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Abstract
Following Dieudonné and Schwartz a locally convex space is distinguished if its strong dual
is barrelled. The distinguished property for spacesCp(X) of continuous real-valued functions
over a Tychonoff space X is a peculiar (although applicable) property. It is known thatCp(X)

is distinguished if and only if Cp(X) is large in R
X if and only if X is a �-space (in sense

of Reed) if and only if the strong dual of Cp(X) carries the finest locally convex topology.
Our main results about spaces whose strong dual has only finite-dimensional bounded sets
(see Theorems 2, 7 and Proposition 4) are used to study distinguished spaces Ck(X) with
the compact-open topology. We also put together several known facts (Theorem 6) about
distinguished spaces Cp(X) with self-contained full proofs.

Keywords Distinguished space · Bidual space · Fundamental family of bounded sets ·
Point-finite family

Mathematics Subject Classification 54C35 · 46A03

1 Introduction

Recall that a locally convex space E is distinguished if its strong dual E ′
β is barrelled (i.e.

any absolutely convex, absorbing and closed subset of E ′
β is a neighbourhood of zero). In

fact (an equivalent condition [27, 23.7]), E is distinguished if and only if E is large in(
E ′′, σ

(
E ′′, E ′)). Recall also that a subspace F of a locally convex space G is large in G if

every bounded subset of G is contained in the closure in G of some bounded subset of F ,
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[34, Definition 8.3.22]. All semi-reflexive locally convex spaces are distinguished ([38, IV
5.5]).

If X is a Tychonoff space then Cp(X) and Ck(X) denote the linear space C(X) of all
real-valued continuous functions defined on X equipped with the pointwise convergence and
the compact-open topology, respectively.

The simplest examples of distinguished Cp(X) spaces which are not semi-reflexive are
those with X any countable nondiscrete Tychonoff space (see [12]). Several recently obtained
results about distinguished spacesCp(X) have been proved in articles [12, 15, 16, 24, 25, 32].
We know that Cp(X) is distinguished if and only if the strong dual Lβ(X) of Cp(X) (i.e. the
topological dual Cp(X)′ of Cp(X) with the strong topology β(Cp(X)′,Cp(X))) carries the
finest locally convex topology, see [12, 15]. In [24] we proved that Cp(X) is distinguished
if and only if X is a �-space (in the sense of Reed [35]). This theorem apparently provides
a nice connection with problems from the set theory and related with �-sets, λ-sets, and
Q-sets X , and corresponding distinguished spaces Cp(X).

We proved, among others, that: (i) For each metrizable scattered space X the spaceCp(X)

is distinguished ([24, Proposition 4.1]); (ii) For each compact Eberlein scattered space X the
space Cp(X) is distinguished ([24, Theorem 3.7] or [15, Theorem 49]); (iii) If X = [0, ω1]
then Cp(X) is not distinguished ([24, Theorem 3.12]).

A similar characterization of distinguished spaces Cp(X) in term of the space X has been
proved in [16].

In Sect. 2 we put together (Theorem 6) several equivalent conditions for Cp(X) to be
distinguished with self-contained proofs.

Being motivated by results from papers mentioned above we propose

Definition 1 A locally convex space E is strongly distinguished if its strong dual E ′
β caries

the finest locally convex topology (i.e. any absolutely convex and absorbing subset of E ′
β is

a neighbourhood of zero).

Following [22] a locally convex space is feral if every bounded set in E is finite-
dimensional. Hence a locally convex space E carries the finest locally convex topology
if and only if E is feral and E is bornological (i.e. every locally bounded linear map from E
into any locally convex space is continuous). Recall that a linear map between locally convex
spaces is locally bounded if it maps bounded sets into bounded sets; clearly, any continuous
linear map is locally bounded.

In [12] we showed that Cp(X) is strongly distinguished if and only if it is distinguished,
see also [15]; in [13, page 392] we proved that for each Tychonoff space X the strong dual
Lβ(X) of Cp(X) is feral. Consequently, Cp(X) is strongly distinguished if and only if its
strong dual Lβ(X) is bornological.

In [26] we proved the following

Theorem 1 ( [26, Theorem 1])
For a Tychonoff space X the following are equivalent:

(1) The space Ck(X) is strongly distinguished.
(2) X is a �-space and every compact subset of X is finite.
(3) The space Ck(X) is large in R

X .

Since a linear space with the finest locally convex topology is feral, Theorem 1 suggests
the following natural

Problem 1 Characterize locally convex spaces whose strong dual is feral.
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Feral dual spaces and (strongly) distinguished spaces C(X) Page 3 of 15 94

This problem is solved in Theorem7 providing some applications, seeCorollary 7 (extend-
ing [11, Theorem 3.3]). The main application of Theorem 7 extends Theorem 1, essentially
for (1) ⇒ (2), and is formulated below:

Theorem 2 For a Tychonoff space X the following are equivalent:

(1) The strong dual of Ck(X) is feral.
(2) Every compact subset of X is finite.

If Ck(X) is quasi-barrelled, then the strong bidual of Ck(X) is feral if and only if X is finite.

Recall that a locally convex space E is quasi-barrelled if every absolutely convex closed
set in E absorbing bounded sets in E is a neighbourhood of zero. It is not clear if the quasi-
barrelledness of Ck(X) in Theorem 2 can be omitted. Note however that for each Tychonoff
space X the strong bidual Mβ(X) of Cp(X) is feral if and only if X is finite, see Corollary 4.

