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Abstract
In this paper,which is a follow-up toBorobia et al. (Mediterr JMath, 18:40, 2021),we provide
a necessary and sufficient condition for the matrix equation X�AX = B to be consistent
when B is symmetric. The condition depends on the canonical form for congruence of the
matrix A, and is proved to be necessary for all matrices A, and sufficient for most of them.
This result improves the main one in the previous paper, since the condition is stronger than
the one in that reference, and the sufficiency is guaranteed for a larger set of matrices (namely,
those whose canonical form for congruence, CFC(A), includes skew-symmetric blocks).

Keywords Matrix equation · Transpose · Congruence · �-Riccati equation · Canonical
form for congruence · Symmetric matrix · Bilinear form
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1 Introduction

Let A ∈ C
n×n and let B ∈ C

m×m be a symmetric matrix.We are interested in the consistency
of the matrix equation

X�AX = B, (1)

where (·)� denotes the transpose. To be more precise, we want to obtain necessary and
sufficient conditions for (1) to be consistent. The main tool to get these conditions is the
canonical form for congruence, CFC (see Theorem 1), because (1) is consistent if and only
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if the equation that we obtain after replacing the matrices A and/or B by their CFCs is
consistent. The CFC is a direct sum of three kinds of blocks of different sizes, named Type-0,
Type-I, and Type-II, and the idea is to take advantage of this structure to analyze Eq. (1). In
particular, the only symmetric canonical blocks are I1 = [1] and 01 = [0], so the CFC of the
symmetric matrix B is of the form CFC(B) = Im ⊕ 0k (where Im and 0k are, respectively, a
direct sum of m and k copies of I1 and 01). With the help of Lemma 2 we can get rid of the
null block 0k , so the equation we are interested in is

X�AX = Im (2)

with m ≥ 1.
In [4] we introduced τ(A), a quantity that depends on the number of certain Type-0, Type-

I, and Type-II blocks appearing in the CFC of A, and we proved in [4, Th. 2] that if Eq. (2)
is consistent then m ≤ τ(A). Moreover, the main result of that paper, [4, Th. 8], establishes
that if the CFC of A contains neither H2(−1) nor H4(1) blocks (which are specific Type-II
blocks) then Eq. (2) is consistent if and only if m ≤ τ(A). This is not necessarily true if we
allow the CFC of A to contain blocks H2(−1) and/or H4(1) (for instance, it is not true for
A = H2(−1) nor A = H4(1)).

In the present work we introduce a new quantity υ(A), that depends also on the number
of certain Type-0, Type-I, and Type-II blocks appearing in the CFC of A. In Theorem 7 we
will prove that if Eq. (2) is consistent then m ≤ min{τ(A), υ(A)}. Moreover, according to
the main result in the present work (Theorem 12), if the CFC of A does not contain H4(1)
blocks, then Eq. (2) is consistent if and only if m ≤ min{τ(A), υ(A)}. However, this is not
necessarily true if the CFC contains blocks H4(1) (it is not true, for instance, for A = H4(1)).

Note that the main result of this paper improves the main one in [4] in two senses: (i) the
condition here is stronger than the one there; and (ii) the characterization is guaranteed for a
larger set of matrices.

In the title we have referred to “the case where CFC(A) includes skew-symmetric blocks".
This highlights the fact that, compared to [4], in the present work the main result is applied to
matrices whose CFC contains H2(−1) blocks, which are the only nonzero skew-symmetric
blocks in a CFC.

The interest on Eq. (1) goes back to, at least, the 1920s [16], and it has been mainly
devoted to describing the solution, X , for matrices A, B over finite fields and when A and/or
B have some specific structure [6–9, 11, 13, 17]. More recently, some related equations have
been analyzed [15] and, in particular, in connection with applications [1–3]. In [5] we have
addressed the consistency of Eq. (1) when B is skew-symmetric, where it is emphasized the
connection between the consistency of (1) and the dimension of the largest subspace of Cn

for which the bilinear form represented by A is skew-symmetric and non-degenerate. The
same connection holds after replacing skew-symmetric by symmetric, which is the structure
considered in the present work.

The paper is organized as follows. In Sect. 2we introduce the basic notation and definitions
(like theCFC), andwe also recall some basic results that are used later. In Sect. 3 the quantities
τ(A) and υ(A) are introduced. Section4 presents the necessary condition for Eq. (2) to be
consistent (Theorem 7), whereas in Sect. 6 we show that when the CFC of A does not contain
blocks H4(1) this condition is sufficient as well (Theorem 12). In between these two sections,
Sect. 5 is devoted to introduce the tools (bymeans of several technical lemmas) that are used to
prove the sufficiency of the condition. Finally, in Sect. 7 we summarize themain contributions
of this work and indicate the main related open question.

123



On the consistency of the matrix... Page 3 of 14 61

2 Basic approach and definitions

Throughout the manuscript, In and 0n denote, respectively, the identity and the null matrix
with size n × n. By 0m×n we denote the null matrix of size m × n. By i we denote the
imaginary unit (namely, i2 = −1), and by e j we denote the j th canonical vector (namely,
the j th column of the identity matrix) of the appropriate size. The notation M⊕k stands for
a direct sum of k copies of the matrix M .

Following the approach in [4] and [5], a key tool in our developments is the canonical
form for congruence (CFC). For the ease of reading we first recall the CFC, that depends on
the following matrices:

• Jk(μ) :=

⎡
⎢⎢⎣

μ 1
. . .

