this property is known as natural basis. The scalars ωi j ∈ K such that

e2i =
∑

k∈�

ωikek

are called the structure constants ofA relative to B and the matrix MB = (ωik) is called the
structure matrix of A relative to B. When A = A2 or equivalently when MB is invertible, it
is said that A is perfect.

If u = ∑
i∈� αi ei is an element of A then the support of u relative to B is defined

as suppB(u) := {i ∈ �:αi �= 0}. In general, if X ⊆ A, we have that suppB(X) =
∪x∈X suppB(x). For u = e2i support of e2i is called the first-generation descendents of i
relative to the natural basis B, i.e., D1(i) = {k ∈ �, : ωik �= 0} . By analogy, given a subset
U ⊆ �, we let D1(U ) := suppB(W ) where W = {ei ∈ B : i ∈ U }. Similarly, we say that
j is a second-generation descendent of i whenever j ∈ D1(D1(i)). Therefore

D2(i) =
⋃

k∈D1(i)

D1(k).

By recurrence, we define the set of mth-generation descendents of i as

Dm(i) =
⋃

k∈Dm−1(i)

D1(k).

Finally, the set of descendents of i is defined as

D(i) =
⋃

m∈N
Dm(i).

An evolution algebra A is non-degenerate if there is a natural basis B such that e2i �= 0 for
all ei ∈ B. We remark thatA is a non-degenerate evolution algebra if and only if D1(i) �= ∅
for all i ∈ �. By [11, Lemma 2.7] this definition does not depend on the chosen natural basis
since ann(A) = span({ei : e2i = 0}) where ann(A) := {x ∈ A: xA = 0}. Therefore A is
non-degenerate if and only if ann(A) = 0.

On the other hand, an evolution algebra A is reducible if there exist two nonzero ideals I
and J of A such that A = I ⊕ J . In another case, it is called irreducible.

We follow Definitions 2.1 and 2.8 in [2]. An evolution algebra A has an unique natural
basis if the subgroup of AutK(A) such that map natural basis into natural basis is precisely
Sn � (K×)n . This group was depicted in [6] for n = 3. On the other hand, it is said that A
has Property (2LI) if for any two different vectors ei , e j of a natural basis, {e2i , e2j } is linearly
independent. Note that any perfect evolution algebra has the Property (2LI) but the reciprocal
is not true (see [2, Example 2.9]).
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Let V be a K-vector space and S be a subset of V . We denote by span(S) the vector
subspace generated by S and rk(S) the rank of S, that is, the dimension of span(S) as vector
space.

We recall that A is a Volterra evolution algebra if there exists a natural basis B of A
such that MB is a skew-symmetric matrix. In this case, we say that A is a Volterra evolution
algebra relative to B. Since we are considering algebras over a field of zero characteristic,
the matrix MB has null diagonal. This family of algebras was introduced in [13] where the
authors give a connection between this kind of algebras with the ergodicities of Volterra
quadratic stochastic operators and, among other things, they show that these algebras are not
nilpotent and they calculate its derivations for some cases.

Note that if A is a Volterra evolution algebra then is not true that for any natural basis B
the structure matrix MB is skew-symmetric.

Example 2.1 Let A be an evolution algebra, and let B = {e1, e2, e3} be a natural basis such
that

MB =
⎛

⎝
0 1 0

−1 0 1
0 −1 0

⎞

⎠ .

Therefore A is a Volterra evolution algebra. On the other hand, if B ′ = { f1, f2, f3} is such
that f1 = 2e1 + e3, f2 = 1

2e1 + e3 and f3 = e2, then B ′ is a natural basis of A such that

MB′ =
⎛

⎝
0 0 3
0 0 − 3

4−1 2 0

⎞

⎠

is non skew-symmetric.

Now, we recall some basic definitions and notations for directed graphs. A directed graph
is a 4-tuple E = (E0, E1, sE , rE ) where E0, E1 are sets and sE , rE : E1 → E0 are maps.
The elements of E0 are called the vertices of E and the elements of E1 are the arrows or
directed edges of E . For f ∈ E1 the vertices r( f ) and s( f ) are called the range and the
source of f , respectively. If E0 and E1 are both finite we say that E is finite. A vertex v ∈ E0

is called sink if it verifies that s( f ) �= v, for every f ∈ E1. A path or a path from s( f1) to
r( fm) in E , μ, is a finite sequence of arrows μ = f1 . . . fm such that r( fi ) = s( fi+1) for
i ∈ {1, . . . , (m − 1)}. In this case, we say that m is the length of the path μ and denote it by
|μ| = m. Letμ = f1 . . . fm be a path in E with |μ| = m ≥ 1. If v = s( f1) = r( fn), thenμ is
called a closed path based at v. Ifμ = f1 . . . fm is a closed path based at v and s( fi ) �= s( f j )
for every i �= j , then μ is called a cycle based at v or simply a cycle. A cycle of length 1 will
be said to be a loop. Given a finite graph E , its adjacency matrix is the matrix AE = (ai j )
where ai j is the number of arrows from i to j . A graph E is said to satisfy Condition (Sing)
if among two vertices of E0 there is at most one arrow. If exist a path from i to j in E , then
we define the distance from i to j as δ(i, j) = min{|μ|, μ is a path from i to j}.

There are several ways to associate a graph to an evolution algebra (see [5, 11]). We
consider the directed graph described in [5] as follows. Given a natural basis B = {ei }i∈� of
an evolution algebra A and its structure matrix MB = (ωi j ) ∈ M�(K), consider the matrix
P = (ai j ) ∈ M�(K) such that ai j = 0 if ωi j = 0 and ai j = 1 if ωi j �= 0. The graph
associated to the evolution algebraA (relative to the basis B), denoted by EB

A (or simply by
E if the algebra A and the basis B are understood) is the directed graph whose adjacency
matrix is given by P = (ai j ). In this way, we only consider graphs satisfying Condition Sing.
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By analogy with graph theory, we define the following notions. Let A be an evolution
algebra with natural basis B and let i, j ∈ �. We say that i and j are twins relative to B if
D1(i) = D1( j).We notice that by defining the relation∼tB on the set of indices� by i ∼tB j
whether i and j are twins relative to B, then ∼tB is an equivalence relation. An equivalence
class of the twin relation ∼tB is referred to as a twin class relative to B. In other words, the
twin class of an index i , that we will denote by T (i), is the set T (i) := { j ∈ �: i ∼tB j}.
The set of all twin classes relative to B of � is denoted by �B(�) and it is referred to as
the twin partition relative to B of �. If A has no twins relative to B, that is, if for all i, j ∈
�, i �= j, D1(i) �= D1( j), then we say that A is twin-free relative to B. These definitions
depend on the chosen natural basis (see [3, Example 2]).

One of our main purposes is to study the derivations of Volterra evolution algebras. Given
an (evolution) K-algebra A, a derivation of A is a linear map d : A → A such that

d(u · v) = d(u) · v + u · d(v),

for all u, v ∈ A. The space of all derivations of A is denoted by Der(A). In [15, Section
3.2.6], it was proved that, if A is an evolution K-algebra with a natural basis B = {ei }i∈�

then a linear map d such that d(ei ) = ∑
k∈� dki ek is a derivation of the evolution algebra A

if, and only if, it satisfies the following conditions:

ω jkdi j + ωikd ji = 0, for i, j, k ∈ � such that i �= j, (1)
∑

k∈�

ωikdk j = 2ωi j dii , for i, j ∈ �, (2)

From now on, we identify the linear map d with the matrix (di j ) relative to the basis B.