Recall that Ck(X) is quasi-barrelled if and only if X is a W -space i.e. every b-bounding
subset B of X is relatively compact, see [34, Theorem10.1.21]; the b-boundedness of Bmeans
that for every bounded subset M of Ck(X) we have sup{| f (x)| : x ∈ B, f ∈ M} < ∞.

Observe that the item (2) in Theorem 2 does not guarantee that the strong dual of Ck(X)

is bornological, see Example 1.
Krupski and Marciszewski proved that for any infinite compact spaces X and Y the

spaces Cp(X) and Cw(Y ) are not isomorphic, where Cw(Y ) is the Banach space C(Y ) with
its weak topology i.e. Cw(Y ) = (C(Y ), σ (C(Y ),C(Y )′)) ([29, Corollary 3.2], see also [28]
for motivations and results around this line of research).

Applying Theorem 2 we extend this result by proving the following.

Corollary 1 Let X and Y be Tychonoff spaces. Let Cw(Y ) be the space Ck(Y ) with its weak
topology σ(Ck(Y ),Ck(Y )′). If there exists a continuous linear map fromCp(X) onto Cw(Y ),
then every compact subset of Y is finite. In particular, the spaces Cp(X) and Cw(Y ) are not
isomorphic, if Y contains an infinite compact subset.

In fact we prove a more general statement, see Corollary 5.
A collection {Ut : t ∈ T } of subsets of a topological space X is called
(a) point-finite if for every x ∈ X the set {t ∈ T : x ∈ Ut } is finite;
(b) compact-finite if for every compact subset F of X the set {t ∈ T : Ut ∩ F �= ∅} is

finite;
(c) an open expansion of a collection {Xt : t ∈ T } of subsets of X if Ut is open and

Ut ⊃ Xt for every t ∈ T .

Clearly, a decreasing sequence (Xn)of subsets of X is point-finite if andonly if
⋂∞

n=1 Xn =
∅.

A topological space X is called
(a) a �-space if every decreasing point-finite sequence (Xn) of subsets of X admits a

decreasing point-finite open expansion (Un), see [24];
(b) a strong�-space if every decreasing point-finite sequence (Xn) of subsets of X admits

a decreasing compact-finite open expansion (Un).
Theorems 1, 2 and 6 imply the following

Corollary 2 For a Tychonoff space X the following are equivalent:

(1) The space Ck(X) is strongly distinguished.
(2) The space Ck(X) is large in R

X .

123



94 Page 4 of 15 J. Ka̧kol, W. Śliwa

(3) The strong dual Ck(X)′β of Ck(X) is feral and the strong dual Lβ(X) of Cp(X) is
bornological.

(4) X is a �-space and every compact subset of X is finite.
(5) X is a strong �-space.
(6) Any countable disjoint collection of subsets of X admits a compact-finite open expansion

in X.
(7) Any countable partition of X admits a compact-finite open expansion in X.

Proof (1)⇔ (2) ⇔ (3) ⇔ (4) follow by Theorems 1, 2 and 6.
(4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (4) are clear (see the Proof of Theorem 6). ��
Note however that there exist (non-complete) Montel spaces (hence distinguished) whose

strong dual is not bornological, see [34, Example 4.7.8]. Clearly, for every discrete space X
and for every countable Tychonoff space X the space Cp(X) is distinguished, since every
discrete space and every countable Tychonoff space are �-spaces.

On the other hand, we show that

Example 1 There exists an uncountable pseudocompact Haydon space X with all compact
sets finite such that Ck(X) (= Cp(X)) is not distinguished.

Recall that any Haydon space X is a subspace of βN with X ⊃ N.

Another example is related with the paper [20].

Example 2 The space ω∗ = (βN \ N) contains a dense countably compact subspace X such
that every compact subset of X is finite and Ck(X) (= Cp(X)) is not distinguished.

The subspace (�∞)p = {(xn) ∈ R
N : supn |xn | < ∞} of RN is distinguished. For all

Haydon spaces X there exists a continuous open linear map from Cp(X) onto (�∞)p (see
[23, Theorem 1.3]), but for some Haydon spaces X the space Cp(X) is not distinguished (by
Example 1).
We note also the following more general fact involving the case Ck(X).

Proposition 1 Let X be a subspace of βN with X ⊃ N. Then

(1) Ck(X) admits a continuous open linear map onto R
N or c0 or �2 or (�∞)p.

(2) Cp(X) admits a continuous open linear map onto R
N or (�∞)p.

In particular, the spaces Cp(X) and Ck(X) have infinite-dimensional quotients that are
distinguished although these spaces can be not distinguished.

We assume that all locally convex spaces are Hausdorff and over the field R of real
numbers.

2 A few facts about distinguished spaces

A locally convex space E is called quasi-normable [34, Definition 8.3.34] if for every neigh-
bourhood of zero U in E there exists a neighbourhood of zero V such that for every λ > 0
there exists a bounded set B in E with V ⊆ B + λU .

The class of quasi-normable spaces contains, for example, (DF)-spaces,metrizable spaces
Ck(X), spaces Cn(�) for open subsets � of RN, as well as all Fréchet-Montel spaces (see
[19, 33]).
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Grothendieck showed that a metrizable locally convex space E is distinguished if and
only if its strong dual E ′

β = (E ′, β(E ′, E)) is bornological, [34, Theorem 8.3.44]. Heinrich
[18] observed that each metrizable quasi-normable locally convex space satisfies the density
condition what implies that every metrizable quasi-normable locally convex space is distin-
guished. In particular, the strong dual of a distinguished metrizable locally convex space can
be described as a regular (LB)-space, see [34, Observation 8.5.14 (e)].