. . .

μ 1
μ

⎤
⎥⎥⎦ is a k × k Jordan block associated with μ ∈ C;

• �k :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 (−1)k+1

. .
.

(−1)k

−1 . .
.

1 1
−1 −1

1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
k×k

for k ≥ 1 (note that �1 = I1 = [1]);

and

• H2k(μ) :=
[

0 Ik
Jk(μ) 0

]
, for k ≥ 1, where Jk(μ) is a k × k Jordan block associated

with μ ∈ C.

Theorem 1 (Canonical form for congruence, CFC) [14, Th. 1.1].Each square complexmatrix
is congruent to a direct sum, uniquely determined up to permutation of addends, of canonical
matrices of the following three types

Type 0 Jk (0)
Type I �k
Type II H2k (μ), 0 �= μ �= (−1)k+1

(μ is determined up to replacement by μ−1)

Following [5], the notation A � B means that the equation X�AX = B is consistent,

and A
X0� B means that X�

0 AX0 = B. The following result, that was presented in [5, Lemma
4], includes some basic laws of consistency that are straightforward to check.

Lemma 2 (Laws of consistency). For any complex square matrices A, B,C, Ai , Bi , the fol-
lowing properties hold:

(i) Addition law. If Ai
Xi� Bi , for 1 ≤ i ≤ k, then

⊕k
i=1 Ai

X�
⊕k

i=1 Bi , with X =⊕k
i=1 Xi .

(ii) Transitivity law. If A
X0� B and B

Y0� C, then A
X0Y0� C.

(iii) Permutation law.
⊕�

i=1 Ai �
⊕�

i=1 Aσ(i), for any permutation σ of {1, . . . , �}.
(iv) Elimination law. A ⊕ B

X0� A, with X0 = [
In
0

]
, and where n is the size of A.
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(iv) Canonical reduction law. If A and B are congruent to, respectively, Ã and B̃, then
A � B if and only if Ã � B̃.

(vi) J1(0)-law. For k, � ≥ 0 we have A ⊕ J1(0)⊕k � B ⊕ J1(0)⊕� if and only if A � B.

By the Canonical reduction law, in Eq. (1) we will assume without loss of generality that
A and B are given in CFC.

When B is symmetric, the CFC of B is Im1 ⊕0m2 . Then, as a consequence of the Canonical
reduction law, we may restrict ourselves to the case where the right-hand side of (1) is of this
form. Moreover, as a consequence of the J1(0)-law, in our developments we will consider
B = Im in Eq. (1) (leading to Eq. (2)). Therefore, our goal is to characterize those matrices
A such that A � Im , for a fixedm ≥ 1. This will be done by concatenating several equations
A � A1 � · · · � Ak � Im , since the Transitivity law allows us to conclude that A � Im .
For this reason, we will use the word “transformation” for a single equation A � B.

One way to determine the CFC of an invertible matrix A is by means of its cosquare,
A−�A (see [14]), where (·)−� denotes the transpose of the inverse. Moreover, the cosquare
will be used to determine whether two given invertible matrices are congruent, using the
following result.

Lemma 3 [14, Lemma 2.1]. Two invertible matrices are congruent if and only if their
cosquares are similar.

2.1 Thematrices ˜0k and ˜H2k(�)

Instead of the blocks �k and H2k(μ) we will use the following blocks, for k ≥ 1:

�̃k :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
−1 0 1

1 0 1
. . .

. . .
. . .

(−1)k 0 1
(−1)k+1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
k×k

and H̃2k(μ):=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
μ 0 1 0

0 0 1
μ 0 1

0 . . .
. . .

0 . . . 0 1
μ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2k×2k

.

We claim that �̃k and H̃2k(μ) are congruent to, respectively, �k and H2k(μ).
In order to prove that �k and �̃k are congruent, we give an indirect proof. Two matrix

pairs (A, B) and (A′, B ′) are strictly equivalent if there are invertible matrices R and S
such that RAS = A′ and RBS = B ′. It is known (see, for instance, [10, Lemma 1]) that
two matrices A, B ∈ C

n×n are congruent if and only if (A, A�) and (B, B�) are strictly
equivalent. Since (�k, �

�
k ) and

(
Jk

(
(−1)k+1

)
, Ik

)
are strictly equivalent (see [10, Th. 4])

and
(
Jk

(
(−1)k+1

)
, Ik

)
and (�̃k, �̃

�
k ) are strictly equivalent as well (see Eq. (5) in [12]), the

pairs (�k, �
�
k ) and (�̃k, �̃

�
k ) are strictly equivalent, so �k and �̃k are congruent. Another

alternative to show that �k and �̃k are congruent is by checking that their cosquares are
similar to Jk((−1)k+1) and then using Lemma 3.

To see that H2k(μ) and H̃2k(μ) are congruent, consider the permutation matrix

P2k = [
e1 ek+1 e2 ek+2 · · · ek e2k

]
,

and note that

H̃2k(μ) = P�
2k H2k(μ)P2k = P�

2k

[
0 Ik

Jk(μ) 0

]
P2k .
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Therefore, the congruence by P2k is actually a simultaneous permutation of rows and columns

of H2k(μ).More precisely, we start with
[

0 Ik
Jk (μ) 0

]
andmove rows (and columns) (k+1, k+

2, . . . , 2k) to, respectively, rows (and columns) (2, 4, . . . , 2k); and we also move rows (and
columns) (1, 2, . . . , k) to rows (and columns) (1, 3, . . . , 2k − 1), respectively. So the 1’s
coming from the block Ik and the 1’s coming from the superdiagonal of the block Jk(μ) in
H2k(μ), get shuffled to form the superdiagonal of P�

2k H2k(μ)P2k . Moreover, theμ’s from the
block Jk(μ) in H2k(μ) are taken to the positions (2, 1), (4, 3), . . . , (2k, 2k − 1) in H̃2k(μ).