Remark 2.2 According to [2, Theorem 2.11] ifA is an evolution algebra with a natural basis
B = {ei }i∈� then we can write B as a disjoint union of subsets as follows:

B = B0 ∪ B1 ∪ · · · ∪ Br , (3)

where ann(A) = span(B0), rk({e2i : ei ∈ Bt }) = 1 for 1 ≤ t ≤ r and rk({u2, v2}) = 2 if
u ∈ Bt and v ∈ Bs with t �= s. Therefore, if we define �t := {k ∈ �: ek ∈ Bt }, (3) implies
that � can be also expressed as disjoint union of subsets:

� = �0 ∪ �1 ∪ · · · ∪ �r , (4)

where rk({e2i , e2j }) = 1 if i ∈ �t , j ∈ �s and t �= s and rk({e2i , e2j }) = 2, if i, j ∈ �t , for
some t ∈ {1, . . . , r}. So, in this last case,

e2i = α j i e
2
j (5)

for some α j i ∈ K
×.

This observation leads us to the following definition.

Definition 2.3 In the same conditions ofRemark 2.2, the partitions B = B0∪B1∪· · ·∪Br and
� = �0∪�1∪· · ·∪�r are called a natural decomposition of B and a natural decomposition
of � relative to B, respectively.

Definition 2.4 Let A an evolution algebra. We define

�( j) = {k ∈ �\�0; e2k and e
2
j are linearly dependent}.

Moreover, we can write e2k = α jke2j , for some α jk ∈ K
× and j, k ∈ �( j).
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Remark 2.5 Under the conditions of Remark 2.2, if B ′ is another natural basis of A with a
natural decomposition B ′ = B ′

0 ∪ B ′
1 ∪ · · · ∪ B ′

s then by [2, Remark 2.14] we know that
r = s and that it is possible to reorder B ′ in such a way that span(B0) = span(B ′

0) and
B ′
t ⊆ span(B0 ∪ Bt ). In addition, it is easy to check that |Bt | = |B ′

t | for every t ∈ {1, . . . , r}.
From now on, when we have natural decompositions of two natural bases B and B ′ of

an evolution algebraA we suppose that both decompositions are written taking into account
this reordering.

3 Derivations of a non-degenerate evolution algebra

In this section, we will investigate when a linear operator of a non-degenerate evolution
algebra is a derivation. In particular, we will study the derivations of an evolution algebra
with dim(A2) = 1.

The following proposition improves [3, Proposition 1] in the sense that it provides a
condition necessary and sufficient under which a linear operator d:A → A is a derivation
of a non-degenerate evolution algebra A.

Proposition 3.1 Let A be a non-degenerate evolution algebra with a natural basis B =
{ei }i∈�, structure matrix MB = (ωi j ) and let d:A → A be a linear map, d = (di j ). Then
d ∈ Der(A) if and only if d satisfies the following conditions:

(i) If i, j ∈ �, i �= j , and i ∼tB j then d ji = −ω jk
ωik

di j , for all k ∈ D1(i).
(ii) If i, j ∈ � and i �tB j then d ji = di j = 0.
(iii) For any i ∈ �

∑

k∈D1(i)

ωikdk j =
{
0, if j /∈ D1(i),
2ωi j dii , if j ∈ D1(i).

Proof If d ∈ Der(A) then d satisfies conditions (i) to (iii) by [3, Proposition 1]. Conversely, let
d:A → A be a linear map satisfying conditions (i) to (iii). In order to prove that d ∈ Der(A),
it will be necessary to check that d verifies (1) and (2). Let i, j, k ∈ �, i �= j . If i ∼tB j , by
(i), we have

ω jkdi j + ωikd ji = ω jkdi j + ωik

(
− ω jk

ωik
di j

)
= 0, for all k ∈ D1(i).

Furthermore, if k /∈ D1(i) then w jk = wik = 0, which implies that ω jkdi j + ωikd ji = 0.
Otherwise if i �tB j , by (ii), we have that di j = d ji = 0. Therefore d satisfies (1).

Now note that for all i, j ∈ � we have

n∑

k=1

ωikdk j =
∑

k∈D1(i)

ωikdk j =
{

0, if j /∈ D1(i),
2ωi j dii , if j ∈ D1(i).

= 2ωi j dii .

This proves that d satisfies (2). �
Corollary 3.2 LetA be a non-degenerate reducible evolution algebra withA = I1 ⊕ . . .⊕ It
where It is an ideal ofA for every t ∈ {1, . . . ,m}. Then d = (di j ) ∈ DerA is a block matrix.
Moreover, d restricted to subspace It (up to reordering) is a derivation over It and its matrix
is one of the blocks of d = (di j ).
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Proof Let B be a natural basis ofA. By [5, Theorem 5.6] we know that the ideals I1, . . . , Im
can be taken as evolution ideals. Concretely, by [5, Theorem 5.6] we get a partition of
B = B1 ∪ · · · ∪ Bm such that It = span({ei : ei ∈ Bt }) or equivalently the structure matrix
relative to B is a block diagonal matrix. Since i �tB j for ei ∈ Bk and e j ∈ B� with k �= �

then by Proposition 3.1 (ii) we have that di j = d ji = 0. It is easy to check that for every
t ∈ {1, . . . ,m}, d restricted to It is a derivation and moreover, if dt is the matrix of d|It
relative to the natural basis Bt then

d = diag(d1, . . . , dm).

�
Corollary 3.3 LetA be a non-degenerate evolution algebra with a natural basis B = {ei }i∈�

and structure matrix MB = (ωi j ). If d = (di j ) ∈ Der(A) then

(i) If i, j ∈ �, i �= j and di j �= 0 then e2j = αi j e2i , for some αi j ∈ K
×.

(ii) If i, j ∈ � and j ∈ D1(i) then
∑

k∈T ( j)

ωikdk j = 2ωi j dii .

Proof In order to prove (i) consider i, j ∈ � such that i �= j and di j �= 0. By [3, Lemma 4]
we have that i ∼tB j . If |D1(i)| = 1 the proof is straightforward. In other case, by Proposition
3.1 (i), we have that

d ji = −ω jk

ωik
di j = −ω j�

ωi�
di j , for all k, � ∈ D1(i).

Therefore
ω jk
ωik

= ω j�
ωi�

. Fix � ∈ D1(i). Then

e2j =
∑

k∈D1(i)

ω jkek =
∑

k∈D1(i)

ω j�

ωi�
ωikek = ω j�

ωi�

∑

k∈D1(i)

ωikek = ω j�

ωi�
e2i .

Taking αi j := ω j�
ωi�

, we have that e2j = αi j e2i , as required. For item (ii), we have that dkj = 0
for all k /∈ T ( j) by Proposition 3.1(ii). Then, using Proposition 3.1 (iii), we get

2ωi j dii =
∑

k∈D1(i)

ωikdk j =
∑

k∈T ( j)

ωikdk j .

�
Corollary 3.4 Let A be a non-degenerate evolution algebra. Then d = (di j ) ∈ Der(A) can
be written as a block matrix.

Proof We consider a natural decomposition B = B0 ∪ · · · ∪ Br . We know by Corollary 3.3
(i) that di j = d ji = 0 for every ei ∈ Bt and e j ∈ Bs with t �= s. �

Observe that span(Bt ) for t �= 0 is not ideal in general, therefore d restricted to subspace
span(Bt ) is not necessarily a derivation.