We refer to [5, 6, 15, 18, 19, 27] for several information about distinguished metrizable
spaces. The most interesting example of a nondistinguished Fréchet (i.e. a metrizable and
complete locally convex) space is the K öthe’s echelon space from [27, 31.7].

Since each spaceCk (X) is quasi-normable (see [19, 10.8.2 Theorem]) and any metrizable
quasi-normable space is distinguished, we have

Proposition 2 Any metrizable space Ck (X) is distinguished.

Note however that non-metrizable and distinguished spacesCk(X)which are not strongly
distinguished do exist, see Example 7.

Proposition 2 implies the following

Theorem 3 Ck(X) is distinguished for any locally compact paracompact space X.

Proof It is known that X is the direct sum⊕t∈T Xt of locally compact σ -compact spaces, see
[9]. ThenCk(X) is isomorphic to the product

∏
t∈T Ck(Xt ) of Fréchet spacesCk(Xt ). Hence

the strong dual Ck(X)′β of Ck(X) is isomorphic to the direct sum
⊕

t∈T Ck(Xt )
′
β , see [38,

Exc. 8, p.192]. By Proposition 2 each space Ck(Xt )
′
β is barrelled, so Ck(X)′β is barrelled,

too ([34, Corollary 4.2.7]). ��
Note that the strong dualCk(X)′β ofCk(X) is a complete strict (LB)-space, i.e., complete

strict inductive limit of a sequence of Banach spaces what is a consequence of the fact that
Ck(X)′β is bornological (by applying the Grothendieck theorem, see [27, 23.7, 29.3]).

Below we provide two concrete examples of metrizable dense subspaces ofRN which are
strongly distinguished.

Example 3 The spaces (�∞)p and (c0)p = {(xn) ∈ R
N : xn → 0} with the topologies

induced fromR
N are dense large subspaces ofRN, so they are strongly distinguished. On the

other hand, does not exist a Tychonoff space X such that (�∞)p is isomorphic to Cp(X). In
fact, as easily seen, (�∞)p is σ -compact, while the space Cp(X) is σ -compact if and only if
X is finite, see [1, Theorem I.2.1].

Distinguished spaces Cp(X) are totally different from distinguished spaces Ck(X), see
Theorem 6. Recall first the following general

Theorem 4 [15, 36] The following assertions are equivalent for any locally convex space E.

(1) E has the finest locally convex topology.
(2) Every absolutely convex absorbing subset of E is a neighbourhood of zero.
(3) E is the strong dual of the product Rdim E .

(4) E is barrelled and admits a continuous basis [36].

Clearly, any linear functional on a linear space E is continuous in the finest locally convex
topology ξ on E ; if E is infinite-dimensional, then ξ is nonmetrizable (since everymetrizable
infinite dimensional locally convex space admits a discontinuous linear functional).

On the other hand, in [15, Theorem 9] we proved
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Theorem 5 The homeomorphic copy of X in the dual Cp(X)′ with the weak∗-topology is a
continuous basis in Lβ(X).

Recall (see [22]) that a locally convex space E is called primitive if for any increasing
sequence (En) of linear subspaces of E with

⋃∞
n=1 En = E , a linear functional f on E is

continuous if and only if its restrictions to En, n ∈ N, are continuous.
Using [12, 15, 16, 24, 36] we put together several equivalent conditions for Cp(X) to be

distinguished.
Proofs of some implications are original.

Theorem 6 For a Tychonoff space X the following are equivalent:

(1) Cp(X) is distinguished.
(2) Cp(X) is strongly distinguished.
(3) Cp(X) and RX have the same strong duals.
(4) The strong dual Lβ(X) of Cp(X) is the direct sum of |X |-many lines.
(5) Lβ(X) is reflexive.
(6) Lβ(X) is bornological.
(7) Lβ(X) is quasi-barrelled.
(8) Lβ(X) is primitive.
(9) The strong bidual Mβ(X) of Cp(X) is the product space RX .

(10) M(X) = R
X (as sets) i.e. Lβ(X)′ = Lβ(X)∗.

(11) Mβ(X) is reflexive.
(12) Mβ(X) is quasi-complete.
(13) Cp(X) is large in R

X .
(14) For each f ∈ R

X there exists a bounded subset B of Cp(X) such that f ∈ clRX (B).
(15) X is a �-space.
(16) Any countable disjoint collection of subsets of X admits a point-finite open expansion in

X.
(17) X is coverable i.e. any countable partition of X admits a point-finite open expansion in

X.

Proof (1) ⇒ (2) ⇒ (3) follows from Theorem 4 and Theorem 5.
(3) ⇒ (4) ⇒ (5) ⇒ (1) and (2) ⇒ (6) are obvious.
(6) ⇒ (1) since every quasi-complete bornological locally convex space is a barrelled

space ([7, Theorem 3.6.19]) and the space Lβ(X) is quasi-complete.
(1) ⇔ (7) since every barrel in Lβ(X) is bornivorous.
(1) ⇒ (8) since any barrelled locally convex space is primitive ([34, Proposition 4.1.6]).
(3) ⇔ (13) follows by the bipolar theorem ([38, Theorem 1.5]).
(9) ⇒ (11) ⇒ (12) are obvious. (12) ⇒ (9)RX is the quasi-completion of the subspace G

consisting of all functions f ∈ R
X with finite support. By Theorem 5, G ⊂ Mβ(X) ⊂ R

X .
Thus Mβ(X) = R

X .

