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Abstract
Diagonal (multiplication) operators acting between a particular class of countable inductive
spectra of Fréchet sequence spaces, called sequence (LF)-spaces, are investigated. We prove
results concerning boundedness, compactness, power boundedness, and mean ergodicity.
Furthermore, we determine when a diagonal operator is Montel and reflexive. We analyze
the spectra in terms of the system of weights defining the spaces.
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1 Introduction

In this paper, we are concerned with studying diagonal (multiplication) operators acting on
a particular class of sequence (LF)-spaces. Many authors have investigated these mappings,
for instance, in the setting of weighted spaces of (vector-valued) continuous functions by
Manhas [17, 18] and Oubbi [20] among others. Recently many authors have focused on
studying the ergodic properties of the diagonal operators acting on (LB)-spaces of functions
and sequences, for instance, [10, 22]. In the context of Köthe echelon spaces, Crofts [12]
investigated diagonal operators. The case of multiplication operators on weighted spaces of
analytic functions on the complex unit disc was studied by Bonet and Ricker [11]. Albanese
and the author in [5] have studied the spectra and the ergodic properties of the multiplication
operators on the space S(R) of rapidly decreasing functions and the (PLB)-space of its
multipliers. Echelon and co-echelon spaces were studied by Köthe and Toeplitz. In a paper
[24] published in 1992,Vogt characterized the regularity, completeness, and (weak) acyclicity
of Köthe (LF)-sequence spaces Ep , 1 ≤ p ≤ ∞ ∪ {0}.

B Claudio Mele
claudio.mele1@unisalento.it

1 Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, C.P.193, 73100 Lecce, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-022-01284-8&domain=pdf
http://orcid.org/0000-0002-1779-4893


141 Page 2 of 17 C. Mele

In this note, we treat different aspects of diagonal operators acting between the sequence
(LF)-spaces l p(V), extending the recent results of Rodríguez–Arenas obtained in [22] for
Köthe echelon spaces. The sequence (LF)-spaces l p(V) are defined as an inductive limit
of a spectrum of echelon spaces. Vogt in [24] has obtained important results concerning
regularity and completeness of sequence (LF)-spaces. We focus our attention on the action
of the diagonal operator on them. The purpose of this work is to characterize in terms of
the weight sequences the boundedness, compactness, being Montel, and reflexivity of the
diagonal operator Mϕ : l p(V) → l p(W), (xi )i∈N �→ (xiϕi )i∈N, with 1 ≤ p ≤ ∞ ∪ {0},
V,W two systems of weights and ϕ ∈ ω. Furthermore, we determine the spectra of the
diagonal operators and study their ergodic properties. Our notation for functional analysis is
standard. We refer the reader to [6, 16, 19].

The article is divided into six sections. In Sect. 2, we establish the notation and recall
some of themost fundamental definitions concerning (LF)-spaces.Moreover, we characterize
the boundedness, compactness, being Montel, and reflexivity for operators acting between
(LF)-spaces. Section 3 is devoted to the definitions and the main properties of the sequence
(LF)-spaces l p(V).While in Sect. 4we study the diagonal operators acting between the spaces
l p(V). We show when a diagonal operator Mϕ : l p(V) → l p(W) is continuous, bounded,
compact, Montel, and reflexive in terms of the weight sequences that form the countable
inductive spectra of Fréchet sequence spaces. In Sect. 5, we analyze the spectrum and the
Waelbroeck spectrum of the diagonal operators. A complete discussion concerning power
boundedness and (uniform) mean ergodicity for diagonal operators is given in Sect. 6.

2 Definitions and results on (LF)-spaces

The purpose of this section is to recall some definitions and fundamental results of the theory
of the (LF)-spaces.

