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Abstract
The space whose subsets we analyse with respect to lineability is L0(�, P)N consisting of
random variables sequences on probability space (�, P) with atomless probability measure
P . We study lineability and algebrability of L0(�, P)N-subsets of independent random
variables with additional properties connected with various types of convergence, laws of
large numbers, and Markov and Kolgomorov conditions.

Keywords Lineability · Algebrability · Independent random variables · Laws of large
numbers

Mathematics Subject Classification Primary 46B87; Secondary 15A03

1 Introduction

The last 20 years brought numerous papers devoted to the existence of large and rich algebraic
structures inside subsets of linear spaces, function algebras and their Cartesian products. The
topic has gained such popularity that the monograph devoted to it has been released [2] and
a few surveys appeared [5], [3]. Recently the subject has obtained its place in Mathematical
Subject Classification— 46B87. The custom name for problems in this area are lineability
or algebrability problems. A large number of sets in function and sequence spaces naturally
arising in many branches of mathematics were studied from this perspective. Probability,
however, is rather scarcely represented in lineability theory. Only three of the papers on line-
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ability published so far address probability theory—[6], [4] and [8]. The first of them [6] was
published in RACSAM in 2017. The main feature distinguishing the probability theory from
the measure theory is the independence or some kind of dependence for random variables.
The other are theorems typical for probability theory, like Borel-Cantelli Lemma, the Laws
of Large Numbers and so-called Markov and Kolmogorov conditions related to them, Cen-
tral Limit Theorem, etc. In the mentioned papers independence or martingale dependence
was assumed or obtained in [6, Theorem 5] (pairwise independence), [4, Theorem 10 and
Theorem 11] (martingales), [4, Theorem 13] and [8, Theorem 2.11] (independence).

In present paper we have set the following goals. Firstly, to select the assumptions on
the probability spaces so that there is no need to define spaces for particular theorems.
This is discussed in Sect. 3. Secondly, to consider exclusively sequences of independent
random variables. The space whose subsets we analyse with respect to lineability is the space
L0(�, P)N, i.e. the space of sequences of random variables on probability space (�, P)with
atomless probability measure P .

Throughout the paper [8] the Authors considered the following condition on probability
space: (�,F) is not isomorphic to ([N ], 2[N ]) for any N , where [N ] = {0, 1, . . . , N − 1}.
This condition says that probability space contains infinitely many events. Let us compare
that condition to the following: in (�,F, P) there is a sequence of independent events with
probabilities in (0, 1). Clearly, the latter condition implies that (�,F) cannot be isomorphic
to finite probability spaces.However, there are infinite probability spaceswhich donot contain
any proper pair of events (that is both with probabilities in (0, 1)) which are independent,
see [7]. In our results we will construct sequences of independent random variables, which is
possible in non-atomic probability space. Any probabilistic measure can be written as a sum
of two measures: an atomic and an atomless. Our results hold true if the atomless part of a
probabilistic measure is non-void. However, we decided to assume that probabilistic spaces
are atomless to make our results more clear for the first reading.

The paper is organized as follows. In Sect. 2 we remain the basic definitions and facts
concerning lineability, algebrability, and that of probability theory. In Sect. 3 we analyse the
properties of probability spaces with atomless measures. These properties are likely to be
known to the probability experts, however we were not able to find them in a single source.
In Sect. 4 we consider various kinds of probability convergence. In Theorem 11 we consider
the sequences of independent random variables convergent in probability but not almost
everywhere. In Theorem 12 we consider the ones for which the Cesaro means are divergent
in probability. In Theorem 13 we consider uniformly bounded sequences convergent in
probability but not almost surely. Our theorems generalize known ones or are essentially
different of them —compare Theorem 11 with [8, Theorem 2.2] and [6, Theorem 1], and
Theorem 12 with [8, Theorem 2.11 and Theorem 2.15]. The inspiration, particularly for the
last part of the paper come from the Stoyanov monograph [10]. Without the knowledge of
these examples the paper would not have appeared in the present shape. Section 5 is devoted
to the Laws of Large Numbers. In this part we frequently use the fact that the zero random
variable is independent with respect to any other, even to itself. This and the use of almost
disjoint families of subsets of N allows us to construct the necessary c-dimensional linear
spaces consisting of sequences of independent random variables. The following diagram
summarize the most of the results from Sect. 5.
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WLLN

SLLN

Markov
Kolmogorov

� Theorem 16

� Theorem 15

� Theorem 17

2 Preliminaries

2.1 Lineability and algebrability

Definition 1 Let κ be a cardinal number.

(1) Let L be a vector space and A ⊆ L. We say that A is κ-lineable if A ∪ {0} contains a
κ-dimensional subspace of L.

(2) Let L be a commutative algebra and A ⊆ L. We say that A is κ-algebrable if A ∪ {0}
contains a κ-generated subalgebra B of L (i.e. the minimal cardinality of the system of
generators of B is κ).

(3) Let L be a commutative algebra and A ⊆ L. We say that A is strongly κ-algebrable if
A ∪ {0} contains a κ-generated subalgebra B that is isomorphic to a free algebra.