Proposition 3.5 Let A be a non-degenerate evolution algebra with Der(A) �= 0. Then A
does not have a unique natural basis.
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Proof Let B be a natural basis of A and let d ∈ Der(A), with d �= 0. By [3, Lemma 1]
there are i, j ∈ � such that i �= j and di j �= 0. Therefore by Corollary 3.3 (i) we have that
e2j = αi j e2i , for some αi j ∈ K

×. ThusA has not the Property (2LI) and by [2, Corollary 2.7]
we get that A has not a unique natural basis. �
Remark 3.6 Note that the Proposition 3.5 is equivalent to say that ifA has Property (2LI) then
Der(A) = 0. Since all perfect evolution algebras and evolution algebras which are twin-free
both have the Property (2LI), the Proposition 3.5 provides a generalization of the [8, Theorem
2.1], [12, Theorem 4.1 item (1)] and [3, Theorem 1].

However, the converse of Proposition 3.5 is not true as shown in the following example.

Example 3.7 Let A a non-degenerate two-dimensional evolution algebra with product e21 =
e22 = e1 + e2. As A does not have Property (2LI), then does not have a unique natural basis.
However, it is easy to check that Der(A) = 0.

Proposition 3.8 Let K be an arbitrary field and let A be a non-degenerate evolution K-
algebra with dim(A2) = 1. Consider B = {ei }i∈� a natural basis and MB = (ωi j ) the
structure matrix. For i ∈ �, let α1i be no null scalars such that e2i = α1i e21 . Suppose that
e21e

2
1 �= 0. Then d ∈ Der(A) if and only if it verifies the following conditions:

(i) dii = 0 for any i ∈ �.

(ii) di j = − α1i

α1 j
d ji for any i, j ∈ �, i �= j .

(iii)
∑

j∈� ω1 j d jk = 0 for k ∈ �.

Proof Firstly, observe that A2 = Ke21. We write e21e
2
1 = γ e21 for some γ ∈ K

×. Let d ∈
Der(A). We get that d(e2i ) = 2ei d(ei ) = 2dii e2i for any i ∈ �. On the other hand, we have
that d(e21e

2
1) = 2e21d(e21), so γ d(e21) = 2e21d(e21). Therefore, if char(K) = 2, then d(e21) = 0.

If char(K) �= 2, we get that γ d11e21 = 2d11e21e
2
1. This implies that γ d11e21 = 2d11γ e21. So, as

γ �= 0 and A is non-degenerate, then d11 = 0. We conclude that d(e21) = 0 in any case and
therefore d(e2i ) = 0 for any i ∈ �. Then dii = 0 because d(e2i ) = 2diiα1i e21. Let i �= j with
i, j ∈ �, then d(ei e j ) = 0, which implies that di j e2j +d ji e2i = 0. So e21(di jα1 j +d jiα1i ) = 0

and by non-degeneracy of A di j = − α1i
α1 j

d ji . Finally, as d(e21) = 2d(e1)e1 by (2) we have

that
∑

j ω1 j d jk = 2d11ω1k for every k ∈ �. The converse is straightforward. �

Corollary 3.9 Let A be a non-degenerate evolution algebra such that dim(A2) = 1 and
natural basis B = {ei }i∈�. Suppose that e2i = e21 for any i ∈ � and e21e

2
1 �= 0. Then if

d ∈ Der(A), the matrix of d relative to B is skew-symmetric, up to reordering.

Remark 3.10 The converse of Corollary 3.9 is not true in general. Indeed, if we consider the
3-dimensional evolution algebra A with basis {ei } and product e2i = e1 for any i = {1, 2, 3}
then d ∈ Der(A) if and only if dii = 0 for any i , d12 = d21 = d13 = d31 = 0 and
d32 = −d23.

The condition e21e
2
1 �= 0 can not be eliminated of the Proposition 3.8 as the following

remark shows.

Remark 3.11 Let A be a non-degenerate evolution algebra with dim(A2) = 1, natural basis
B = {ei }i∈� and structure matrix MB = (ωi j ). We can write e2i = α1i e21 for every i ∈ �.
Suppose that e21e

2
1 = 0. Since e21 �= 0 there exists k such that ω1k �= 0. Now, we will find a
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derivation such that dii �= 0 for every i ∈ �. Indeed, it is enough to consider the derivation
d ∈ Der(A) defined by

di j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, i f i = j,

− α1iω1i

α1kω1k
, i f j = k and i ∈ �\{k},

0, i f i �= j and i, j �= k,
ω1 j

ω1k
, i f i �= j and i = k.

Proposition 3.12 Let A be an evolution algebra with {ei }i∈� natural basis and d = (di j ) ∈
Der(A). Let {e2i }�i=1 be a basis of A2 and e2j = ∑�

k=1 βk j e2k . If βk j �= 0 for certain k ∈ �

then d j j = dkk for any j ∈ �.

Proof Let d ∈ Der(A). If j ∈ {1, . . . , �} then the statement is trivially true. We study
now if j /∈ {1, . . . , �}. Applying d in the equality e2j = ∑�

k=1 βk j e2k we get that e2j d j j =
∑�

k=1 βk j e2kdkk . So d j j
∑�

k=1 βk j e2k = ∑�
k=1 βk j e2kdkk . Then

∑�
k=1 βk j (d j j − dkk)e2k = 0.

Since {e2i }�i=1 is a basis of A2 then βk j (d j j − dkk) = 0 for every k ∈ {1, . . . , �}. If there
exists k ∈ � such that βk j �= 0 then d j j = dkk . �

Theorem 3.13 Let A be a non-degenerate evolution algebra with {ei }i∈� natural basis and
d = (di j ) ∈ Der(A). If {e2i }�i=1 is a basis of A2 with e2i e

2
i �= 0 for any i ∈ 
1 := {1, . . . , �}

then d j j = 0 for any j ∈ �.

Proof Let d ∈ Der(A). First, we can write e2i e
2
i = ∑�

k=1 λike2k for any i ∈ �. Let

j ∈ � then if we apply the derivation d in both members of e2j e
2
j = ∑�

k=1 λ jke2k
we get 2e2j d(e2j ) = 2

∑�
k=1 λ j i ekd(ek), so 2e2j e

2
j d j j = ∑�

k=1 λ jke2kdkk . Therefore

2
∑�

k=1 λ jke2kd j j = ∑�
k=1 λ jke2kdkk , which implies

∑�
k=1 λ jk(2d j j − dkk)e2k = 0. Since

{e2k }�k=1 is a basis of A2 then λ jk(2d j j − dkk) = 0 for any k ∈ 
1. As e2j e
2
j �= 0 and A is

non-degenerate there exists some j1 ∈ 
1 such that λ j j1 �= 0 and so 2d j j −d j1 j1 = 0. Firstly,
we consider the set R = { j ∈ 
1 : 2d j j − d j j = 0}, then d j j = 0 for any j ∈ R. Secondly,
let j0 ∈ 
1 such that j0 /∈ R. We can write the following chain of equalities:

2d j0 j0 = d j1 j1 ,

2d j1 j1 = d j2 j2 ,
...

2d js−1 js−1 = d js js ,

with j1, . . . , js ∈ 
1. Moreover either js ∈ R or js /∈ R but as � is finite, js = jm for certain
jm ∈ { j0, j1, . . . , js−2}. In the first case we get that d j0 j0 = d j1 j1 = . . . = d js js = 0. In the
second case, if we write s = m+ t for t > 1 then it is easy to check that 2t d jm jm = d jm+t jm+t

i.e., 2t d jm jm = d jm jm . Then d jm jm = d j0 j0 = · · · = d js−1 js−1 = 0. Therefore if j ∈ 
1 we
have proved that d j j = 0. Let j /∈ 
1. Now, we know that 2d j j − d j1 j1 = 0 for certain
j1 ∈ 
1 so d j j = 0. �

Remark 3.14 In terms of matrices, for every i ∈ � we can compute the product e2i e
2
i as

(MB ◦MB)·MB ·(e1 . . . en)t where ◦ is the Hadamard product (element-wisemultiplication).