2.1 (LF)-spaces

An (LF)-space is a locally convex Hausdorff space (lcHs, briefly) E which is an inductive
limit E = ind n En of an inductive sequence (En)n∈N of Fréchet spaces, i.e., E = ∪n En

and En ↪→ En+1 continuously for all n ∈ N (see [14] for more details). In the following,
we denote by t the lc-topology of E and by tn the Fréchet topology of each En , n ∈ N. The
lc-topology of the (LF)-space E = ind n En is the finest lc-topology that makes the inclusions
En ↪→ E continuous for all n ∈ N.

Let E = ind n En be an (LF)-space. E is called:

• regular, if every bounded subset of E is contained and bounded in some step En ;
• (pre)compactly retractive, if for every (pre)compact subset K of E , there exists m ∈ N

such that K ⊂ Em and it is (pre)compact there;
• strongly boundedly retractive, if it is regular and for all k ∈ N, there exists l ≥ k such

that (E, t) and (El , tl) induce the same topology on each bounded set of (Ek, tk);
• boundedly retractive, if every bounded subset B of E is contained in some step En and

the topologies of E and En coincide on B;
• sequentially retractive, if every convergent sequence in E is contained in some step En

and converges there.
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It is well-known that every complete (LF)-space is regular, but whether the converse holds
seems to be an open problem (mentioned by Grothendieck), even for (LB)-spaces. We refer
the reader to [6, 24, 25] for more details.

The space (E, t) is said to satisfy the condition (M) (resp. (M0)) of Retakh [21] if there
exists an increasing sequence (Un)n∈N of subsets of E such that for all n ∈ N Un is an
absolutely convex 0-neighborhood of En such that

∀n ∈ N ∃m ≥ n ∀μ ≥ m : tμ and tm induce the same topology onUn .

(resp. ∀n ∈ N ∃m ≥ n ∀μ ≥ m : σ(Eμ, E ′
μ) and σ(Em, E ′

m) induce the same topology onUn).

(LF)-spaces with condition (M) (resp. (M0)) are called acyclic (resp. weak-acyclic).
The following important theorem gives some equivalence of the concepts mentioned

above. This theorem is due to Wengenroth for (LF)-spaces. See [25, Theorem 6.4].

Theorem 2.1 For an (LF)-space E = ind n En the following conditions are equivalent:

(1) There is an increasing sequence (Un)n∈N of subsets of E such that for all n ∈ N Un is
an absolutely convex 0-neighborhood of En for which for all n ∈ N there exists m ≥ n
such that t and tm induce the same topology on Un;

(2) E satisfies the condition (M);
(3) E is boundedly retractive;
(4) E is (pre)compactly retractive;
(5) E is sequentially retractive.

Furthermore, the condition (M) implies the completeness of the (LF)-spaces (see [25,
Corollary 6.5]). Therefore, from the above considerations, we have that if an (LF)-space
E = ind n En satisfies the condition (M), then E is strongly boundedly retractive.

Valdivia in [24, Page 161] showed that an (LF)-space E = ind n En satisfies the condition
(M0) if, and only if, for all m ∈ N there is an absolutely convex 0-neighborhood Um of Em

with Um ⊆ Um+1 such that, given any n ∈ N there is an integer μ > n such that σ(E, E ′)
and σ(Eμ, E ′

μ) coincide on Um .

2.2 Operators acting on (LF)-spaces

A linear operator between the lcHs X andY is called bounded if itmaps some 0-neighborhood
of X into a bounded subset of Y , while it is said to be compact if it maps some 0-neighborhood
of X into a relatively compact subset of Y . In the following, we characterize the boundedness
and compactness of operators acting between (LF)-spaces. For this issue, we denote by B(X)

the set of the bounded subsets of a lcHs X .
We start recalling a known result of Grothendieck [14] and a similar one.

Lemma 2.2 (1) LetG beametrizable lcHs. Then for every family of bounded subsets (Bj ) j∈N
of G, there exists a sequence (λ j ) j∈N ∈ (0,∞)N such that

⋃∞
j=1 λ j B j ∈ B(G).

(2) Let G be a metrizable lcHs. Then for every family of precompact subets (C j ) j∈N of G,
there exists a sequence (λ j ) j∈N ∈ (0,∞)N such that

⋃∞
j=1 λ jC j is precompact in G.