Proposition 2 X = {xα : α < κ} is the set of free generators of some free algebra if and
only if the set X̃ of elements of the form xk1α1x

k2
α2 · · · xknαn is linearly independent; equivalently

for any k ∈ N, any nonzero polynomial P in k variables without a constant term and any
distinct xα1 , . . . , xαk ∈ X, we have that P

(
xα1 , . . . , xαk

)
is nonzero.

2.2 Borel–Cantelli lemma and various kinds of convergence

Let X be a random variable on a probability space (�,F, P). By EX and Var X we denote
the expected value of X and variation of X , respectively.

Lemma 3 [Borel–Cantelli] Let (An) be a sequence of events in the probability space
(�,F, P). Let lim sup An = ⋂∞

n=1
⋃∞

k=n Ak be a set of those ω ∈ � which belong to
infinitely many An’s. Then

(a) if
∑∞

n=1 P(An) < ∞, then P(lim sup An) = 0;
(b) if

∑∞
n=1 P(An) = ∞ and A1, A2, . . . are independent, then P(lim sup An) = 1.

Let (Xn) be a sequence of random variables on (�,F, P). Then

(p-w) Xn → X means that (Xn) converges point-wise to X on �,
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(a.s.) Xn
as−→ X means that (Xn) converges to X almost surely,

(prob) Xn
P−→ X means that (Xn) converges to X in probability,

(dist) Xn
d−→ X means that (Xn) converges to X in distribution.

The following implications are well-known: (p-w) �⇒ (a.s.) �⇒ (prob) �⇒ (dist)

2.3 Laws of large numbers

Let (Xn) be a sequence of random variables defined on the probability space (�,F, P). Let
Sn = X1 +· · ·+ Xn . The sequence (Xn) satisfies the strong law of large numbers (or SLLN)
if

1

n
Sn − 1

n
ESn

as−→ 0.

The sequence (Xn) satisfies the weak law of large numbers (or WLLN) if

1

n
Sn − 1

n
ESn

P−→ 0

that is

lim
n→∞ P

(∣∣∣∣
1

n
Sn − 1

n
ESn

∣∣∣∣ ≥ ε

)
= 0

for every positive ε.

Theorem 4 [Markov] Suppose that (Xn) is a sequence of random variables such that

lim
n→∞

1

n2
Var(X1 + · · · + Xn) = 0. (1)

Then (Xn) satisfies the WLLN.

We will refer to condition (1) as the Markov condition.

Theorem 5 [Kolmogorov] Let (Xn) be a sequence of independent random variables. If

∞∑

n=1

Var Xn

n2
< ∞, (2)

then (Xn) satisfies SLLN.

We will refer to condition (2) as the Kolmogorov condition.
Note that the Kolmogorov condition implies the Markov condition for independent ran-

dom variables. Indeed, suppose that
∑∞

n=1
Var Xn
n2

< ∞. Let ε > 0. There is N such that
∑∞

n=N+1
Var Xn
n2

< ε/2. Let n0 > N be such that

Var X1 + · · · + Var XN

m2 <
ε

2

for every m > n0. Then

Var X1 + · · · + Var Xm

m2 = Var X1 + · · · + Var XN

m2 + Var XN+1 + · · · + Var Xm

m2

<
ε

2
+ Var XN+1

(N + 1)2
+ · · · + Var Xm

m2 <
ε

2
+ ε

2
= ε.
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Thus limn→∞ 1
n2
Var(X1 + · · · + Xn) = 0.

Note that the proved implication is a statement about real sequences and has no prob-
abilistic nature. The following diagram briefly summarizes relations between considered
notions.

Markov Kolmogorov

WLLN SLLN

None of the above arrows, or implications, can be reversed.

2.4 Almost disjoint families

A familyA of infinite subsets of N is called almost disjoint if any two distinct members ofA
have a finite intersection. It is well-known that there is an almost disjoint family of cardinality
continuum. A family I of subsets of N is called ideal, provided that it is closed under taking
subsets and finite unions, and does not contain N. A particular example, which will be of
our interest, is a so-called summable ideal. Let (an) be a sequence of non-negative reals with∑∞

n=1 an = ∞. Then I(an) := {S ⊆ N : ∑
n∈S an < ∞} is called a summable ideal. A

familyA is called I(an)-almost disjoint if it is almost disjoint and A /∈ I(an) for every A ∈ A.

Lemma 6 Suppose that a series of positive real numbers
∑∞

n=1 an is divergent. Then there
exists an I(an)-almost disjoint family of cardinality continuum.

Proof Let {Aα : α < c} be an almost disjoint family. Since the series
∑∞

n=1 an is divergent,
we find indices n1 < n2 < . . . such that

ni+1−1∑

k=ni

ak ≥ 1.

Sets of the form Bα := ⋃
i∈Aα

{ni , ni + 1, . . . , ni+1 − 1} constitute the desired family. 
�

3 Atomless probability measure

We say that a measureμ on (�,F) is atomless if for anyμ-measurable set A with μ(A) > 0
there is a μ-measurable set B with 0 < μ(B) < μ(A). All considered subsets of � are in F .

Lemma 7 Let μ be an atomless probability measure and let A be μ-measurable. Then for
any 0 < t < μ(A) there is B ⊆ A with μ(B) = t .