The converse of Theorem 3.13 is not true in general as shown the following example.
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Example 3.15 Let A an evolution algebra with B = {ei }i∈� (� = {1, . . . , 5}) natural basis
andmultiplication table e21 = e1+e2+e4+e5, e22 = e1+e2, e23 = e4+e5, e24 = −e25 = e3 and
d = (di j ) ∈ Der(A). Since {e21, e22, e24} is a basis of A2 and e2i e

2
i �= 0 for every i ∈ {1, 2, 4}

then dii = 0 for every i ∈ �. But if we consider {e21, e23, e24} a basis ofA2 then e23e
2
3 = 0 and

clearly dii = 0 for every i ∈ �.

4 Derivations of Volterra Evolution Algebras

Lemma 4.1 Let A be a non-degenerate Volterra evolution algebra with natural basis B =
(ωi j ) and let i, j ∈ � such that T (i) = {i, j} and there exists � ∈ D1(i) with ω3

�i �= ω3
j�.

Suppose that � �tB k for every k ∈ D1(i)\{�}. Then di j = d ji = dii = d j j = d�� = 0 for
any d = (di j ) ∈ Der(A).

Proof Let d = (di j ) ∈ Der(A). Since
∑

k∈D1(i) ωikdk� = 2ωi�dii and � �tB k we get that
d�� = 2dii by Proposition 3.1 (ii). Likewise, d�� = 2d j j . On the other hand by Proposition
3.1 (i), d ji = −ω j�

ωi�
di j . Moreover, since

∑
k∈D1(�) ω�kdki = 2ω�i d� and T (i) = {i, j} then

ω�i dii + ω� j d ji = 2ω�i d��. Similarly we have ω�i di j + ω� j d j j = 2ω� j d��. So, we get the
following homogeneous system of linear equations:

−3ω�iωi�dii − ω� jω j�di j = 0,

−3ω� j dii + ω�i di j = 0.

This system will have the trivial solution if and only if ω3
�i �= ω3

j�. �
Proposition 4.2 Let A a non-degenerate Volterra evolution algebra with a natural basis
B = {ei }i∈� and structure matrix MB = (ωi j ). Consider a natural decomposition � =
�1 ∪ · · · ∪ �r relative to B and αi j ∈ K

× such that e2j = αi j e2i for i, j ∈ �(i). Then
d = (di j ) ∈ Der(A) if and only if d satisfies the following conditions:

(i) If i, j ∈ �, i �= j and {i, j} � �t for any t ∈ {1, . . . , r} then di j = d ji = 0.
(ii) If i, j ∈ �, i �= j and {i, j} ⊆ �t for some t ∈ {1, . . . , r} then di j = −α j i d ji .
(iii) If i, j ∈ � and i ∈ D1( j) then 2dii = ∑

k∈�( j) α jkdk j .

Proof If i �= j and {i, j} � �t for any t ∈ {1, . . . , r}, then e2i and e2j are linearly independent.
ByCorollary 3.3 (i) we have di j = d ji = 0, which proves item (i). Now, note that if i �= j and
{i, j} ⊆ �t for some t ∈ {1, . . . , r}, then e2i = α j i e2j and wik = α j iw jk for all k ∈ D1( j).
By Proposition 3.1 (i) we have

di j = − wik

w jk
d ji = −α j i d ji ,

which proves item (ii). Now, let i, j ∈ �. By item (i), if k /∈ �( j) then dkj = 0. We have
∑

k∈�

wikdk j =
∑

k∈�( j)

wikdk j =
∑

k∈�( j)

−wki dk j =
∑

k∈�( j)

−α jkw j i dk j

= −w j i

∑

k∈�( j)

α jkdk j = wi j

∑

k∈�( j)

α jkdk j (6)

for any i, j ∈ �. On the other hand, using Eq. (2) we get 2wi j dii = ∑n
k=1 wikdk j then

2wi j dii = wi j
∑

k∈�( j) α jkdk j . Now, if i ∈ D1( j) then 2dii = ∑
k∈�( j) α jkdk j , which
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proves item (iii). Conversely, let d = (di j ) satisfying conditions (i)–(iii). We will prove that
d satisfies conditions (i)–(iii) of Proposition 3.1.

Let i, j ∈ �, i �= j and i ∼t j .
Case 1 If {i, j} � �t for any t ∈ {1, . . . , r}. Then by item (i) di j = d ji = 0.
Case 2 If {i, j} ⊆ �t for some t ∈ {1, . . . , r}. Then by item (ii) di j = −α j i d ji . Note that
α j i = wik

w jk
for all k ∈ D1(i).

Therefore, for both cases, we have that d ji = −w jk
wik

di j for all k ∈ D1(i).

Let i, j ∈ �, i �= j and i �t j . Then e2i and e
2
j are linearly independent and by Corollary

3.3 (i) we get that di j = d ji = 0.
Let i ∈ �, by Eq. (6) and item (iii) we obtain that

∑

k∈�

ωikdk j = wi j

∑

k∈�( j)

α jkdk j =
{

0 if j /∈ D1(i)
2ωi j dii if j ∈ D1(i).

�
Corollary 4.3 LetA be a non-degenerateVolterra evolution algebra and d = (di j ) ∈ Der(A).
If i, � ∈ D1( j) for some j ∈ � then dii = d��.

Proof The result is a direct consequence of Proposition 4.2 (iii). �
Theorem 4.4 Let A be a non-degenerate Volterra evolution algebra with a natural basis
B = {ei }i∈� and structure matrix MB = (ωi j ). Let � = �1 ∪ · · · ∪ �r be a natural
decomposition and αi j ∈ K

× such that e2j = αi j e2i for i, j ∈ �( j). Define νt := |�t | for all
t ∈ {1, . . . , r}. If e2i e2i �= 0 for all i ∈ � then there exists a Volterra evolution algebra A′
with a natural basis B ′ such that Der(A) = Der(A′). Moreover, the structure matrix MB′ is
the following block diagonal matrix

diag(H1, . . . , Hc),

where r = 2c + q, q ∈ {0, 1} and Ht is given by:

(i) If q = 0 then for t ∈ {1, . . . , c} we have that

Ht =
(

0 Ft
−FT

t 0

)
, (7)

where Ft ∈ Mνt ,νt+1(K) is a matrix without null entries.
(ii) If q = 1 then for t ∈ {1, . . . , c − 1} the matrix Ht is of the form (7) and

Hc =
⎛

⎜⎝
0 Fc Fc+1

−FT
c 0 0

−FT
c+1 0 0

⎞

⎟⎠ (8)

where Fc ∈ Mνr−2,νr−1(K) and Fc+1 ∈ Mνr−2,νr (K) are matrices without null entries.