(3) ⇒ (9) follows by reflexivity of RX . (9) ⇒ (10) is obvious.
(10) ⇔ (14) Put F = Cp(X) and E = Mβ(X). Then F ′∗ = L(X)∗ = R

X and
σ(F ′∗, F ′) = σ(L(X)∗, L(X)) = σ(RX , L(X)) is the product topology of RX . By [38,
Theorem 5.4, IV], f ∈ E if and only if there exists a bounded subset B of F such that
f ∈ clσ(F ′∗,F ′)(B) = clRX (B).

(8) ⇒ (10) Let f ∈ R
X . Put Xn = {x ∈ X : | f (x)| ≤ n} and Ln = {μ ∈ L(X) :

supp(μ) ⊂ Xn} for n ∈ N. Clearly, (Ln) is an increasing sequence of linear subspaces of
L(X) with

⋃∞
n=1 Ln = L(X). Let n ∈ N and fn = f χXn . The set Bn = {g ∈ C(X) :

123



Feral dual spaces and (strongly) distinguished spaces C(X) Page 7 of 15 94

|g(x)| ≤ n for all x ∈ X} is bounded in Cp(X) and fn ∈ clRX (Bn). By [38, Theorem 5.4,
IV], clRX (Bn) ⊂ M(X), so fn ∈ M(X). Clearly, f |Ln = fn |Ln , so f |Ln is continuous for
any n ∈ N. Hence f ∈ M(X). Thus RX = M(X).

(13) ⇒ (14) is obvious.
(14) ⇒ (15) Let (Xn) be a decreasing sequence of subsets of X with empty intersection.

Put X0 = X . Let f ∈ R
X with f (x) = n + 1 for all x ∈ [Xn−1 \ Xn], n ∈ N. Let B be a

bounded subset of Cp(X) with f ∈ clRX (B). Let x ∈ X . Then x ∈ [Xn−1\Xn] for some
n ∈ N.

The setW = {g ∈ R
X : |g(x)− f (x)| < 1} is a neighbourhood of f inRX , soW∩B �= ∅.

Let gx ∈ W ∩ B. Then gx (x) > n, so the set Vx = g−1
x ((n,∞)) is an open neighbourhood

of x in X . Put Un = ⋃
x∈Xn

Vx for n ∈ N. Clearly, (Un) is a decreasing sequence of open
subsets of X and Xn ⊂ Un for n ∈ N. Let n ∈ N. For x ∈ Xn and z ∈ Vx we have gx (z) > n,
so supg∈B |g(z)| > n for z ∈ Un . Let y ∈ X .

For some m ∈ N we have supg∈B |g(y)| ≤ m, since B is bounded in Cp(X). It follows
that y /∈ Um , so y /∈ ⋂∞

n=1Un . Thus
⋂∞

n=1Un = ∅.

(15) ⇒ (13) Let A be a non-empty bounded subset of RX . Let ψ : X → R, ψ(x) =
sup f ∈A | f (x)|. Put Xn = {x ∈ X : |ψ(x)| ≥ n − 1} for n ∈ N. Then (Xn) is a decreasing
sequence of subsets of X with empty intersection. Thus there exists a decreasing sequence
(Un) of open subsets of X with an empty intersection such that Xn ⊂ Un for n ∈ N. For any
x ∈ X there exists ϕ(x) ∈ N with

x ∈ [Uϕ(x) \Uϕ(x)+1].
We have ψ(x) < ϕ(x) for every x ∈ X . Indeed, let x ∈ X and n ∈ N with n − 1 ≤

|ψ(x)| < n. Then x ∈ Xn ⊂ Un and x /∈ Uϕ(x)+1, so n < ϕ(x)+1. Thusψ(x) < n ≤ ϕ(x).
Clearly, the set B = {g ∈ Cp(X) : |g| ≤ ϕ} is bounded in Cp(X). We shall prove that

A ⊂ clRX (B). Let f ∈ A. Let W be a neighbourhood of f in RX . Then there exists a finite
subset K of X such that

{g ∈ R
X : g|K = f |K } ⊂ W .

Let {Vx : x ∈ K } be a family of pairwise disjoint open subsets of X with

x ∈ Vx ⊂ Uϕ(x), x ∈ K .

For every x ∈ K there exists a continuous function

hx : X → [−ϕ(x), ϕ(x)]
with hx (x) = f (x) and hx (y) = 0 for y ∈ V c

x (see [9, Theorem 3.1.7]). The function
h : X → R, h = ∑

x∈K hx is continuous and h|K = f |K , so h ∈ W .

We shall prove that h ∈ B. Clearly, h(x) = 0 for x ∈ (
⋃

x∈K Vx )
c. Let x ∈ K . For

y ∈ [K\{x}] we have Vx ⊂ V c
y , so hy |Vx = 0.

Thus h|Vx = hx |Vx . For t ∈ Vx we have

|h(t)| = |hx (t)| ≤ ϕ(x) ≤ ϕ(t),

since Vx ⊂ Uϕ(x). Thus |h| ≤ ϕ, so h ∈ B. It follows that W ∩ B �= ∅, so f ∈ clRX (B).