Proof Firstly let us observe that for any 0 < t < μ(A) there is B ⊆ A with μ(B) ≤ t . Since
μ is atomless, there isC ⊆ A with 0 < μ(C) < μ(A). Let B0 = C ifμ(C) ≤ μ(A\C), and
B0 = C \ A otherwise. Then μ(B0) ≤ 1

2μ(A). Proceeding inductively we find a sequence
(Bn) with Bi+1 ⊆ Bi and 0 < μ(Bi ) ≤ 1

2i+1 μ(A). Thus there is i with 0 < μ(Bi ) ≤ t .
Now,we are ready to prove the assertion. By a transfinite inductionwe define Bα ⊆ A such

that Bα+1 ⊆ A \ ⋃
β≤α Bβ and 0 < μ(Bα+1) ≤ t − ∑

β≤α μ(Bβ). Clearly after countably
many steps, say after η < ω1 many, the construction stops. Then

∑
β≤η μ(Bβ) = t and Bα’s

are pairwise disjoint. Therefore putting B = ⋃
β≤η Bβ we have μ(B) = t . 
�
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Lemma 8 Let μ be an atomless probability measure. Let ni ≥ 2 for i ∈ N. Assume that
(pij )i∈N, j≤ni are such that

(1) 0 < pij < 1

(2)
∑

j≤ni p
i
j = 1.

Then there exists (Ai
j )i∈N, j≤ni such that

(i) μ(Ai
j ) = pij

(ii) Ai
1, A

i
2, . . . , A

i
ni are pairwise disjoint

(iii) The σ -fields Fi := σ({Ai
j : j ≤ ni }) are independent.

Proof Using Lemma 7 we find pairwise disjoint A1
1, A

1
2, . . . , A

1
n1 with μ(A1

j ) = p1j . Now,

assume that for every i ≤ k we have already defined Ai
j ’s fulfilling (i)–(iii). Let j ≤ nk+1.

Fix j1 ≤ n1, j2 ≤ n2, . . . , jk ≤ nk . By the inductive assumption A1
j1

∩ A2
j2

∩ · · · ∩ Ak
jk

=
p1j1 p

2
j2

· · · pkjk . Using Lemma 7 again we find C j1 j2... jk j ⊆ A1
j1

∩ A2
j2

∩ · · · ∩ Ak
jk
such that

μ(C j1 j2... jk j ) = p1j1 p
2
j2

· · · pkjk pk+1
j . Put

Ak+1
j :=

⋃

j1≤n1

⋃

j2≤n2

· · ·
⋃

jk≤nk

C j1 j2... jk j .

Then (Ai
j )i≤k+1, j≤ni fulfills (i)–(iii). 
�

Lemma 9 Let μ be an atomless probability measure. Assume that {B1
k : k ≤ K1}, . . . , {Bt

k :
k ≤ Kt } and {Ai : i ≤ I } are partitions of � into sets of positive μ-measure and such that
σ({B1

k : k ≤ K1}), . . . , σ ({Bt
k : k ≤ Kt }) and σ({Ai : i ≤ I }) are independent σ -fields. Let

{p

i : 
 = 1, 2, . . . , ni }, i ≤ I , be positive real numbers with p1i + p2i + · · · + pnii = μ(Ai ).

Then there exist A

i ⊆ �, i ≤ I , 
 = 1, 2, . . . , ni such that

(i) A1
i , A

2
i , . . . , A

ni
i are pairwise disjoint and

⋃ni

=1 A



i = Ai ;

(ii) μ(A

i ) = p


i for every i ≤ I and 
 ≤ ni ;
(iii) σ -fieldsσ({B1

k : k ≤ K1}), . . . , σ ({Bt
k : k ≤ Kt }) andσ({A


i : i ≤ I , 
 = 1, 2, . . . , ni })
are independent.

Proof Fix i ≤ I . By the independence assumption

μ(Ai ∩ Bk1 ∩ · · · ∩ Bkt ) = μ(Ai )μ(Bk1) · · · μ(Bkt )

for every k̄ = (k1, . . . , kt ) ∈ {1, . . . , K1} × · · · × {1, . . . , Kt }. Using Lemma 7 we find
C1
i,k̄

,C2
i,k̄

, . . . ,Cni
i,k̄

such that

• C1
i,k̄

,C2
i,k̄

, . . . ,Cni
i,k̄

are pairwise disjoint and
⋃ni


=1 C


i,k = Ai ∩ Bk ;

• μ(C


i,k̄
) = p


i μ(Bk1) · · · μ(Bkt ).

Having this we define A

i as a union

⋃
k̄ C




i,k̄
. Note that

μ(A

i ) = μ(

⋃

k̄

C


i,k̄
) =

∑

k̄

μ(Ci,k̄) =
∑

k̄

p

i μ(Bk1) · · · μ(Bkt ) = p


i .

Clearly conditions (i)–(iii) are fulfilled. 
�
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Let us define partitions Xk of R, k = 0, 1, . . . as follows: X0 = {(−∞,−1], (−1, 0],
(0, 1], (1,∞)} and

Xk =
{(

n

2k
,
n + 1

2k

]
: −k2k ≤ n < k2k

}
∪ {(−∞,−k], (k,∞)}.