Proof We define s0 = 0 and sh = ∑h
k=1 νk with h ∈ {1, . . . , r}. Note that we can reorder �

such that�h = {sh−1 +1, . . . , sh} for h ∈ {1, . . . , r}. First, we assume that r is even. We are
going to construct an evolution algebra A′ with natural basis B ′ = { f j } j∈�. To describe the
product in A′, we consider t ∈ {1, . . . , c} and denote by p = s2t−2 + 1 and q = s2t−1 + 1.
Now, with this notation we define

f 2p :=
∑

k∈�2t

αqk fk, (9)
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f 2j := αpj f
2
p , for all j ∈ �2t−1\{p}, (10)

f 2q := −
∑

k∈�2t−1

αpk fk, (11)

f 2j := αq j f
2
q , for all j ∈ �2t\{q}. (12)

Note that D1(�2t−1) = �2t and D1(�2t ) = �2t−1 for t ∈ {1, . . . , c}. So, we get that the
structure matrix ofA′ relative to that basis is given by the diagonal matrix diag(H1, . . . , Hc)

with

Ht =
(

0 Ft
−FT

t 0

)

and

Ft :=

⎛

⎜⎜⎜⎝

1 αqq+1 . . . αqs2t
αpp+1 αpp+1αqq+1 . . . αpp+1αqs2t

...
...

. . .
...

αps2t−1 αps2t−1αqq+1 . . . αps2t−1αqs2t

⎞

⎟⎟⎟⎠ (13)

for every t ∈ {1, . . . , c}. Consequently A′ is a Volterra evolution algebra. Observe that for
all i, j ∈ �( j) we have e2i = α j i e2j and f 2i = α j i f 2j . As e

2
i e

2
i �= 0 for all i ∈ �, then by

Theorem 3.13 we obtain that dii = 0 for all i ∈ �. Thus, by Proposition 4.2 follows that
Der(A) = Der(A′), as required.

Now, we assume that r is odd. In this case we consider an evolution algebraA′ with natural
basis B ′ = { f j } j∈�. To define the product in A′ we consider t ∈ {1, . . . , c − 1} and we
define f j as in Eqs. (9–12) for j ∈ �2t−1 ∪ �2t . We denote by p = sr−3 + 1, q = sr−2 + 1
and � = sr−1 + 1 and we define

f 2p :=
∑

k∈�r−1

αqk fk +
∑

k∈�r

α�k fk,

f 2j := αpj f
2
p , for all j ∈ �r−2\{p},

f 2q := −
∑

k∈�r−2

αpk fk,

f 2j := αq j f
2
q , for all j ∈ �r−1\{q},

f 2� := −
∑

k∈�r−2

αpk fk;

f 2j := α� j f
2
� , for all j ∈ �r\{�}.

We have that D1(�2t−1) = �2t and D1(�2t ) = �2t−1 for t ∈ {1, . . . , c − 1},
D1(�r−2) = �r−1∪�r and D1(�r−1) = D1(�r ) = �r−2. Furthermore, as in the previous
case, we can reorder B ′ such that the structure matrix of A′ relative to that basis is a block
diagonal matrix diag(H1, . . . , Hc) where Ht is a matrix of the form (7), Ft of the form (13)
for t ∈ {1, . . . , c − 1}, Hc is of the form (8) and

Fc =

⎛

⎜⎜⎜⎝

1 αqq+1 . . . αqsr−1

αpp+1 αpp+1αqq+1 . . . αpp+1αqsr−1
...

...
. . .

...

αpsr−2 αpsr−2αqq+1 . . . αpsr−2αqsr−1

⎞

⎟⎟⎟⎠ ,
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Fc+1 =

⎛

⎜⎜⎜⎝

1 α��+1 . . . α�sr
αpp+1 αpp+1α��+1 . . . αpp+1α�sr

...
...

. . .
...

αpsr−2 αpsr−2α��+1 . . . αpsr−2α�sr

⎞

⎟⎟⎟⎠ .

Analogously to other case, if i, j ∈ �( j), we have e2i = α j i e2j and f 2i = α j i f 2j and
dii = 0 for every i ∈ �. Consequently, Der(A) = Der(A′). �
Remark 4.5 Thanks to the Corollary 3.2 since A′ is a non-degenerate reducible evolution
algebra, to compute the set of derivations ofA is equivalent to compute the set of derivations
over the evolution ideals Ii = span({e j : j ∈ �i ∪ �i+s}) for any i ∈ {1, . . . , s − 1},
Is = span({e j : j ∈ �s ∪ �2s}) if r = 2 s and Is = span({e j : j ∈ �s ∪ �2 s ∪ �2 s+1}) if
r = 2 s+1. So, we can reduce the dimension of evolution algebraswhose space of derivations
will be studied.

Proposition 4.6 Let A be a non-degenerate Volterra evolution algebra with a natural basis
B = {ei }i∈� and � = �1 ∪ · · · ∪ �r a natural decomposition of � relative to B. Let
αi j ∈ K

× such that e2j = αi j e2i for i, j ∈ �( j). Suppose that there exists i ∈ � such that

for any j ∈ D1(i) it is verifies that
∑

k∈�( j) α3
jk = 0 then e2i e

2
i = 0.

Proof Let MB = (ωi j ) be the structure matrix ofA relative to B and i ∈ � such that for any
j ∈ D1(i) we have that

∑
k∈�( j) α3

jk = 0. Note that there exists {�1, . . . , �t } ⊆ D1(i) such

that D1(i) = �(�1) ∪ . . . ∪ �(�t ) with �(�h) ∩ �(�g) = ∅ for h �= g. Then

e2i e
2
i =

∑

k∈�(�1)

w2
ike

2
k + . . . +

∑

k∈�(�t )

w2
ike

2
k

=
∑

k∈�(�1)

w2
kiα�1ke

2
�1

+ . . . +
∑

k∈�(�t )

w2
kiα�t ke

2
�t

= w2
�1i e

2
�1

∑

k∈�(�1)

α3
�1k + . . . + w2

�t i e
2
�t

∑

k∈�(�t )

α3
�t k .

Since �h ∈ D1(i) for h ∈ {1, . . . , t} then by hypothesis
∑

k∈�(�1)
α3

�1k
= · · · =∑

k∈�(�t )
α3

�t k
= 0. Therefore e2i e

2
i = 0. �

Remark 4.7 Theorem 3.13 presents conditions for a non-degenerate evolution algebra to have
only derivations with zero diagonal. IfA is degenerate, then there always exists d ∈ Der(A)

with non-zero diagonal entries. Indeed, letA be a degenerate evolution algebra with a natural
basis B = {ei }i∈� and � ∈ � such that e2� = 0. Consider the linear operator d = (di j ) defined
by

di j =
{
1, if i = j = �,

0, if i �= � or j �= �.

Then the Eqs. (1) and (2) shows that d ∈ Der(A). The next two results show conditions for a
non-degenerate Volterra evolution algebra to have derivations with non-zero diagonal entries

Remark 4.8 Let A be a Volterra evolution algebra with a natural basis B = {ei }i∈� and let
� = �1 ∪ . . . ∪ �r be a natural decomposition of � relative to B. Note that if there exists
a path from i to j then δ(i, �) = δ(i, j) for all � ∈ �( j). Therefore, δ(i,�( j)) = δ(i, j).
Analogously, we have that δ(�(i),�( j)) = δ(i, j).
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Proposition 4.9 Let A be a non-degenerate Volterra evolution algebra with a natural basis
B = {ei }i∈� and � = �1 ∪ · · · ∪ �r a natural decomposition of � relative to B. Assume
that the associated graph EB

A does not have odd-length cycles. Moreover, suppose that there
is i ∈ � such that

∑
k∈�( j) α3

jk = 0 for all j ∈ � with δ(i, j) even. Then there exists
d = (di j ) ∈ Der(A) verifying dkk �= 0 for any k ∈ D(i).