The advantage in using the matrices �̃k and H̃2k(μ) instead of, respectively, �k and
H2k(μ), is that the first ones are tridiagonal, and this structure is more convenient for our
proofs. Tridiagonal canonical blocks have been already used in [12] (actually, �̃k is exactly
the one introduced in Eq. (3) for ε = 1 in that reference).

For the rest of the manuscript, we will replace the blocks�k by �̃k and H2k(μ) by H̃2k(μ),
so, in particular, we will assume that the CFC is a direct sum of blocks Jk(0), �̃k , and H̃2k(μ).
The only exceptions to this rule are �1 which is equal to �̃1, and H2(−1) which is equal to
H̃2(−1).

3 The quantities �(A) and �(A)

The main result of this work (Theorem 12) depends on two intrinsic quantities of the matrix
A, that we denote by τ(A) and υ(A). In this section, we introduce them and present some
basic properties that will be used later.

Definition 4 Let A be a complex n × n matrix and consider its CFC, where

(i) j1 is the number of Type-0 blocks with size 1;
(ii) jO is the number of Type-0 blocks with odd size at least 3;
(iii) γO is the number of Type-I blocks with odd size;
(iv) γε is the number of Type-I blocks with even size;
(v) h−

2O is the number of Type-II blocks H̃4k−2(−1) for any k ≥ 1; and
(vi) h+

2ε is the number of Type-II blocks H̃4k(1) for any k ≥ 1;
(vii) it has an arbitrary number of other Type-0 and Type-II blocks.

Then we define the quantities

τ(A) := n − j1 + jO + γO + 2h+
2ε

2
and υ(A) := n − j1 − jO − γε − 2h−

2O. (3)

The quantities τ and υ satisfy the following essential additive properties (the proof is
straightforward):

τ(A1 ⊕ · · · ⊕ Ak) = τ(A1) + · · · + τ(Ak)

and υ(A1 ⊕ · · · ⊕ Ak) = υ(A1) + · · · + υ(Ak). (4)

The notation for the quantities inDefinition 4 follows the one in [5]. In particular, the letters
used for the number of blocks in parts (i)–(vi) resemble the notation for the corresponding
blocks (see [5, Rem. 6]). In [4] we had not yet adopted this notation. The correspondence
between the notation in that paper and the one used here is the following: d → j1, r →
jO, s → γO, t → h+

2ε. The values γε and h−
2O played no role in [4].

Table 1 contains the values of τ(A) and υ(A) for A being a single canonical block in the
CFC. We have displayed the values in three categories, from top to bottom, namely: the first
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Table 1 Values of τ and υ for
any single canonical block

A Conditions τ(A) υ(A)

J1(0) – 0 0

J3(0) – 2 2

�1 – 1 1

�̃2 – 1 1

J2k+1(0) k ≥ 2 k + 1 2k

J2k (0) k ≥ 1 k 2k

�̃2k+1 k ≥ 1 k + 1 2k + 1

�̃2k k ≥ 2 k 2k − 1

H̃4k−2(−1) k ≥ 2 2k − 1 4k − 4

H̃4k (1) k ≥ 1 2k + 1 4k

H̃2k (μ) k ≥ 1, μ �= 0, ±1 k 2k

H2(−1) – 1 0

four lines, those with τ(A) = υ(A); the next seven lines, those for which τ(A) < υ(A); and
the last line, that with τ(A) > υ(A).

Notice that τ(A) ≤ υ(A)whenever the CFC of A consists of just a single canonical block,
except for H2(−1). This, together with (4), implies the following result.

Lemma 5 If the CFC of A has no blocks of type H2(−1) then τ(A) ≤ υ(A).

In order for the condition that we obtain (in Theorem 7) to be sufficient, the following
notion is key.

Definition 6 The transformation A � B is (τ, υ)-invariant if the following three conditions
are satisfied:

• X�AX = B is consistent,
• τ(A) = τ(B), and
• υ(A) = υ(B).

4 A necessary condition

In this section, we introduce a necessary condition on the matrix A for A � Im (namely, for
Eq. (1) to be consistent when B is symmetric and invertible). This condition improves the
one provided in [4, Th. 2], namely m ≤ τ(A).

Theorem 7 If A is a complex square matrix such that X�AX = Im is consistent, then
m ≤ min{τ(A), υ(A)}.
Proof In [4, Th. 2] it was proved that m ≤ τ(A) (though the notation τ was not used there).
Let us see that m ≤ υ(A) as well. Assuming that the CFC of A is as in Definition 4, in the
proof of Lemma 4.1 of [5] it was shown that

n − rank (A + A�) = jO + γε + 2h−
2O. (5)