Then Xk+1 arises from Xk by

• dividing each ( n
2k

, n+1
2k

] into two dyadic sub-intervals ( 2n
2k+1 ,

2n+1
2k+1 ] and ( 2n+1

2k+1 , 2n+2
2k+1 ];

• adding 2 · 2k+1 dyadic intervals ( n
2k+1 ,

n+1
2k+1 ] for −(k + 1)2k+1 ≤ n < −k2k+1 and

k2k+1 ≤ n < (k + 1)2k+1;
• replacing (−∞,−k] and (k,∞) by (−∞,−(k + 1)] and (k + 1,∞).

Note that σ(X0) ⊆ σ(X1) ⊆ . . . If X is a random variable, then by μX we denote its
distribution.

Theorem 10 Let P be an atomless probability measure on (�,F). Let μ0, μ1, . . . be a
sequence of distributions on R. Then there are independent random variables X0, X1, . . .

defined on (�,F) with μXi = μi for every i ∈ N.

Proof We will inductively define partitions Yk

 of N and random variables Xk


 such that

(i) Yk

 = {AI ,
 : I ∈ Xk}, in other words partition Yk


 is indexed by elements of partition
Xk ;

(ii) μ
(I ) = P(AI ,
) for every I ∈ Xk ;
(iii) If I1, . . . , Ip ∈ Xk+1 are pairwise disjoint, I = I1 ∪ · · · ∪ Ip and I ∈ Xk , then

AI ,
 = AI1,
 ∪ · · · ∪ AIp,
;
(iv) Let ω ∈ �. If ω ∈ AI ,
 where I = (−∞,−k], then Xk


 (ω) = −k; otherwise Xk

 (ω) =

inf I for ω ∈ AI ,
;
(v) For every 
1 < 
2 < · · · < 
t and k1, k2, . . . , kt , σ -fields σ(Yk1


1
), σ (Yk2


2
), . . . , σ (Ykt


t
)

are independent.

Suppose that we have defined Yk

 and Xk


 for every k, 
 ∈ N. Note that (Xk

 )

∞
k=1 converges

in measure to some X
 with μX

= μ
. To show that X1, X2, . . . are independent, it is

enough to prove that

X−1
1 (I1), X

−1
2 (I2), . . . , X

−1

 (I
)

are independent for every (left-open and right-closed) dyadic interval. Note that Ii ∈ σ(Xki )

for some ki . Then X
−1
i (Ii ) = (Xki

i )−1(Ii ) = AIi ,i ∈ Yki
i . So by (v)weobtain that X1, X2, . . .

are independent.
We will construct Yk


 and Xk

 fulfilling (i)–(v) by induction. In first step we construct Y0

0
and X0

0 as follows. Using Lemma 8 we find a partition Y0
0 = {AI ,0 : I ∈ X0} of � with

P(AI ,0) = μ0(I ). This gives us (i) and (ii). Put

X0
0(ω) =

⎧
⎪⎨

⎪⎩

−1 if ω ∈ A(−∞,−1],0 ∪ A(−1,0],0
0 if ω ∈ A(0,1],0
1 if ω ∈ A(1,∞),0.

This just (iv). Conditions (iii) and (v) are also satisfied.
Now, assume that we have already constructed Yk


 and Xk

 for k, 
 ≤ n. In one step we

construct Yn+1

 , Xn+1


 for 
 = 0, 1, . . . , n, and Yk
n+1, X

k
n+1 for k = 0, 1, . . . , n + 1. Using

2n + 3 times Lemma 9 we define Yn+1

 and Yk

n+1 fulfilling (i), (ii), (iii) and (v). Then we

define Xn+1

 and Xk

n+1 using the formula given in (iv). 
�
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4 Various kinds of convergence

Let (�,F, P) be a measurable space. By L0(�) we denote the space of all random vari-
ables. The following should be compared with [1, Theorem 7.1] where the Authors proved
maximal dense lineability of random variables sequences defined on [0, 1] which tend to 0
in measure, but not almost everywhere. Note that strong algebrability and dense lineability
are incomparable notions—none of them implies the other.

Theorem 11 Let P be an atomless probability measure on (�,F). There exists a c-generated
free algebraA ⊆ L0(�)N such that any (Xn) ∈ A\{0} is a sequence of independent random
variables such that

(i) Xn
P−→ 0

(ii) lim supn→∞ |Xn(ω)| = ∞ for every ω ∈ �.
(iii) limn→∞ E |Xn | = ∞.

Proof By Lemma 8 there are (An
j )n∈N, j≤n+1 such that P(An

j ) = 1
n+1 and sigma fields

σ({An
j : j ≤ n + 1}) are independent. Let Bn = An

1 for n ∈ N. Since Bn are independent

and
∑∞

n=1
1

n+1 = ∞, by Borel-Cantelli lemma we obtain that P(lim sup Bn) = 1. Then

C := � \ lim sup Bn has probability 0. Put In := C ∪ Bn . Then P(In) = P(Bn) = 1
n+1 and

every ω ∈ � belongs to infinitely many In’s.
Let U ⊆ R be a set of cardinality c linearly independent over Q. For any α ∈ U and

n ∈ N we define a random variable X (α)
n := eαn1In where 1In is a characteristic function of

In . The sequence (X (α)
n ) consists of independent random variables.