Hence A ⊂ clRX (B).

(15) ⇒ (16) Let (Sn) be a disjoint collection of subsets of X . Put Xn = ⋃∞
m=n Sm for

n ∈ N. Then (Xn) is a decreasing point-finite sequence of subsets of X . Thus there exists a
decreasing point-finite open expansion (Un) of (Xn); clearly (Un) is an open expansion of
(Sn).
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(16) ⇒ (17) is obvious.
(17) ⇒ (15) Let (Xn) be a decreasing point-finite sequence of subsets of X0 = X . Put

Pn = [Xn−1\Xn], n ∈ N. Then (Pn) is a partition of X . Let (Un) be a point-finite open
expansion of (Pn) and Vn = ⋃∞

m=n+1Um, n ∈ N. Then (Vn) is a decreasing point-finite
open expansion of (Xn), since Xn = ⋃∞

m=n+1 Pm ⊂ ⋃∞
m=n+1Um = Vn, n ∈ N. ��

On the other hand, notice the following fact implying that the item (11) in Theorem 6
cannot be replaced by Mβ(X) is Baire.

Remark 1 Ferrando and Ka̧kol [12, Theorem 3.9] proved that the strong dual Lβ(X) of
Cp(X) is always distinguished (i.e. Mβ(X) is always barrelled) and then Ferrando and Saxon
asked [16, Problem 11] if the Baire property of Mβ(X) implies that Cp(X) is distinguished.
The answer is negative (as noticed in [16, Addendum]) since M(ω1) is a Baire space [16,
Corollary 21] but Cp(ω1) is not distinguished [24].

For spaces Ck(X) note the following simple

Proposition 3 Let X be a Tychonoff space. The space Ck(X) is feral if and only if X is finite.

Proof Clearly, Ck(X) is feral if X is finite. Assume that X is infinite. If X is pseudocompact,
then Ck(X) admits a stronger normed topology. If X is not pseudocompact, then Ck(X)

contains an isomorphic copy of RN ([21, Theorem 2.12]). Thus Ck(X) is not feral. ��

3 Feral dual spaces

Two locally convex spaces E and F are called bornologically isomorphic if there exists a
linear bijective map T : E → F such that T and T−1 are locally bounded; E is a free locally
convex space if E carries the finest locally convex topology.

In order to prove Theorem 2 we need the following simple fact which is probably known.

Lemma 1 Let E and F be locally convex spaces. Assume that there exists a continuous linear
surjection T : E → F which is bounded covering, i.e. for every bounded set B in F there
exists a bounded set AB in E with T (AB) = B. Then the strong dual E ′

β of E contains an
isomorphic copy of the strong dual F ′

β of F.

Proof The adjoint map T ∗ : F ′
β → E ′

β is injective. Let B be a bounded subset of F .
The seminorms pB : F ′

β → [0,∞), ξ → sup f ∈B |ξ( f )| and pAB : E ′
β → [0,∞), η →

supe∈AB
|η(e)| are continuous and
pB(ξ) = sup

f ∈B
|ξ( f )| = sup

e∈AB

|ξ(T e)| = sup
e∈AB

|(T ∗ξ)(e)| = pAB (T ∗ξ)

for any ξ ∈ F ′
β. It follows that T ∗ is an isomorphism onto its range, so E ′

β contains an
isomorphic copy of F ′

β . ��
Dealing with locally convex spaces we have the following characterization for quasi-

barrelled spaces carrying the weak topology.

Theorem 7 For a locally convex space E the following are equivalent:

(1) E ′
β is feral.
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(2) E ′
β is bornologically isomorphic to a free locally convex space.

(3) E is quasi-barrelled and carries the weak topology.
(4) Every compact set in E ′

β has finite topological dimension.

Proof (1) ⇔ (2) is easy.
The equivalence (1) ⇔ (4) has been proved in [4, Theorem 1.2].
(1) ⇒ (3) First we show that Eμ = (E, μ(E, E ′)) is quasi-barrelled. Let B be a bounded

subset of E ′
β . Then B is finite-dimensional, so the closureW of the absolutely convex hull of

B in (E ′, σ (E ′, E)) is compact. Thus the set ◦W = {x ∈ E : | f (x)| ≤ 1 for all f ∈ W } is a
neighbourhood of zero in Eμ and B ⊂ W ⊂ (◦W )◦ ⊂ E ′; so B isμ(E, E ′)-equicontinuous.
Thus Eμ is quasi-barrelled.

Let E ′
ν be the space E

′ with the finest locally convex topology. The identity map I : E ′
ν →

E ′
β is a continuous linear surjection. Since every bouned subset of E ′

β is finite-dimensional,
I is bounded covering. By Lemma 1 we derive that the strong bidual (E ′

β)′β is isomorphic
to a subspace of (E ′

ν)
′
β . On the other hand, E ′

ν is the direct sum
⊕

t∈X R, where X is a

Hamel basis of E ′; so its strong dual (E ′
ν)

′
β is isomorphic to the product RX , which clearly

carries the weak topology. Hence (E ′
β)′β = (E ′′, β(E ′′, E ′) carries the weak topology and

β(E ′′, E ′)|E = σ(E ′, E), since every subspace of a locally convex space with the weak
topology has the weak topology. Since Eμ is quasi-barrelled, β(E ′′, E ′)|E = μ(E, E ′), see
[19, Proposition 11.2.2].