By hypothesis, there exists some X0 ∈ C
n×m such that X�

0 AX0 = Im . Now, transposing
this equation and adding it up, we get X�

0 (A + A�)X0 = 2Im . From this identity, and using
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(5), we obtain

m = rank (X�
0 (A + A�)X0) ≤ rank (A + A�) = n − jO − γε − 2h−

2O,

so m ≤ n − jO − γε − 2h−
2O = υ(A), as claimed. 
�

5 Absorbing the H2(−1) blocks

The main goal in the rest of the manuscript is to prove that the necessary condition presented
in Theorem 7 is also sufficient when the CFC of A does not contain H̃4(1) blocks. If the
CFC of A contains neither H2(−1) nor H̃4(1) blocks, this is already known [4, Th. 8]. In that
case, as a consequence of Lemma 5, the condition for A � Im reduces to m ≤ τ(A). When
the CFC of A does not contain blocks H̃4(1) but contains blocks H2(−1), this is no longer
true (see, for instance, Example 1 in [4]), and then the quantity υ(A) comes into play. This
is an indication that the presence of blocks H2(−1) in the CFC of A deserves a particular
treatment. In this section, we show how to deal with this type of blocks. To be more precise,
we see that some blocks H2(−1) can be combined with other type of blocks in order to
“eliminate” them by means of a (τ, υ)-invariant transformation. In this case, we say that the
block H2(−1) has been “absorbed”. We will consider separately the cases of Type-0, Type-I,
and Type-II blocks, in Sects. 5.1, 5.2, and 5.3, respectively.

The following notation is used in the proofs of this section: Eα×β denotes the α×β matrix
whose (α, 1) entry is equal to 1 and the remaining entries are zero.

5.1 The case of Type-0 blocks

In Lemma 8, we show how to “absorb” a block H2(−1) with a Type-0 block, Jk(0), with
k �= 3. In the statement, J0(0) stands for an empty block.

Lemma 8 The following transformation is (τ, υ)-invariant:

Jk(0) ⊕ H2(−1)�Jk−2(0) ⊕ �⊕2
1 , for k = 2 and k ≥ 4. (6)

Proof By considering separately the cases where k in (6) is odd (k = 2t + 1) and even
(k = 2t), using (4) and looking at Table 1, we obtain:

τ
(
J2t+1(0) ⊕ H2(−1)

) = t + 2 = τ
(
J2t−1(0) ⊕ �⊕2

1

)
, for t ≥ 2,

υ
(
J2t+1(0) ⊕ H2(−1)

) = 2t = υ
(
J2t−1(0) ⊕ �⊕2

1

)
, for t ≥ 2,

τ
(
J2t (0) ⊕ H2(−1)

) = t + 1 = τ
(
J2t−2(0) ⊕ �⊕2

1

)
, for t ≥ 1,

υ
(
J2t (0) ⊕ H2(−1)

) = 2t = υ
(
J2t−2(0) ⊕ �⊕2

1

)
, for t ≥ 1,

so both sides of the transformation in (6) have the same τ and υ. Now let us prove the
consistency.

The result is true for k = 2, since

J2(0) ⊕ H2(−1)
X2� �⊕2

1 , for X2 =
[ i 1−i 1

0 1
i 0

]
.
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Let us prove it for k ≥ 4. Note that Ja+b(0) =
[
Ja(0) Ea×b
0 Jb(0)

]
. If X3 =

⎡
⎢⎣

1 0 0
0

−1
−1
1

X2

⎤
⎥⎦ then

(
Ik−3 ⊕ X3

)� (
Jk(0) ⊕ H2(−1)

) (
Ik−3 ⊕ X3

)

=
[
Ik−3 0
0 X�

3

] [
Jk−3(0) E(k−3)×5

0 J3(0) ⊕ H2(−1)

] [
Ik−3 0
0 X3

]

=
[
Jk−3(0) E(k−3)×5X3

0 X�
3 (J3(0) ⊕ H2(−1)) X3

]

=
[
Jk−3(0) E(k−3)×3

0 J1(0) ⊕ �⊕2
1

]

= Jk−2(0) ⊕ �⊕2
1 ,

as wanted. 
�
We will also use the following result, whose proof is straightforward.

Lemma 9 The following transformation is (τ, υ)-invariant:

J3(0)
X0� �⊕2

1 , f or X0 =
[ 1 0
1 i
0 −i

]
.

5.2 The case of Type-I blocks

Lemma 10 is the counterpart of Lemma 8 for Type-I blocks, where �k is replaced by �̃k .

Lemma 10 The following transformation is (τ, υ)-invariant:

�̃k ⊕ H2(−1)��⊕2
1 ⊕ �̃k−2, f or k ≥ 3. (7)

Proof Considering again separately the cases where k in (7) is odd (k = 2t + 1) and even
(k = 2t), using (4) and looking at Table 1, we obtain:

τ
(
�̃2t+1 ⊕ H2(−1)

) = t + 2 = τ
(
�⊕2
1 ⊕ �̃2t−1

)
for t ≥ 1,

υ
(
�̃2t+1 ⊕ H2(−1)

) = 2t + 1 = υ
(
�⊕2
1 ⊕ �̃2t−1

)
for t ≥ 1,

τ
(
�̃2t ⊕ H2(−1)

) = t + 1 = τ
(
�⊕2
1 ⊕ �̃2t−2

)
for t ≥ 2,

υ(�̃2t ⊕ H2(−1)) = 2t − 1 = υ(�⊕2
1 ⊕ �̃2t−2) for t ≥ 2.

so both sides of the transformation in (7) have the same τ and υ. Now let us prove the
consistency.