We will show that any non-trivial algebraic combination of elements from {(X (α)
n ) : α ∈

U } is either a null sequence or it is a sequence of independent random variables fulfilling
(i) and (ii). Let (kil : i ≤ m, l ≤ j) be a matrix of non-negative integers with non-zero and
distinct rows, and assume that c1, . . . , cm ∈ R do not vanish simultaneously. Consider the

following algebraic combination of X (α1)
n , X (α2)

n , . . . , X
(α j )
n

Yn =
m∑

i=1

ci e(
ki1α1+...+ki jα j )n1In . (3)

Since the set U is linearly independent, the numbers k11α1 + . . . + k1 jα j , . . . , km1α1 +
. . . + kmjα j are distinct. To simplify the notation, put γi := ki1α1 + . . . + ki jα j for every
i = 1, . . . ,m. We may assume that γ1 > γ2 > · · · > γm . Then for any n ∈ N and ω ∈ In ,

Yn(ω) =
m∑

i=1

ci e
γi n = eγ1n

(

c1 +
m∑

i=2

ci e
(γi−γ1)n

)

.

Thus Yn(ω) ≈ c1eγ1n for every ω ∈ In for large enough n. By (3), we obtain (Yn) is a
sequence of independent random variables. Since every ω ∈ � belongs to infinitely many
In’s and γi > 1, then

lim sup
n→∞

|Yn(ω)| = ∞.

Again by (3), we obtain P(Yn �= 0) ≤ 1
n+1 , and therefore Yn

P−→ 0. Since E(Yn) = eγ1n

n ,
then limn→∞ E(Yn) = ∞ 
�
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Theorem 12 Let (�,F, P) be an atomless probability space. Then the set

{
(Xn) ∈ L0(�)N : Xn

P−→ 0 but
X1 + · · · + Xn

n
does not converge in probability to 0

}

is strongly c-algebrable.

Proof Let (An) be a sequence of independent events defined on (�,F, P) such that P(An) =
1

n+1 . Let U ⊆ (1, 2) be linearly independent over Q. Fix α ∈ U . Put X (α)
n = 2αn1An . Let

(kil : i ≤ m, l ≤ j) be a matrix of non-negative integers with non-zero and distinct rows, and
assume that c1, . . . , cm ∈ R do not vanish simultaneously. Consider the following algebraic

combination of X (α1)
n , X (α2)

n , . . . , X
(α j )
n

Yn =
m∑

i=1

ci2
(ki1α1+...+ki jα j )n1An . (4)

Since the setU is linearly independent, the numbers k11α1 + . . .+k1 jα j , . . . , km1α1 + . . .+
kmjα j are distinct. As in the proof of Theorem 11 we put γi := ki1α1 + . . .+ ki jα j for every
i = 1, . . . ,m. We may assume that γ1 > γ2 > · · · > γm . Then for any n ∈ N and ω ∈ An ,

Yn(ω) =
m∑

i=1

ci2
γi n = 2γ1n

(

c1 +
m∑

i=2

ci2
(γi−γ1)n

)

.

There is n0 such that for n ≥ n0,

(a) |Yn | ≥ 1
2 |c1|2γ1n > 1

2 |c1|2n on An and Yn = 0 on the complement Ac
n of An ;

(b) Yn has the same sign as c1, and therefore |Yn0 + · · · + Yn | = |Yn0 | + · · · + |Yn |
Let k0 ≥ n0 be such that P(|Y1| + · · · + |Yn0−1| < 1

4 |c1|2k0) = 1. The aim of the following

reasoning is to show that P
( |Y1|+···+|Y2k |

2k
<

|c1|
4

)
tends to zero, and consequently |Y1|+···+|Yn |

n

does not converge in probability to zero.
For k > k0 we have

P

( |Y1 + · · · + Y2k |
2k

<
1

4
|c1|

)

= P

(
|Y1 + · · · + Y2k | <

1

4
|c1|2k

)

≤ P

(
|Yn0 + · · · + Y2k | − |Y1 + · · · + Yn0−1| <

1

4
|c1|2k

)

= P

(
|Yn0 + · · · + Y2k | <

1

4
|c1|2k + |Y1 + · · · + Yn0−1|

)

= P

(
|Yn0 | + · · · + |Y2k | <

1

4
|c1|2k + |Y1 + · · · + Yn0−1|

)

≤ P

(
|Yn0 | + · · · + |Y2k | <

1

4
|c1|2k + |Y1| + · · · + |Yn0−1|

)

≤ P

(
|Yn0 | + · · · + |Y2k | <

1

2
|c1|2k

)
.
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If ω ∈ An for some n ≥ k, then Yn(ω) ≥ 1
2 |c1| · 2n ≥ 1

2 |c1| · 2k . Hence |Yn0 | + · · · + |Y2k | ≥
|Yn | ≥ 1

2 |c1| · 2k . Thus

P

(
|Yn0 | + · · · + |Y2k | <

1

2
|c1|2k

)
≤ P(Ac

k ∩ · · · ∩ Ac
2k ) = P(Ac

k) · · · P(Ac
2k )

= 2k

2k + 1
· 2

k − 1

2k
· · · k

k + 1
= k

2k + 1
→ 0.

Thus Y1+···+Yn
n does not converge in probability to 0. Since P(Yn = 0) = n

n+1 , then Yn
P−→ 0.