Thus σ(E, E ′) = μ(E, E ′), so E is quasi-barrelled and carries the weak topology.
(3)⇒ (1)Let X be aHamel basis of E ′ with the topology induced from (E ′, σ (E ′, E)). The

linear map ψ : E → Cp(X), z → ψz, where ψz(x) = x(z) for x ∈ X , is an isomorphism
between E and ψ(E), and ψ(E) is dense in Cp(X). Thus we can identify E with a dense
subspace of the product RX and E ′ with (RX )′.

Let B be a bounded subset of E ′
β . Since E is quasi-barrelled, B is equicontinuous, so

there exists a neighbourhood U of zero in E such that B ⊂ U ◦ ⊂ E ′ = (RX )′. Clearly, the
closure V of U in R

X is a neighbourhood of zero in R
X . Let f ∈ B and v ∈ V . Then there

exists a net (ut )t∈T in U convergent to v in R
X . Hence the net ( f (ut ))t∈T is convergent to

f (u) in R and | f (ut )| ≤ 1, t ∈ T , so | f (u)| ≤ 1. Thus B ⊂ V ◦ ⊂ (RX )′. The set V ◦ is
bounded in (RX )′β . Indeed, let A be a bounded subset of RX . Then s A ⊂ V for some s > 0,

so sV ◦ ⊂ A◦. Hence V ◦ is bounded in (RX )′β = ⊕x∈XR. Thus V ◦ is finite-dimensional,
since the direct sum ⊕x∈XR is feral; so B ⊂ V ◦ is finite-dimensional. Hence E ′

β is feral. ��
Since Cp(X) is quasi-barrelled ([19, Corollary 11.7.3]) and carries the weak topology,

Theorem 7 applies the following known result (see [13]).

Corollary 3 Lβ(X) is feral for any Tychonoff space X.

Corollary 4 Let X be a Tychonoff space. The strong bidual Mβ(X) of Cp(X) is feral if and
only if X is finite.

Proof (⇒) The strong dual Lβ(X) ofCp(X) is quasi-barrelled (by Theorem 7) and complete
(by [12, Proposition 3.10]). Consequently, Lβ(X) is barrelled, so Mβ(X) is the product RX

(by Theorem 6). Since Mβ(X) is feral, X is finite. (⇐) is obvious. ��
The following proposition provides a stronger version of Corollary 1.

Proposition 4 Let E be a locally convex space.
If there exists a Tychonoff space X and a locally bounded linear map T from Cp(X) onto E,
then the strong dual E ′

β of E is feral.
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Proof Let υX be the realcompactification of the space X .
The restriction map π : Cp(υX) → Cp(X), f → f |X is a continuous linear surjection,

see [21, Lemma 9.1].
The compositionmap T̂ : Cp(υX) → E, T̂ = T ◦π is a locally bounded linear surjection.

Cp(υX) is bornological by Buchwalter–Schmets theorem ([8]). Applying [34, Proposi-
tion 6.1.8] we deduce that T̂ is continuous. Then the adjoint map T̂ ∗ : E ′

β → Lβ(υX)

is injective and continuous. Hence the range T̂ ∗(E ′) admits a locally convex topology ξ ,
stronger than the topology restricted from Lβ(υX) and such that E ′

β is isomorphic with

(T̂ ∗(E ′), ξ). By [14, page 392] the space Lβ(υX) is feral. Hence the strong dual E ′
β of E is

feral. ��
Corollary 5 Let X and Y be Tychonoff spaces.

If there exists a locally bounded linearmap T fromCp(X) ontoCk(Y ), then every compact
subset of Y is finite.

Proof By Proposition 4 the strong dual ofCk(Y ) is feral. Hence, by Theorem 2, each compact
subset of Y is finite. ��

Proposition 4 suggests the following.

Problem 2 Does there exist a locally convex space E whose strong dual is feral such that E
is not continuous [not locally bounded] linear image of Cp(X) for any Tychonoff space X?

Recall that the strongly distinguished space (�∞)p is not isomorphic to any space Cp(X)

(Example 3), although if X is a Tychonoff space containing a copy of βN, thenCp(X) admits
a continuous open linear map onto (�∞)p , see [3, Theorem 1].

Now we prove Theorem 2

Proof of Theorem 2 (I). (⇒)Assume that X contains an infinite compact subset K . The restric-
tion map R : Ck(X) → Ck(K ), R( f ) = f |K is an open continuous surjection, see [23,
Proposition 2.9]. Put M = ker R. Let Q : Ck(X) → Ck(X)/M be the quotient map. Then
the map R : Ck(X)/M → Ck(K ), f + M → f |K is an isomorphism, since R ◦ Q = R. By
Theorem 7 the space Ck(X) carries the weak topology, so Ck(X)/M carries the weak topol-
ogy, too. We have a contradiction, since Ck(X)/M is isomorphic to the infinite-dimensional
Banach space Ck(K ).

(⇐) follows by Corollary 3, since Ck(X) = Cp(X).
(II). Assume that E = Ck(X) is quasi-barrelled. Then E is a subspace of (E ′

β)′β ([19,
Proposition 11.2.2]). Hence, if (E ′

β)′β is feral, then E is feral, too; so X is finite, by Proposi-
tion 3. The converse is obvious. ��

Another consequence of Theorem 7 yields the following

Corollary 6 An infinite-dimensional metrizable locally convex space E is strongly distin-
guished if and only if it is isomorphic to a dense subspace of RN. Hence a Fréchet space F
is strongly distinguished if and only if F is finite-dimensional or F is isomorphic to RN.