For k = 3 we have

�̃3 ⊕ H2(−1) � H2(−1) ⊕ �̃3
X3� �⊕3

1 , for X3 =
⎡
⎣

1 0 i
0 −i 0
0 1 0−i 0 1
i
2 0 1

2

⎤
⎦ ,

where the first transformation is due to the permutation law and the second one can be directly
checked. For k ≥ 4 we are going to prove that

�̃k ⊕ H2(−1) � H2(−1) ⊕ �̃k
Xk� �⊕2

1 ⊕ �̃k−2, with Xk =

⎡
⎢⎢⎢⎣

0

− i

2
X3 0

0
0

0 0 0 1

⎤
⎥⎥⎥⎦ ⊕ Ik−4,
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where the first transformation is due to the permutation law and the second one can be directly
checked. So for the rest of the proof we will focus on the second transformation. We use the
following notation: A(i : j) is the principal submatrix of A containing the rows and columns
from the i th to the j th ones.

If k = 4 then H2(−1) ⊕ �̃4
X4� �⊕2

1 ⊕ �̃2, for X4 as above, as can be directly checked.

If k > 4 then H2(−1) ⊕ �̃k
Xk� �⊕2

1 ⊕ �̃k−2, for Xk = X4 ⊕ Ik−4. To prove it we will use
the identities

�̃k =
[

�̃4 E4×(k−4)

E�
4×(k−4) �̃k(5 : k)

]
and �̃k−2 =

[
�̃2 E2×(k−4)

E�
2×(k−4) �̃k−2(3 : k − 2)

]
,

so that

(X4 ⊕ Ik−4)
� (

H2(−1) ⊕ �̃k
)
(X4 ⊕ Ik−4)

=
[
X�
4 0
0 Ik−4

] [
H2(−1) ⊕ �̃4 E6×(k−4)

E�
6×(k−4) �̃k(5 : k)

] [
X4 0
0 Ik−4

]

=
[
X�
4

(
H2(−1) ⊕ �̃4

)
X4 X�

4 E6×(k−4)

E�
6×(k−4)X4 �̃k(5 : k)

]

=
[
�⊕2
1 ⊕ �̃2 E4×(k−4)

E�
4×(k−4) �̃k−2(3 : k − 2)

]

= �⊕2
1 ⊕ �̃k−2

where in the last-but-one equality we use that �̃k(5 : k) = �̃k−2(3 : k − 2). 
�

5.3 The case of Type-II blocks

Finally, Lemma 11 is the counterpart of Lemmas 8 and 10 for Type-II blocks. Again, instead
of the blocks H2k(μ) we use the tridiagonal version, H̃2k(μ). In the statement, H̃0(μ) stands
for an empty block.

Lemma 11 The following transformations are (τ, υ)-invariant:

(i) H̃2k(μ) ⊕ H2(−1) � H̃2k−2(μ) ⊕ �⊕2
1 , for μ �= ±1 and k ≥ 1.

(ii) H̃4k+2(−1) ⊕ H2(−1) � �̃⊕2
2k ⊕ �⊕2

1 , for k ≥ 1.
(iii) H̃4k(1) ⊕ H2(−1) � �̃⊕2

2k−1 ⊕ �⊕2
1 , for k ≥ 1.

Proof In order to see that all transformations in (i)–(iii) are (τ, υ)-invariant, first note that

τ
(
H̃2k(μ) ⊕ H2(−1)

) = k + 2 = τ
(
H̃2k−2(μ) ⊕ �⊕2

1

)
, for μ �= ±1 and k ≥ 1

υ
(
H̃2k(μ) ⊕ H2(−1)

) = 2k = υ
(
H̃2k−2(μ) ⊕ �⊕2

1

)
, for μ �= ±1 and k ≥ 1

τ
(
H̃4k+2(−1) ⊕ H2(−1)

) = 2k + 2 = τ
(
�̃⊕2
2k ⊕ �⊕2

1

)
, for k ≥ 1,

υ
(
H̃4k+2(−1) ⊕ H2(−1)

) = 4k = υ
(
�̃⊕2
2k ⊕ �⊕2

1

)
, for k ≥ 1,

τ
(
H̃4k(1) ⊕ H2(−1)

) = 2k + 2 = τ
(
�̃⊕2
2k−1 ⊕ �⊕2

1

)
, for k ≥ 1,

υ
(
H̃4k(1) ⊕ H2(−1)

) = 4k = υ
(
�̃⊕2
2k−1 ⊕ �⊕2

1

)
, for k ≥ 1.

Now let us prove the consistency in (i)–(iii). The following identity is used:

H̃2k(μ) =
[
H̃2k−2t (μ) E(2k−2t)×2t

0 H̃2t (μ)

]
, for t < k.
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(i) If k = 1 then H̃2(μ) ⊕ H2(−1)
X1� �⊕2

1 , for X1 =
⎡
⎣

1 i
1

1+μ
− i

1+μ

0 1−μ

− i
1+μ

0

⎤
⎦.

If k = 2 then H̃4(μ) ⊕ H2(−1)
X2� H̃2(μ) ⊕ �⊕2

1 , for X2 =

⎡
⎢⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 − 1

1+μ

0 −i

0 − i
−1+μ2

X1

⎤
⎥⎥⎥⎦.