�
Theorem 13 Let (�,F, P) be an atomless probability space. Let U be a set of all sequences
(Xn) ∈ L0(�)N such that

(i) (Xn) is independent

(ii) Xn
P−→ 0

(iii) there is a constant C > 0 with |Xn | < C for every n ∈ N

(iv) Xn � 0 almost surely.

Then U is c-lineable.

Proof Let (An) be a sequence of independent events in � with P(An) = 1
n . Let A = {Bα :

α < c} be an I(1/n)-almost disjoint family. We define (X (α)
n ) as follows:

X (α)
n =

{
1An if n ∈ Bα

0 if n /∈ Bα.

Let c1, . . . , cm ∈ R \ {0} and α1 < · · · < αm < c. Consider Yn = c1X
(α1)
n + · · · + cm X (αm )

n .
Since B := Bα1 \(Bα2 ∪· · ·∪Bαm ) is infinite and c1 �= 0, by Borel–Cantelli lemmawe obtain
that P(lim supn∈B An) = 1, and therefore Yn � 0 a.s. for n ∈ B, which implies (iv). Clearly

(Yn) is independent and Yn
P−→ 0; thus (i) and (ii) holds. Note also that |Yn | ≤ |c1|+· · ·+|cm |

for every n ∈ N which gives (iii). Therefore (Yn) ∈ U, which shows that U is c-lineable. 
�
It is well known that if (�,F, P) is atomic probability space, then for any (Xn) defined

there, Xn
P−→ 0 is equivalent to Xn

a.s.−−→ 0. This shows that Theorems 11, 12 and 13 do not
hold for atomic spaces.

Problem 14 Is the set U defined in Theorem 13 strongly c-algebrable?

5 Laws of large numbers

Theorem 15 Let (�,F, P) be an atomless probability space. Then the set

{(Xn) ∈ L0(�)N : Xn are independent and (Xn) satisfies Markov condition but not SLLN}
is c-lineable.

Proof Let an = 1
(n+1) log(n+1) . Note that

∑∞
n=1 an is divergent, so there is an almost disjoint

family {Bα ⊆ N : α < c} such that Bα /∈ I(an).
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Using Lemma 8 for

pn1 = pn2 = 1

2(n + 1) log(n + 1)
and pn3 = 1 − 1

(n + 1) log(n + 1)

we obtain sets {An
i : n ∈ N, i = 1, 2, 3} such that P(An

i ) = pni and σ -fields σ({An
i : i =

1, 2, 3}) are independent. For n ∈ N let Zn be a random variable given by

Zn(ω) =

⎧
⎪⎨

⎪⎩

−n if ω ∈ An
1

n if ω ∈ An
2

0 if ω ∈ An
3 .

(Note that Zn can be defined shortly as −n1An
1
+ n1An

2
.) Then Zn are independent such that

P(Zn = n) = P(Zn = −n) = 1

2(n + 1) log(n + 1)
and

P(Zn = 0) = 1 − 1

(n + 1) log(n + 1)
.

Now, for α < c and n ∈ N we define: X (α)
n = Zn for indexes n from Bα , and X (α)

n = 0
otherwise. Consider a linear subspace V of L0(�)N spanned by {(X (α)

n ) : α < c}. Let
(Xn) ∈ V be a non-null sequence. Then there are c1, . . . , cm ∈ R\{0} andα1 < · · · < αm < c

such that Xn = ∑m
i=1 ci X

(αi )
n for every n ≥ 1. Note that Xn are independent.

Observe that Xn = Zn · ∑m
i=1 ci1Bαi

(n). Thus

Var Xn =
∣∣∣∣∣

m∑

i=1

ci1Bαi
(n)

∣∣∣∣∣

2

Var Zn ≤
(

m∑

i=1

|ci |
)2

Var Zn .

Since Xn are independent, Zn are independent and (Zn) satisfies Markov condition (see
[10]), that is 1

n2
Var(Z1 + · · · + Zn) → 0,

0 ≤ 1

n2
Var(X1 + · · · + Xn) = 1

n2

n∑

j=1

Var X j ≤ 1

n2

n∑

j=1

(
m∑

i=1

|ci |
)2

Var Z j = 1

n2

(
m∑

i=1

|ci |
)2

Var(Z1 + · · · + Zn) → 0.

Thus (Xn) satisfies Markov condition, and consequently the weak law of large numbers.
Put B := Bα1 \⋃m

i=2 Bαi . Then B /∈ I(an). Note that n ∈ B implies that Xn = c1X
(α1)
n =

c1Zn , and therefore

P(|Xn | ≥ |c1|n) = P(|Zn | ≥ n) = 1

(n + 1) log(n + 1)
= an .

Since B /∈ I(an), then
∑

n∈B
P(|Xn | ≥ |c1|n) =

∑

n∈B
an = ∞.

By Borel–Cantelli lemma P(lim sup{|Xn | ≥ |c1|n}) = 1. Since Xn
n = Sn

n − Sn−1
n , then

Sn
n � 0, where Sn = X1 +· · ·+ Xn . On the other hand EXn = 0, which implies 1

n ESn = 0.
That means that (Xn) does not satisfy strong law of large numbers. 
�
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Theorem 16 Let P be an atomless probability measure on a measure space (�,F). The
set of all sequences (Xn) ∈ L0(�)N of random variables satisfying the weak law of large
numbers but neither the strong law of large numbers nor Markov condition is c-lineable.