Proof Firstly, we observe that if i ∈ � then either �h ⊆ D(i) or �h ∩ D(i) = ∅ for every
h ∈ {1, . . . , r}. Now, we can suppose without loss of generality that there exists a reordering
of the natural decomposition in such a way that � = �1 ∪ · · · ∪�t ∪�t+1 ∪ · · · ∪�r where
i ∈ �1, �h ⊆ D(i) for all h ∈ {1, . . . , t} and �h ∩ D(i) = ∅ for all h ∈ {t + 1, . . . , r}.
Let d be the linear map with diagonal matrix d = diag(C1, . . . ,Cr ) where Ck ∈ M|�k |(K)

is defined as follows:

• If k ∈ {t + 1, . . . , r} then Ck := 0.
• If k ∈ {1, . . . , t} and δ(i,�k) is odd then Ck =: 2I|�k |.
• If k ∈ {1, . . . , t}, δ(i,�k) is even and �k = {k1, . . . , ks} then

Ck :=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 −3α2
ksk1

0 1 . . . 0 −3α2
ksk2

...
...

. . .
...

...

0 0 . . . 1 −3α2
ksks−1

3αksk1 3αksk2 . . . 3αksks−1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

To prove that d = (di j ) ∈ Der(A) it is sufficient to verify that d satisfies the conditions of
the Proposition 4.2. It is clear that the condition (i) of Proposition 4.2 holds.

Now we are going to verify that d satisfies the condition (ii) of Proposition 4.2. Let
�, j ∈ �, � �= j and {�, j} ⊆ �k . If k ∈ {t + 1, . . . , r} or k ∈ {1, . . . , t} and δ(i,�k) is
odd, then d� j = d j� = 0 by the definition of d . Now, observe that if {�, j} ⊆ �k\{ks} where
�k = {k1, . . . , ks} and δ(i,�k) is even then d� j = d j� = 0. Finally, if {�, j} ∩ {ks} �= ∅ we
can assume without loss of generality that � = ks . Then,

d� j = dks j = 3αks j = 3αks jαks jα jks = α jks3α
2
ks j = −α j�d j�.

Next, we will show that d verifies the condition (iii) of Proposition 4.2. First, note that if
k ∈ {1, . . . , t} and δ(i,�k) is odd, then δ(i,�h) is even, for all�h satisfying δ(�h,�k) = 1.
Indeed, if we suppose that δ(i,�k) and δ(i,�h) are odd for some �h with δ(�h,�k) = 1
then there are paths μ from i to j1 and σ from i to j2, where j1 ∈ �k and j2 ∈ �h such that
|μ| and |σ | are odd. As δ( j1, j2) = 1 then we have a cycle of length |μ| + |σ | + 1 which
is odd, a contradiction. Analogously, if k ∈ {1, . . . , t} and δ(i,�k) is even, then δ(i,�h)

is odd for all �h verifying δ(�h,�k) = 1. Now, let �, j ∈ � with � ∈ D1( j). Observe
that �(�) ∩ �( j) = ∅ because A is a Volterra evolution algebra and so ω j j = 0. We will
distinguish several cases:
Case 1 If � ∈ �1∪. . .∪�t and j ∈ �t+1∪· · ·∪�r then � /∈ D1( j), which is a contradiction.
Case 2 If �, j ∈ �t+1 ∪ · · · ∪ �r then d�� = d� j = d j� = 0 by definition and we get what
we wanted.
Case 3 In this case we suppose that δ(i,�(�)) is even. Necessarily δ(i,�( j)) is odd since
δ(�( j),�(�)) = 1. Thus d�� = 1, d j j = 2 and dkj = 0 for all k ∈ �\{ j}. Therefore

2d�� = 2 = α j j d j j =
∑

k∈�( j)

α jkdk j .
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Case 4 Assume that δ(i,�(�)) odd. As in the previous case, observe that δ(i,�( j)) is even.
Thus, we have that d�� = 2. Let �( j) = {k1, . . . , ks}. We are going to consider two cases:
Case 4.1 If j �= ks then d j j = 1, dks j = 3αks j and dkj = 0 for k ∈ �\{ j, ks}. Then

∑

k∈�( j)

α jkdk j = α j j d j j + α jks dks j = 1 + α jks3αks j = 4 = 2d��.

Case 4.2 If j = ks then dksks = 1 and dkks = −3α2
ksk

for k ∈ {k1, . . . , ks−1}. Then
∑

k∈�( j)

αkskdkks = αksks dksks −
∑

k∈�( j)
k �=ks

αksk3α
2
ksk = 1 − 3

∑

k∈�( j)
k �=ks

α3
ksk .

Since
∑

k∈�( j) α3
ksk

= 0 we get that
∑

k∈�( j)
k �=ks

α3
ksk

= −1. Therefore,

∑

k∈�( j)

αkskdkks = 1 − 3
∑

k∈�( j)
k �=ks

α3
ksk = 4 = 2d��.

�
The condition of having odd-length cycles can not be eliminated as shown the following

example.

Example 4.10 Let A an evolution algebra with B = {ei }i∈� (� = {1, . . . , 7}) natural basis
and multiplication table e21 = e2 − e3 + e4 − e5 + e6 − e7, e22 = −e23 = −e1 + e4 − e5,
e24 = −e25 = −e1 − e2 + e3 and e26 = −e27 = −e1. Since that MB is skew-symmetric, thenA
is a Volterra evolution algebra. Consider a natural decomposition of� = �1∪�2∪�3∪�4

relative to B, where�1 = {1},�2 = {2, 3},�3 = {4, 5} and�4 = {6, 7}. Note that 7 ∈ � is
such that

∑
k∈�g

α3
jk = 0 for all j ∈ �( j ∈ �g) with δ(7, j) even. Therefore all hypotheses

of Theorem 4.9 are verified, except that EB
A has odd length cycles. Furthermore, an easy

computation shows that Der(A) = {0}.
Proposition 4.11 LetA be a non-degenerate Volterra evolution algebra with a natural basis
B = {ei }i∈�, � = �1 ∪ · · · ∪ �r a natural decomposition of � relative to B and structure
matrix MB = (ωi j ). If there is i ∈ � such that

∑
k∈�g

α3
jk = 0 for all j ∈ D(i) where

i ∈ �g, then there exists d = (di j ) ∈ Der(A) such that dkk �= 0 for all k ∈ D(i).

Proof First, we can reorder the natural decomposition in such a way that � = �1 ∪ · · · ∪
�t ∪ �t+1 ∪ · · · ∪ �r , with D(i) = �1 ∪ · · · ∪ �t . Define d = (di j ) as the diagonal matrix
diag(C1, . . . ,Cr ) where Ck ∈ M|�k |(K) is defined as below:

• If k ∈ {t + 1, . . . , r} then Ck := 0.
• If k ∈ {1, . . . , t} and �k = {k1, . . . , ks} then

Ck :=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 −α2
ksk1

0 1 . . . 0 −α2
ksk2

...
...

. . .
...

...

0 0 . . . 1 −α2
ksks−1

αksk1 αksk2 . . . αksks−1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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In order to see that d is a derivation, we will prove that it satisfies the conditions (i)–(iii)
of Proposition 4.2. Note that d verifies Proposition 4.2(i) by definition.