Proof (⇒) By Theorem 7 and its proof, E carries the weak topology and it is isomorphic to
a dense subspace of RX for some infinite set X . E is metrizable, so X is countable.

(⇐) By [34, Observation 8.3.23 (b)] E is large in R
N, so the strong duals of E and R

N

coincide and are isomorphic to ϕ, the ℵ0-dimensional linear space with the finest locally
convex topology. ��
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Recall that a locally convex space admits a fundamental bounded resolution if there exists
a family {Bα : α ∈ N

N} of bounded sets such that Bα ⊂ Bβ for all α ≤ β and each bounded
set in E is contained in some Bα . Clearly every metrizable locally convex space admits such
resolution, see [21, Lemma 15.2]. A locally convex space E has a NN-base if there exists a
base {Uα : α ∈ N

N} of neighborhoods of zero such that Uβ ⊂ Uα for all elements α ≤ β in
N
N. Clearly, every metrizable locally convex space has an N

N-base, [21].
In [11, Theorem 3.3] we proved that Cp(X) admits a fundamental bounded resolution if

and only if X is countable (if and only if Cp(X) is metrizable).
Using Theorem 7 we extend the above result and supplement Corollary 6.

Corollary 7 An infinite-dimensional quasi-barrelled locally convex space E is isomorphic to
a dense subspace of RN if and only if E has a fundamental bounded resolution and E caries
the weak topology.

Proof (⇒) is clear. (⇐)By the proof ofTheorem7, E is isomorphic to a dense subspace ofRX

for some infinite set X . Assume that X is uncountable. Then E ′ is uncountable-dimensional,
since dim E ′ = dim(RX )′ = dim(⊕x∈XR). Let {Bα : α ∈ N

N} be a fundamental bounded
resolution of E . Then {B◦

α : α ∈ N
N} is a NN-base of neighbourhoods of zero in the strong

dual E ′
β of E . By [4, Theorem 1.2], E ′

β contains an infinite-dimensional metrizable compact
set; a contradiction, since E ′

β is feral (by Theorem 7). Thus X is countable. ��

4 Proof of Proposition 1 and Examples

Proof of Proposition 1 (1) Consider three cases: (1.1). X is not pseudocompact. Then the
space Ck(X) contains a complemented copy of the space RN, see [21, Theorem 2.12] and
[34, Corollary 2.6.5]. Hence there exists a continuous open linear map from Ck(X) ontoRN.

(1.2). X is pseudocompact and every compact subset of X is finite. Since N ⊂ X ⊂ βN,
then N is C∗-embedded into X . Applying [3, Theorem 1] we get that Cp(X) has a quotient
Cp(X)/W isomorphic to the subspace (�∞)p of RN (endowed with the product topology),
whereW = ⋂

n{ f ∈ Cp(X) : ∑
x∈Fn f (x) = 0} and (Fn) is a sequence of non-empty, finite

and pairwise disjoint subsets of N with limn |Fn | = ∞. Hence Ck(X)(= Cp(X)) admits a
continuous open linear map onto (�∞)p .

(1.3). X is pseudocompact and contains an infinite compact subset K . By [23, Proposi-
tion 2.9] the restriction map T : Ck(X) → Ck(K ), f → f |K , is a continuous open linear
surjection. By [37] the Banach space C(K ) admits a continuous open linear map onto �2 or
c0. Thus Ck(X) admits a continuous open linear map onto �2 or c0.

(2) If X is not pseudocompact, then Cp(X) contains a complemented copy of RN ([2,
Sect. 4]), so Cp(X) admits a continuous open linear map onto R

N.
If X is pseudocompact, then Cp(X) has a quotient isomorphic to (�∞)p (see (1.2)), so

Cp(X) admits a continuous open linear map onto (�∞)p . ��
Below we provide concrete situations where Ck(X) is distinguished but its strong dual

Ck(X)′β is not feral.

Example 4 Let X be an uncountable hemicompact space. Then the space Ck(X) is distin-
guished but its strong dual Ck(X)′β is not feral.

Proof X is hemicompact, i.e. X is covered by a sequence of compact sets (Kn) such that each
compact set in X is contained in some Kn , so Ck(X) is metrizable. Applying Proposition 2
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we infer that Ck(X) is distinguished. Since X is uncountable, for some n ∈ N the set Kn is
infinite. By Theorem 2, Ck(X)′β is not feral. ��

A topological space X is called a Q-space if each subset of X is Gδ . Recall that a normal
space X is a Q-space if and only if X is strongly splittable, i.e. for every f ∈ R

X there exists
a sequence ( fn)n in Cp(X) such that fn → f in R

X , see [39, Problems 445, 447]. Using
Theorem 2 one gets the following

Proposition 5 For a normal space X the assertions are equivalent.

(1) X is a Q-space and every compact subset of X is finite.
(2) For each f ∈ R

X there exists a bounded sequence ( fn) in Ck(X) such that fn → f in
R

X .

Proof (1) ⇒ (2). Then Ck(X) = Cp(X). Let f ∈ R
X . X is a Q-space, so there exists a

sequence ( fn) ⊂ Cp(X) with fn → f in R
X . Then ( fn) is bounded in Cp(X) (= Ck(X)).