If k > 2 then H̃2k(μ) ⊕ H2(−1)
Xk� H̃2k−2(μ) ⊕ �⊕2

1 , for Xk = I2k−4 ⊕ X2, since

(I2k−4 ⊕ X2)
�(

H̃2k(μ) ⊕ H2(−1)
)
(I2k−4 ⊕ X2)

=
[
I2k−4 0
0 X�

2

] [
H̃2k−4(μ) E(2k−4)×6

0 H̃4(μ) ⊕ H2(−1)

] [
I2k−4 0
0 X2

]

=
[
H̃2k−4(μ) E(2k−4)×6X2

0 X�
2

(
H̃4(μ) ⊕ H2(−1)

)
X2

]

=
[
H̃2k−4(μ) E(2k−4)×4

0 H̃2(μ) ⊕ �⊕2
1

]

= H̃2k−2(μ) ⊕ �⊕2
1 .

(ii) Let us prove, for k ≥ 1, that

H̃4k+2(−1) ⊕ H2(−1)
Xk� H̃4k(−1) ⊕ �⊕2

1 ,

for Xk = I4k−2 ⊕ C , with C =
⎡
⎢⎣

1 0 0 0
0 0 1 −i
0 0 1 i
0 0 0 −i
0 −1 1 −i
1 0 0 0

⎤
⎥⎦ .

This is because

(I4k−2 ⊕ C)�
(
H̃4k+2(−1) ⊕ H2(−1)

)
(I4k−2 ⊕ C)

=
[
I4k−2 0
0 C�

] [
H̃4k−2(−1) E(4k−2)×6

0 H̃4(−1) ⊕ H2(−1)

] [
I4k−2 0
0 C

]

=
[
H̃4k−2(−1) E(4k−2)×6C

0 C� (
H̃4(−1) ⊕ H2(−1)

)
C

]

=
[
H̃4k−2(−1) E(4k−2)×4

0 H̃2(−1) ⊕ �⊕2
1

]

= H̃4k(−1) ⊕ �⊕2
1 .

Finally, let us see that H̃4k(−1) is congruent to �̃⊕2
2k or, equivalently, that H4k(−1)

is congruent to �⊕2
2k . In order to do this, we are going to prove that the cosquares of

H4k(−1) and �⊕2
2k are similar, and this immediately implies that H4k(−1) and �⊕2

2k are
congruent, by Lemma 3. The cosquare of H4k(−1) is
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H4k(−1)−�H4k(−1) =
[

0 I2k
J2k(−1) 0

]−� [
0 I2k

J2k(−1) 0

]

=
[
0 J2k(−1)−1

I2k 0

]� [
0 I2k

J2k(−1) 0

]

=
[

0 I2k
J2k(−1)−� 0

] [
0 I2k

J2k(−1) 0

]

=
[
J2k(−1) 0

0 J2k(−1)−�
]

,

and the cosquare of �⊕2
2k is

[
�−�
2k 0
0 �−�

2k

] [
�2k 0
0 �2k

]
=

[
�−�
2k �2k 0
0 �−�

2k �2k

]
,

with (see [10, p. 13])

�−�
2k �2k =

⎡
⎢⎢⎣

−1 −2 �
. . .

. . .

−1 −2
0 −1

⎤
⎥⎥⎦ ,

where � denotes some entries that are not relevant in our arguments. As J2k(−1)−�
is similar to J2k(−1), the previous identities show that

(
H4k(−1)

)−�
H4k(−1) and(

�⊕2
2k

)−�
�⊕2
2k are similar, since the Jordan canonical form of both them is J2k(−1)⊕2.

(iii) Let us prove that, for k ≥ 1:

H̃4k(1) ⊕ H2(−1)
Xk� H̃4k−2(1) ⊕ �⊕2

1 , for Xk = I4k−4 ⊕ C, with

C =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 i
0 − 1

2
1
2 − i

2
0 0 1 i
0 1

2 0 0

⎤
⎥⎥⎦ .

for k = 1 the solution matrix is X1 = C , as it can directly checked. Let us now see it
for k ≥ 2:

(I4k−4 ⊕ C)�
(
H̃4k(1) ⊕ H2(−1)

)
(I4k−4 ⊕ C)

=
[
I4k−4 0
0 C�

] [
H̃4k−4(1) E(4k−4)×6

0 H̃4(1) ⊕ H2(−1)

] [
I4k−4 0
0 C

]

=
[
H̃4k−4(1) E(4k−4)×6C

0 C� (
H̃4(1) ⊕ H2(−1)

)
C

]

=
[
H̃4k−4(1) E(4k−4)×4

0 H̃2(1) ⊕ �⊕2
1

]

= H̃4k−2(1) ⊕ �⊕2
1 .

It remains to see that H̃4k−2(1) is congruent to �̃⊕2
2k−1 or, equivalently, that H4k−2(1)

is congruent to �⊕2
2k−1. To prove this, we can proceed as before, by showing that the

cosquares of H4k−2(1) and �⊕2
2k−1 are similar (in this case, their Jordan canonical form

is J2k−1(1)⊕2), and this implies that H4k−2(1) and �⊕2
2k−1 are congruent, again by

Lemma 3. 
�
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6 Themain result

The following result, which is the main result in this work, improves the main result in [4]
(namely, Theorem 8 in that reference) by including the case where the CFC of A contains
blocks of type H2(−1), that were excluded in [4, Th. 8].

Theorem 12 Let A be a complex square matrix whose CFC does not have blocks of type
H̃4(1), and B a symmetric matrix. Then X�AX = B is consistent if and only if rank B ≤
min{τ(A), υ(A)}.
Proof The necessity of the condition is already stated in Theorem 7. We are going to prove
that it is also sufficient.