Let p, q ∈ �, p �= q and {p, q} ⊆ �h for h ∈ {1, . . . , r}. If h > t then dpq = dqp = 0.
If h ≤ t , we consider two cases.
Case 1 If {p, q} ⊆ �h\{ks} then dpq = dqp = 0.
Case 2 If {p, q} ∩ {ks} �= ∅, assume, without loss of generality, that p = ks . Then

dpq = dksq = αksq = αksq(αksqαqks ) = αqks (α
2
ksq) = αqks (−dqks ) = −αqpdqp.

Now, let p, q ∈ �, q ∈ �(q) = �h for some h ∈ {1, . . . , r} and p ∈ D1(q).
If h > t , then dpp = dkq = 0 for all k ∈ �h since p /∈ D(i) otherwise q ∈ D(i)

contradiction. So the condition (ii) of Proposition 4.2 is verified.
If h ≤ t therefore dqq = 1. Moreover, p ∈ D(i) then dpp = 1. Writing �h =

{k1, k2, . . . , ks}, we will distinguish two cases.
Case 1 If q �= ks then

∑

k∈�h

αqkdkq = dqq + αqks dksq = dqq + αqksαksq = 2.

Case 2 If q = ks then
∑

k∈�h

αkskdkks = 1 +
∑

k∈�h
k �=ks

αksk(−α2
ksk) = 1 −

∑

k∈�h
k �=ks

α3
ksk = 2.

In both cases, we have that 2dpp = ∑
k∈�h

αqkdkq . �

5 The loops of an evolution algebra

By analogy with graph theory, we define when an element of a natural basis is called loop
and then we start by studying what properties of this set is invariant under change of natural
basis.

Definition 5.1 Let A be an evolution algebra with a natural basis B = {ei }i∈� and structure
matrix MB = (ωi j ). We say that ei is a loop relative to the basis B if ωi i �= 0. Otherwise,
we say that ei is a no-loop. We denote by L(A, B) the set of loops and by NL(A, B) :=
B\L(A, B) the set of no-loops.

Remark 5.2 If A is an evolution algebra with a natural basis B = {ei }i∈� then the following
conditions are equivalent:

• L(A, B) = ∅.

• i /∈ supp(e2i ) for all i ∈ �.
• ei e2i = 0 for all i ∈ �.

Theorem 5.3 LetAbean evolution algebrawith natural basis B and B ′. Let B = B0∪· · ·∪Br
and B ′ = B ′

0 ∪ · · · ∪ B ′
r be natural decomposition of B and B ′ where B ′ is reordered in

such a way that B ′
0 = B0 and B ′

t ⊆ span(B0 ∪ Bt ). Then Bt ⊆ NL(A, B) if and only if
B ′
t ⊆ NL(A, B ′).

Proof Let B = {ei }i∈� and B ′ = { fi }i∈� and MB = (ωi j ) and MB′ = (ω′
i j ) the corre-

sponding structure matrices. For B0 the affirmation is trivial. Let Bt with t �= 0 such that
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Bt ⊆ NL(A, B). Suppose, contrary to our claim, that there exists f j ∈ B ′
t ∩ L(A, B ′). Then

according to Remark 5.2 we have that f 2j f j = ω′
j j f

2
j �= 0. Let e� ∈ Bt and α�k ∈ K

× for

k ∈ �t such that e2k = α�ke2� . Then D1(k) = D1(�), for k ∈ �t . On the other hand, using
Remarks 2.2 and 2.5 we can write f j = ∑

k∈�t
xkek + ∑

k∈�0
xkek . Then

f 2j =
∑

k∈�t

x2k e
2
k =

∑

k∈�t

x2kα�ke
2
� = β

∑

p∈D1(�)

ω�pep,

where β = ∑
k∈�t

x2kα�k . Therefore

0 �= f 2j f j = f 2j

⎛

⎝
∑

k∈�t

xkek +
∑

k∈�0

xkek

⎞

⎠ = f 2j
∑

k∈�t

xkek

= β

⎛

⎝
∑

p∈D1(�)

ω�pep

⎞

⎠

⎛

⎝
∑

k∈�t

xkek

⎞

⎠ .

Thus there exists eq ∈ Bt such that q ∈ D1(�) = D1(q), that is, eq ∈ L(A, B), contrary to
our assumption. The proof of the reciprocal statement is analogous. �
Corollary 5.4 LetA be an evolution algebra. Assume that there exists a natural basis B ofA
satisfying some of the following conditions:

(i) A has Property (2LI).
(ii) L(A, B) = ∅.
(iii) A2 = A.
(iv) A is twin-free relative to B.
(v) A is a Volterra evolution algebra relative to B.

Then |L(A, B)| = |L(A, B ′)| for all natural basis B ′.

Corollary 5.5 LetA be an evolution algebra with natural basis B and B ′. Then L(A, B) = ∅
if and only if L(A, B ′) = ∅.

However, the number of loops is not invariant under the natural base change as the
following example shows.

Example 5.6 Consider the evolution algebraAwith natural basis {ei }3i=1 such that e
2
1 = e22 =

e2 + e3 and e23 = e1 − e2 + e3. Observe that L(A, B) = {e2, e3}. If we take another natural
basis B ′ = { fi }3i=1 with f1 = e1 + e2, f2 = e3 and f3 = e1 − e2 then L(A, B ′) = B ′.

Theorem 5.7 Let A be an evolution algebra with a natural basis B = {ei }i∈� and � =
�0 ∪ �1 ∪ . . . ∪ �r be a natural decomposition of � relative to B. If for all t ∈ {1, . . . , r}
such that |�t | > 1 we have that Bt ⊆ NL(A, B) then |L(A, B)| = |L(A, B ′)| for any
natural basis B ′ of A.

Proof Let B ′ = { fi }i∈� be a natural basis of A. We define �1 := ⋃
|�t |=1 �t . By our

assumption, L(A, B) ⊆ {ei : i ∈ �1}. Note that if i ∈ �1 then, by Theorem 5.3, up to
reordering, ei ∈ L(A, B) if and only if fi ∈ L(A, B ′). Therefore |L(A, B)| = |L(A, B ′)|. �
Theorem 5.8 Let A be an evolution algebra with a natural basis B = {ei }i∈�. Consider a
natural decomposition B = B0 ∪ B1 ∪ · · · ∪ Br and suppose that there exists t ∈ {1, . . . , r}
such that |Bt | > 1 and satisfies some of the following conditions
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(i) Bt ∩ L(A, B) �= ∅ and Bt ∩ NL(A, B) �= ∅.
(ii) Bt ⊆ L(A, B) and there exist eq , ep ∈ Bt such that αqp �= −

(
ωqq
ωqp

)2
where e2p =

αqpe2q .
(iii) Bt ⊆ L(A, B) and |Bt | > 2.

Then there is a natural basis B ′ such that |L(A, B)| �= |L(A, B ′)|.
Proof First, assume that Bt satisfies (i). Let ei ∈ Bt ∩L(A, B) and e j ∈ Bt ∩NL(A, B). Let
αi j ∈ K

× such that e2j = αi j e2i andγ ∈ K\{0, 1} such thatγ 2 �= −1
αi j

. Thenωi j = 1
αi j

ω j j = 0.

Consider the basis B ′ = { fk}k∈� where

fk =
⎧
⎨

⎩

ek, if k �= i, j,
ei + γ e j , if k = i,
−γαi j ei + e j , if k = j .

Note that fi f j = −γαi j e2i + γ e2j = −γαi j e2i + γαi j e2i = 0. So, B ′ is a natural basis for
A. Observe now that fk f 2k = 0 if and only if eke2k = 0 for all k ∈ �\{i, j}. Now we will
prove that fi f 2i �= 0 and f j f 2j �= 0. Indeed,

ei e
2
i = ωi i e

2
i , e j e

2
j = e j e

2
i = 0, f 2i = (1 + αi jγ

2)e2i and f 2j = (αi j + α2
i jγ

2)e2i .