(2) ⇒ (1). Then X is a Q-space and Ck(X) is dense in R
X . It is known that Ck(X) has a

base {Ut : t ∈ T } of neighbourhoods of zero such that Ut , t ∈ T , are closed in Cp(X). For
any t ∈ T , the set clRX (Ut ) is a neighbourhoods of zero in R

X , so Ut = Cp(X) ∩ clRX (Ut )

is a neighbourhood of zero in Cp(X). Thus the topological spaces Ck(X) and Cp(X) are
equal, so any compact subset of X is finite. ��

Example 1 uses the following scheme of constructing uncountable pseudocompact spaces
without infinite compact subsets due to Haydon, [17]. Let ω∗ = (βN \ N). For each
infinite subset A of N, choose a cluster point uA of A in βN. Let X = (N ∪ {uA :
A is an infinite subset ofN}) be topologized as a subspace of βN. To simplify the notation
we will call such spaces the Haydon spaces. It is known that each Haydon space X is an
uncountable pseudocompact space and each compact subset of X is finite, see [17].

A point x of a topological space X is said to be a a weak P-point if for any countable
subset F of (X \ {x}) we have x /∈ F . Clearly, any countable set of weak P-points of X is
discrete. By [30], see also [20], the set of all weak P-points of the space ω∗ is dense in ω∗.

Thus for any infinite subset A of N there exists an element uA ∈ A ∩ ω∗, that is a weak
P-point of X . Then any countable subset of the set Z := {uA : A is an infinite subset ofN}
is discrete. Thus any countable subset of the Haydon space Y = (N ∪ Z) is scattered.

We will use the following two results.
In [24] Ka̧kol and Leiderman proved the following

Theorem 8 [24, Theorem 4.7] If X is countably compact and Cp(X) is distinguished, then
X is scattered.

A related result has been proved by Leiderman and Tkachuk in [32].

Theorem 9 [32, Theorem 3.1] If X is pseudocompact and Cp(X) is distinguished then every
countable subset of X is scattered.

Proof of Example 1 The compact space ω∗ has no isolated points. It is well-known (and easy
to prove), that every compact space without isolated points contains a non-empty countable
subset without isolated points, too. Thus there exists a non-empty countable subset P of ω∗
without isolated points; clearly, P is not scattered.

Let P = {pn : n ∈ N} and An = {k ∈ N : k > n} for n ∈ N. Since pn ∈ (An \N), n ∈ N,

there exists a Haydon space X , that contains P . By Theorem 9, the space Ck(X) (= Cp(X))
is not distinguished. ��
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Proof of Example 2 In [20] Juhasz and van Mill proved that the space ω∗ contains a dense
subspace X such that X is countably compact and non-scattered but all countable subsets of
X are scattered. Observe that every compact subset of X is finite. Indeed, if a compact subset
A of X ⊂ βN is infinite, then A contains a copy of βN, but βN contains a countable subset
which is not scattered; a contradiction. By Theorem 8, the space Ck(X) (= Cp(X)) is not
distinguished. ��
Example 5 LetD′(�) be the space of all distributions over an open set � ⊂ R

n . Then every
uncountable-dimensional subspace of D′(�) contains an infinite-dimensional metrizable
compact set. In particular,D′(�) is not feral.

Proof The space D(�) is a strict countable inductive limit of Fréchet Montel spaces ([19,
Example 4.6.3]), soD(�) admits a fundamental bounded resolution (see [21] and the proof
of Proposition 16.7 (ii) there). Therefore D′(�) admits an N

N-base. Now the conclusion
follows from [4, Theorem 1.2]. ��
Example 6 Every uncountable-dimensional subspace of Ck(R

N) contains a metrizable com-
pact infinite-dimensional set and the strong dual of Ck(R

N) admits an infinite-dimensional
compact set. In particular, Ck(R

N) and its strong dual are not feral.

Proof The first claim follows from the fact that Ck(R
N) admits an N

N-base (by [10]) and
then we apply [4, Theorem 1.2]. The other claim follows from Theorem 2. ��

By the theorem of Heinrich (see Sect. 2), we know that every quasi-normable metrizable
locally convex space is distinguished.

Problem 3 Is every quasi-normable locally convex space with a N
N-base a distinguished

space?

Note that every (LB)-space is quasi-normable ([34]) and each (LB)-space has aNN-base
([21]). Moreover, each space Cp(X) is quasi-normable ([15]) and Cp(X) has an N

N-base if
and only if Cp(X) is metrizable ([21]). Recall also that Ck(R

N) is quasi-normable and has
an N

N-base by applying the main theorem of [10].

Example 7 There exists a non-metrizable distinguished space Ck(X) which is not strongly
distinguished.

Proof By [21, Example 2.4], there exists a Tychonoff space X such that Ck(X) is a (d f )-
space but not (DF)-space. Then Ck(X) is not metrizable, since any metrizable (d f )-space
is a (DF)-space. By [21, Theorem 2.14], the strong dual of Ck(X) is a Fréchet space, so
Ck(X) is distinguished but not strongly distinguished. ��

Note also thatCk(R
N) is not a (d f )-space; it is even not covered by a sequence of bounded

sets. Indeed, this follows directly from [23, Lemma 2.3].

Problem 4 Is the space Ck(X) distinguished when X is metrizable? In particular, are the
spaces Ck(R

N) and Ck(Q) distinguished?

Problem 5 Characterize distinguished spaces Ck(X) in terms of X.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study
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