By the J1(0)-law and the Canonical reduction law, we may assume that both A and B are
given in CFC and that neither A nor B have blocks of type J1(0). This implies, in particular,
that B = Im , for some m, and j1 = 0 (where j1 is the index associated to A given in
Definition 4). We also assume that all blocks �k and H2k(μ) in A, if present, have been
replaced by �̃k and H̃2k(μ), respectively.

Let us recall that �⊕m
1 = Im . Throughout the proof, we mainly use the first notation, to

emphasize that we are dealing with canonical blocks.
If the CFC of A does not contain blocks H2(−1), then the result is provided in [4, Th. 8].

Otherwise,we are going to see that it is possible, bymeans of (τ, υ)-invariant transformations,
to either “absorb” all blocks H2(−1) or to end upwith a direct sumof blocks H2(−1), together
with, possibly, other blocks, which are quite specific. More precisely, we can end up with a
direct sum of blocks satisfying one of the following conditions:

(C0) There are no blocks H2(−1).
(C1) There are some blocks H2(−1) together with, possibly, a direct sum of blocks J3(0),

�̃2, and/or �1.

We are first going to see that, indeed, we can arrive to one of the situations described in
cases (C0)–(C1). In the procedure, we may need to permute the canonical blocks, in order
to use Lemmas 8, 10, and 11. By Theorem 1, this provides a congruent matrix which has, in
particular, the same τ and υ, so these permutations do not affect the consistency. Then, we
will prove that in both cases (C0) and (C1) the statement holds.

So let us assume that the CFC of A contains a direct sum of blocks H2(−1), together with
some other Type-0, Type-I, and Type-II blocks (except H̃4(1)).

Using Lemma 8, for each block Jk(0) (with k �= 3) we can “absorb" a block H2(−1)
by means of a (τ, υ)-invariant transformation, and we end up with a direct sum of a block
Jk−2(0) together with two blocks �1. We can keep reducing the size of the Type-0 blocks
until either all H2(−1) blocks have been absorbed (so we end up in case (C0)) or there are
no more Type-0 blocks, except maybe blocks J3(0). Now, we can proceed in the same way
with Type-I blocks using Lemma 10. Again, we end up either with a direct sum containing
no H2(−1) blocks (case (C0) again) or no Type-I blocks, except maybe blocks �1 and/or
�̃2. Next, we do the same with Type-II blocks using Lemma 11. Note that the reductions in
parts (ii) and (iii) in the statement of Lemma 11 produce as an output some Type-I blocks
�̃k , with k ≥ 1. In the case when k > 1, we can use again Lemma 10, provided that there
are still blocks H2(−1). Therefore, after these reductions, either we have absorbed all blocks
H2(−1) (case (C0) again), or there are blocks H2(−1), together with, possibly, a direct sum
of other blocks that cannot absorb them, namely J3(0), �̃2, and/or �1 (case (C1)).

Now, it remains to prove that in both cases (C0) and (C1) the statement holds, namely
that A � �⊕m

1 , for any m ≤ min{τ(A), υ(A)}, in these two cases. Let Â be the matrix
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obtained after applying to A all the transformations explained in the previous paragraph. By
the Transitive law, A � Â. Moreover, since all these transformations are (τ, υ)-invariant,
then (4) implies that τ(A) = τ( Â) and υ(A) = υ( Â). Therefore, it is enough to prove that
Â � �⊕m

1 for any m ≤ min{τ( Â), υ( Â)}. By the Elimination law, �⊕a
1 � �⊕b

1 for any

b < a, so it will be enough to prove that Â � �
min{τ( Â),υ( Â)}
1 .

In case (C0) the statement is true, as a consequence of [4, Th. 8]. More precisely, in this
case, min{τ(A), υ(A)} = τ(A), as a consequence of Lemma 5. Then, [4, Th. 8] guarantees
that A � �

⊕τ(A)
1 (in [4, Th. 8], however, the notation τ was not used).

In case (C1), we may assume that

Â = H2(−1)⊕ j ⊕ J3(0)
⊕h ⊕ �̃⊕k

2 ⊕ �⊕�
1 for some j, h, k, � ≥ 0.

Note that, in this case, min{τ( Â), υ( Â)} = υ( Â), since τ( Â) = j + 2 h + k + � > υ( Â) =
2 h + k + �. Hence, it is enough to prove that A � �

υ( Â)
1 . In order to do this, we consider

the transformations

H2(−1)⊕ j ⊕ J3(0)
⊕h ⊕ �̃⊕k

2 ⊕ �⊕�
1 � J3(0)

⊕h ⊕ �̃⊕k
2 ⊕ �⊕�

1

� �⊕2h
1 ⊕ �⊕k

1 ⊕ �⊕�
1 = �

⊕υ( Â)
1 ,

where the first transformation is a consequence of the Elimination law, and the second trans-
formation is a consequence of the Addition law, together with Lemma 9 (for the first addend)

and with �̃2

[
1
0

]

� �1 (for the second addend). 
�
Remark 13 Unfortunately, when the CFC of A contains at least one block H̃4(1), it is no
longer true that, for any m ≤ min{τ(A), υ(A)}, the equation X�AX = Im is consistent.
For instance, X� H̃4(1)X = I3 is not consistent (see [4, Th. 7]), but τ(H̃4(1)) = 4 and
υ(H̃4(1)) = 3, so min{τ(H̃4(1)), υ(H̃4(1))} = 3. Therefore, the case where the CFC of A
contains blocks H̃4(1) deserves a further analysis.