Proof By Theorem 10 there is a sequence (Zn) of independent random variables defined on
(�,F, P) whose distribution functions are absolutely continuous and their densities fn are
given by the formula

fn(x) = 1√
2σn

exp

(

−
√
2|x |
σn

)

, where σn = 2n2

(log n)2
.

Then EZn = 0 and Var Zn = σ 2
n . Let {Bα ⊆ N : α < c} be an almost disjoint family. We

define

X (α)
n (ω) =

{
Zn(ω) if n ∈ Bα

0 if n /∈ Bα.

Let (Xn) be a non-zero sequence contained in a vector subspace of (L2(�))N spanned by
{(X (α)

n ) : α < c}. Then Xn = ∑m
i=1 ci X

(αi )
n for some m ∈ N, c1, . . . , cm ∈ R \ {0} and

α1 < · · · < αm < c.
Now, we will check that (Xn) does not satisfy SLLN. Let n ∈ Bα1 \ ⋃

i>1 Bαi . Then

Xn = c1X
(α1)
n = c1Zn and

P(|Xn | ≥ |c1|n) = P(|Zn | ≥ n) = exp

(

−
√
2(log n)2

2n

)

.

The set Bα1 \ ⋃
i>1 Bαi is infinite and exp(−

√
2(log n)2

2n ) → 1. Therefore the series
∑

n∈Bα1\⋃i>1 Bαi

P(|Xn | ≥ |c1|n) is divergent.

Since Xn are independent, then Borel-Cantelli lemma implies that P(lim sup{|Xn | ≥
|c1|n}) = 1. Consequently (Xn) does not satisfy SLLN.

Nowwe show that theMarkov condition does not hold for (Xn). Since Xn are independent,
then

1

n2
Var(X1 + · · · + Xn) = 1

n2
(Var X1 + · · · + Var Xn) ≥ 1

n2
Var Xn

For n ∈ Bα1 \ ⋃
i>1 Bαi

1

n2
Var Xn = c21

n2
Var Zn = c21

n2
σ 2
n = 4c1n2

(log n)4
.

Since 4c1n2

(log n)4
→ ∞ and Bα1 \

⋃
i>1 Bαi is infinite, (Xn) does not fulfill theMarkov condition.

Stoyanov proved in [10, Sect. 15.4] using Feller Theorem that (Zn) fulfills the weak law
of large numbers. It can be easily shown that any linear combination of (X (α)

n )’s satisfies the
weak law of large numbers as well. 
�

Recall that two sequences of random variables {ξn} and {ηn} are said to be equivalent in
the sense of Khintchine if

∑∞
n=1 P [ξn �= ηn] < ∞. According to [9, Theorem 1.2.4] two

such sequences simultaneously satisfy or do not satisfy the SLLN.
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Theorem 17 Let P be an atomless probability measure on a measure space (�,F). The set

{(Xn) ∈ L0(�)N : (Xn) fulfills SLLN but not the Kolmogorov condition}
is c-lineable.

Proof Let (Zn) be a sequence of independent random variables defined on � such that
P(Zn = 1) = P(Zn = −1) = 1

2 − 1
2n+1 and P(Zn = 2n) = P(Zn = −2n) = 1

2n+1 . Then

EZn = 0 and Var Zn = 1 − 1
2n + 2n . Let {Bα : α ∈ [0, 1]} be an almost disjoint family of

subsets of N. Put

X (α)
n (ω) =

{
Zn(ω) if n ∈ Bα

0 if n /∈ Bα.

Let 0 ≤ α1 < α2 < · · · < αm ≤ 1, and c1, c2 . . . , cm ∈ R \ {0}. Let Yn = ∑m
i=1 ci X

(αi )
n .

Since B := Bα1 \ (Bα2 ∪ · · · ∪ Bαm ) is infinite and Yn = c1Zn if n ∈ B, then EYn = 0 for
every n, and VarYn = 1 − 1

2n + 2n for n ∈ B. Thus

∞∑

n=1

VarYn
n2

≥
∑

n∈B

2n

n2
= ∞

which means that (Yn) does not fulfill the Kolmogorov condition.
Let us define (Ẑn) as follows

Ẑn = ±1 ⇐⇒ Zn = ±1 and Ẑn = 0 ⇐⇒ |Zn | = 2n .

Then (Ẑn) and (Zn) are equivalent in the sense of Khintchine as P(Ẑn �= Zn) = 1
2n .

Morevoer E Ẑn = 0 and Var Ẑn = 1 − 1
2n . Thus (Ẑn) satisfies the Kolmogorov condition.

Put

X̂ (α)
n (ω) =

{
Ẑn(ω) if n ∈ Bα

0 if n /∈ Bα

and Ŷn = ∑m
i=1 ci X̂

(αi )
n . Then EŶn = 0 and

VarŶn = E(Ŷn)
2 ≤

(
m∑

n=1

|cn |
)2

E(Ẑn)
2 =

(
m∑

n=1

|cn |
)2

Var Ẑn .

Therefore

∞∑

n=1

VarŶn
n2

≤
(

m∑

n=1

|cn |
)2 ∞∑

n=1

1

n2
< ∞.