Then

fi f 2i = (ei + γ e j )(1 + αi jγ
2)e2i = (1 + αi jγ

2)ωi i e2i �= 0
f j f 2j = (−γαi j ei + e j )(αi j + α2

i jγ
2)e2i = −γαi j (αi j + α2

i jγ
2)ωi i e2i �= 0

Therefore |L(A, B)| = |L(A, B ′)| + 1.
Now, assume that Bt satisfies (ii). Define γ := −αqp

ωqp
ωqq

and β := ωqp
ωqq

. Consider the set

B ′ = { fk}k∈� where

fk =
⎧
⎨

⎩

ek, if k �= q, p,
γ eq + ep, if k = q,

eq + βep, if k = p.

By hypotheses γβ �= 1 then B ′ is a basis for A. Similarly to item (i), fk f 2k = 0 if and
only if eke2k = 0 for all k ∈ �\{q, p}. Therefore

fq f
2
q = (γ eq + ep)(γ

2 + αqp)e
2
q = (γ 2 + αqp)(γωqqe

2
q + ωqpe

2
p)

= (γ 2 + αqp)(γωqq + ωqpαqp)e
2
q = 0.

So |L(A, B ′)| < |L(A, B)|.
Finally, assume that Bt satisfies (iii). Suppose that α j i = −

(
ω j j
ω j i

)2
for all j, i ∈ �t . Then

we will get a contradiction. Indeed, let q, p, � ∈ �t . Since αqp = −ω2
qq

ω2
qp

then ωpq = −ω3
qq

ω2
qp

and analogously ω�q = −ω3
qq

ω2
qt
. Consequently ωpp = −ω2

qq
ωqp

and ωp� = −ωq�
ω2
qq

ω2
qp
. Moreover,

using that αp� = −ω2
pp

ω2
p�
we get thatωtq = αptωpq = ω3

qq

ω2
q�

, which is a contradiction. Therefore

there exist q, p ∈ �t such that αqp �= −ω2
qq

ω2
qp

and the affirmation follows from item (ii). �
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Proposition 5.9 Let A be a non-degenerate evolution algebra and B = {ei }i∈� a natural
basis ofA. Consider a natural decomposition B = B1 ∪ · · · ∪ Br and suppose that |Bs | ≤ 2
for all s ∈ {1, . . . , r} such that Bs ∩ L(A, B) �= ∅. If for every Bt , with |Bt | = 2, some of
the following conditions is satisfied:

(i) Bt ⊆ NL(A, B),

(ii) Bt ⊆ L(A, B) and α jk = −
(

ω j j
ω jk

)2
for all j, k ∈ �t where e2k = α jke2j ,

then |L(A, B)| = |L(A, B ′)| for all natural basis B ′ of A.

Proof Let � = �1 ∪ . . . ∪ �r be a natural decomposition of � relative to B. Let us define

�1 :=
⋃

|�t |=1

�t , �2 :=
⋃

|�t |=2
Bt⊆L(A,B)

�t and �3 :=
⋃

|�t |≥2
Bt⊆NL(A,B)

�t .

Suppose, contrary to our claim, that there is a natural basis B ′ = { fk}k∈� of A such that
|L(A, B ′)| �= |L(A, B)|. Let B ′ = B ′

1 ∪· · ·∪ B ′
r be a natural decomposition, ordered in such

a way that B ′
t ⊆ span(Bt ) for any t and let MB′ = (ω′

k j ) be the structure matrix ofA relative

to B ′. By Theorem 5.3we have that
∣∣{k ∈ �1:ω′

kk �= 0}∣∣ = ∣∣{k ∈ �1:ωkk �= 0}∣∣ andω′
j j = 0

for all j ∈ �3. Therefore there exists h ∈ {1, . . . , r} such that Bh = {ei , e�} ⊆ L(A, B) and
B ′
h = { fk, f j } � L(A, B ′). Without loss of generality, we assume that fk f 2k = 0. Then we

have that

fk = x11ei + x12e� and f j = x21ei + x22e�,

where xi j ∈ K. Consequently, using that e2� = αi�e2i , ei e
2
i = ωi i e2i and e2i e� = ωi�e2� it

follows that

fk f
2
k = (x11ei + x12e�)(x

2
11 + x212αi�)e

2
i

= (x211 + x212αi�)(x11ωi i e
2
i + x12ωi�e

2
�)

= (x211 + x212αi�)(x11ωi i + x12ωi�αi�)e
2
i = 0. (14)

As f 2k �= 0 then x211 + x212αi� �= 0. Thus

x11ωi i − x12ωi�
ω2
i i

ω2
i�

= ωi i

(
x11 − x12

ωi i

ωi�

)
= 0,

where we use that, by hypotheses, αi� = − ω2
i i

ω2
i�
. The fact that ωi i �= 0 implies x11 = ωi i

ωi�
x12.

Therefore x11x12 �= 0 because fk ∈ B ′. On the other hand, since B ′ is a natural basis

fk f j = x11x21e
2
i + x12x22e

2
� = (x11x21 + x12x22αi�)e

2
i = 0. (15)

Now, by Eq. (15) we obtain that

x21 = x12x22
x11

ω2
i i

ω2
i�

= x12x22
ω2
i i

ω2
i�

ωi�

x12ωi i
= ωi i

ωi�
x22.

Finally, we conclude that

x11x22 − x12x21 = x12
ωi i

ωi�
x22 − x12

ωi i

ωi�
x22 = 0.

Therefore fk and f j are linearly dependent, which is a contradiction. �
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Proposition 5.10 Let A be an evolution algebra with a natural basis B = {ei }i∈� such that
the structure matrix MB = (ωi j ) satisfies ωi j = 0 if and only if ω j i = 0, for all i, j ∈ �,
i �= j . Consider the natural decomposition � = �0 ∪ · · · ∪ �r relative to B. Suppose that
ei ∈ NL(A, B). Then e j ∈ NL(A, B) for every j ∈ �(i).

Proof Since ωi i = 0 and rk({e2i , e2j }) = 1 we get that ω j i = 0. By symmetry ωi j = 0.

Again, as rk({e2i , e2j }) = 1 then ω j j = 0. �
Remark 5.11 If A is an evolution algebra and B is a natural basis satisfying the assumptions
of the previous proposition and B = B0 ∪ · · · ∪ Br is a natural decomposition then either
Bt ⊆ L(A, B) or Bt ⊆ NL(A, B) for every t ∈ {0, 1, . . . , r}.
Corollary 5.12 Let A be a non-degenerate evolution algebra with a natural basis B =
{ei }i∈�. Consider a natural decomposition B = B1 ∪ · · · ∪ Br . Then the number of loops
in A is invariant by change of natural basis if |Bt | ≤ 2 for all t ∈ {1, . . . , r} such that
Bt ∩ L(A, B) �= ∅ and for every s such that |Bs | = 2, some of the following conditions is
satisfied:

(i) Bs ⊆ NL(A, B),

(ii) Bs ⊆ L(A, B) and α jk = − (
ω j j/ω jk

)2
for all j, k ∈ �s where e2k = α jke2j .

Otherwise the number of loops of A depend of the natural basis.

Proof The statement that the number of loops is invariant by the change of base follows from
Proposition 5.9. On the other hand, by Theorem 5.8, in any other case the number of loops
in A depends on the natural basis. �
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