Related to this, Theorem 12 can be slightly improved, allowing the CFC of A to contain
blocks H̃4(1) provided that the number of these blocks is not larger than the number of
blocks H2(−1). In this case, we can start the reduction procedure described in the proof
of Theorem 12 by “absorbing" the blocks H̃4(1) with the blocks H2(−1) as described in
Lemma 11-(iii). More precisely, we can gather each block H̃4(1) with a block H2(−1), and
use the (τ, υ)-invariant transformation H̃4(1)⊕ H2(−1) � �⊕4

1 . Once we have absorbed all
blocks H̃4(1) we can continue with the reduction as explained in the proof of Theorem 12.

7 Conclusions and open questions

In this paper, we have obtained a necessary condition for the equation X�AX = B to be
consistent, with A, B being complex square matrices and B being symmetric. This condition
improves the one obtained in [4, Th. 2]. Moreover, we have proved that the condition is
sufficient when the CFC of A does not contain blocks H̃4(1). This result also improves the
one in [4, Th. 8], where the case in which the CFC has blocks H2(−1) was excluded.

As a natural continuation of this work it remains to address the case where the CFC of A
contains blocks H̃4(1), in order to fully characterize the consistency of X�AX = B, with B
symmetric, for any matrix A. We have seen that the condition mentioned above is no longer
sufficient in this case, so a different characterization is needed. So far, we have been unable
to find such a characterization.

123



61 Page 14 of 14 A. Borobia et al.

Acknowledgements This research has been funded by the Agencia Estatal de Investigación of Spain through
Grant PID2019-106362GB-I00/AEI/10.13039/501100011033.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Benner, P., Iannazzo, B., Meini, B., Palitta, D.: Palindromic linearization and numerical solution of
nonsymmetric algebraic T -Riccati equations. BIT Numer. Math. 62, 1649–1672 (2022)

2. Benner, P., Palitta, D.: On the solution of the non-symmetric T -Riccati equation. Electron. Trans. Numer.
Anal. 54, 66–88 (2021)

3. Benzi, M., Viviani, M.: Solving cubic matrix equations arising in conservative dynamics. Vietnam J.
Math. (2022). https://doi.org/10.1007/s10013-022-00578-z

4. Borobia, A., Canogar, R., De Terán, F.: On the consistency of the matrix equation X�AX = B when B
is symmetric. Mediterr. J. Math. 18, 40 (2021). https://doi.org/10.1007/s00009-020-01656-7

5. Borobia, A., Canogar, R., De Terán, F.: The equation X�AX = B with B skew-symmetric: howmuch of a
bilinear form is skew-symmetric? Linear Multilinear Algebra (2022). https://doi.org/10.1080/03081087.
2022.2093825

6. Buckhiester, P.G.: Rank r solutions to the matrix equation X AXt = C , A alternate, over GF(2y ). Trans.
Am. Math. Soc. 189, 201–209 (1974)

7. Buckhiester, P.G.: Rank r solutions to the matrix equation X AXt = C , A non-alternate, C alternate, over
GF(2y ). Can. J. Math. 26, 78–90 (1974)

8. Buckhiester, P.G.: The number of solutions to the matrix equation X AX ′ = C , A and C nonalternate and
of full rank, over GF(2y ). Math. Nachr. 63, 37–41 (1974)

9. Carlitz, L.: Representations by skew forms in a finite field. Arch. Math. V, 19–31 (1954)
10. De Terán, F.: Canonical forms for congruence of matrices: a tribute to H. W. Turnbull and A. C. Aitken.

SeMA J. 73, 7–16 (2016)
11. Fulton, J.D.: Generalized inverses of matrices over fields of characteristic two. Linear Algebra Appl. 28,

69–76 (1979)
12. Futorny, V., Horn, R.A., Sergeichuk, V.V.: Tridiagonal canonical matrices of bilinear or sesquilinear forms

and of pairs of symmetric, skew-symmetric, or Hermitian forms. J. Algebra 319, 2351–2371 (2008)
13. Hodges, J.H.: A skew matrix equation over a finite field. Math. Nachr. 17, 49–55 (1966)
14. Horn, R.A., Sergeichuk, V.V.: Canonical forms for complex matrix congruence and ∗-congruence. Linear

Algebra Appl. 416, 1010–1032 (2006)
15. Ikramov, Kh.D.: On the solvability of a certain class of quadratic matrix equations. Dokl. Math. 89,

162–164 (2014)
16. Wedderburn, J.H.M.: The automorphic transformation of a bilinear form. Ann. Math. 2(23), 122–134

(1921)
17. Wei, H., Zhang, Y.: The number of solutions to the alternate matrix equation over a finite field and a

q-identity. J. Stat. Plan. Inference 94, 349–358 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10013-022-00578-z
https://doi.org/10.1007/s00009-020-01656-7
https://doi.org/10.1080/03081087.2022.2093825
https://doi.org/10.1080/03081087.2022.2093825

	On the consistency of the matrix equation XA X=B when B is symmetric: the case where CFC(A) includes skew-symmetric blocks
	Abstract
	1 Introduction
	2 Basic approach and definitions
	2.1 The matrices widetildeΓk and widetildeH2k(µ)

	3 The quantities τ(A) and υ(A)
	4 A necessary condition
	5 Absorbing the H2(-1) blocks
	5.1 The case of Type-0 blocks
	5.2 The case of Type-I blocks
	5.3 The case of Type-II blocks

	6 The main result
	7 Conclusions and open questions
	Acknowledgements
	References