Thus (Ŷn) satisfies the Kolmogorov condition, and consequently (Yn) fulfills SLLN. 
�
Let us recall here the big-O and the little-o notation. Having two sequences (an) and (bn)

of positive reals we write an = O(bn), if there is a constant C > 0 such that an ≤ Cbn for
every n ∈ N; we write an = o(bn) if limn→∞ an/bn = 0. Although SLLN does not imply

Kolmogorov condition, the latter cannot be improved in the sense that
∑∞

n=1
σ 2
n
n2

< ∞would

be replaced by
∑∞

n=1 anσ
2
n < ∞ for some sequence (an) of positive reals with an = o(1/n2)
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Theorem 18 Let P be an atomless probability measure on a measure space (�,F). Assume

that
∑∞

n=1
σ 2
n
n2

= ∞. Then the set

{(Xn) ∈ L0(�)N : EXn = 0, Var Xn = O(σ 2
n ) and (Xn) does not obey the SLLN}

is c-lineable.

Proof Let I := I(σ 2
n /n2) = {A ⊆ N : ∑

n∈A
σ 2
n
n2

< ∞}. Let {Bα : α ∈ [0, 1]} be an I-almost

disjoint family. Let Ai
n for n ∈ N and i = 1, 2, 3 be such that

(i) P(A1
n) = P(A2

n) = σ 2
n

2n2
and P(A3

n) = 1 − σ 2
n
n2
, if σ 2

n
n2

≤ 1

(ii) P(A1
n) = P(A2

n) = 1
2 and P(A3

n) = 0, if σ 2
n
n2

> 1

(iii) the families {Ai
n : i = 1, 2, 3} are independent.

Let α ∈ [0, 1]. If n /∈ Bα , we put X
(α)
n ≡ 0. If n ∈ Bα and σ 2

n
n2

≤ 1, we put

X (α)
n (ω) =

⎧
⎪⎨

⎪⎩

−n if ω ∈ A1
n

n if ω ∈ A2
n

0 if ω ∈ A3
n .

If n ∈ Bα and σ 2
n
n2

> 1, we put

X (α)
n (ω) =

{
−σn if ω ∈ A1

n

σn if ω ∈ A2
n .

Then EX (α)
n = 0 for every n ∈ N, Var Xn = σ 2

n iff n ∈ Bα . Let Yn = ∑m
i=1 ci X

(αi )
n

be a linear combination of X (α1)
n , . . . , X (αm )

n where ci �= 0, 0 ≤ α1 < · · · < αm ≤ 1.
Since B := Bα1 \ ⋃m

i=2 Bαi /∈ I, then VarYn = |c1|σ 2
n for n ∈ B. Since B /∈ I, then

∑∞
n=1

VarYn
n2

= ∞. Moreover, for n ∈ B and ε ∈ (0, 1):

P(
|Yn |
n

≥ ε) = P(Yn �= 0) =
{

σ 2
n
nn if σ 2

n
n2

≤ 1

1 if σ 2
n
n2

> 1.

Then
∑∞

n=1 P(|Yn | > εn) = ∞ and by Borel-Cantelli lemma Yn
n � 0 almost surely. Thus

(Yn) does not obey the SLLN. 
�
Lemma 19 Let (bn) ∈ 
1. Suppose that an = o(bn). Then there exists (xn) such that∑∞

n=1 anxn < ∞ and
∑∞

n=1 bnxn = ∞.

Proof Since an = o(bn), there is cn → 0 with an = cnbn . If (cn) ∈ 
1, then we put dn = 1
for every n ∈ N. Otherwise there is an infinite set A ∈ I(cn) and then we put

dn =
{
1 if n ∈ A
1
n2

if n /∈ A.

Finally we define xn as dn/bn . Then

∞∑

n=1

anxn =
∞∑

n=1

cnbn · dn
bn

=
∞∑

n=1

cndn < ∞
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and
∞∑

n=1

bnxn =
∞∑

n=1

bn · dn
bn

=
∞∑

n=1

dn = ∞.


�
We say that a sequence (Xn) of independent random variables fulfills (an)-Kolmogorov

condition provided that
∑∞

n=1 anVar(Xn) < ∞.

Corollary 20 Let P be an atomless probability measure on a measure space (�,F). Let
an = o( 1

n2
). The set of all (Xn) ∈ L0(�)N such that

• EXn = 0,
• (Xn) fulfills (an)-Kolmogorov condition,
• (Xn) does not obey the SLLN

is c-lineable.

Proof Using Lemma 19 for bn = 1
n2
, we find (xn) such that

∑∞
n=1 anxn < ∞ and

∑∞
n=1 xn/n

2 = ∞. Then using Theorem 18 for σ 2
n = xn , we obtain that the set of all

(Xn) ∈ L0(�)N such that

• EXn = 0,
• Var Xn = O(σ 2

n ),
• (Xn) does not obey the SLLN

is c-lineable. The equality Var Xn = O(σ 2
n ) means that there is a constant C > 0 such that

Var Xn ≤ Cσ 2
n . Thus

∞∑

n=1

anVar Xn ≤ C
∞∑

n=1

anσ
2
n = C

∞∑

n=1

anxn < ∞.


�
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