We use the previous lemma to give the following characterizations.

Proposition 2.3 Let E = ind n En and F = ind n Fn be two (LF)-spaces. The following
assertions hold:

(1) Assume that F is regular. Then the linear operator T : E → F is bounded if, and only if,
there exists n ∈ N such that for all m ∈ N we have that T (Em) ⊂ Fn and the restriction
T : Em → Fn is bounded.
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(2) Assume that F satisfies the condition (M). Then the linear operator T : E → F is
compact if, and only if, there exists n ∈ N such that for all m ∈ N we have that the
restriction T : Em → Fn is compact.

.

Proof Both the proofs are analogous. Hence, we show the claim for the compactness.
Suppose that T : E → F is compact. By assumption,we canfind a 0-neighborhoodU of E

such that T (U ) is relatively compact in F . Note that in F , since it is complete, precompactness
and relative compactness are the same. Since F is equivalently precompactly retractive, we
can find n ∈ N such that T (U ) is precompact in Fn . For all m ∈ N the set U ′ := U ∩ Em is
a 0-neighborhood in Em such that T (U ′) ⊂ T (U ) ⊂ Fn . Since T (U ) is precompact in Fn ,
the same also holds for T (U ′). This means that the map T : Em → Fn is compact.

We assume now that the condition is fulfilled and prove that T : E → F is compact.
By assumption, there exists n ∈ N such that for all m ∈ N we can find a 0-neighborhood
Um in Em such that T (Um) is precompact in Fn . Now we apply Lemma 2.2 at the Fréchet
space Fn to find a sequence (λm)m∈N ∈ (0,∞)N such that

⋃∞
m=1 λmT (Um) is precompact

in Fn . Set U := �
(⋃∞

m=1 λmUm
)
, where � denotes the absolutely convex hull of the union.

Clearly U is a 0-neighborhood of E satisfying T (U ) ⊂ �
(⋃∞

m=1 λmT (Um)
)
, which is a

precompact subset of Fn , since the absolutely convex hull of a precompact set in a lcHs is
still precompact. Therefore, we obtain that T (U ) is precompact in Fn and so in F . ��

Given X , Y two lcHs, a linear operator T : X → Y is called Montel if it maps bounded
subsets of X into relatively compact subsets of Y . If X and Y are Banach spaces, then
T : X → Y is Montel if, and only if, it is compact. For an operator between (LF)-spaces we
have the following result.

Proposition 2.4 Let E = ind n En and F = ind n Fn be two (LF)-spaces. Suppose that F
satisfies the condition (M), and E is regular. Then the continuous linear operator T : E → F
isMontel if, and only if, for allm ∈ N there exists n ∈ N such that the restriction T : Em → Fn
is Montel.

Proof Suppose that T : E → F is Montel. Fixed m ∈ N, by the continuity of T there exists
n ∈ N such that T : Em → Fn is continuous (see [14]). Since F is in particular strongly
boundedly retractive, we choose a n′ ≥ n as in the definition of the condition and prove that
T : Em → Fn′ is Montel. If we take B a bounded subset of Em , due to the continuity of T
we have that T (B) is bounded in Fn . Moreover, by assumption, T (B) is relatively compact
in F . Hence, the topologies on T (B) induced by F and Fn′ coincide, since F is strongly
boundedly retractive. This means that T (B) is relatively compact also in Fn′ .

We assume now that the condition is fulfilled and prove that T : E → F is Montel. Fix
a bounded subset B of E . Due to the regularity of E , we can find m ∈ N such that B is
bounded in Em . By assumption, there exists n ∈ N such that the restriction T : Em → Fn is
Montel. Hence, T (B) is relatively compact in Fn and so in F . ��
Remark 2.5 In the proof of Proposition 2.4, to show that the condition is sufficient, we only
use the assumption of the regularity of E .

We recall that given X , Y two lcHs, an operator T : X → Y is called reflexive if it maps
bounded subsets of X into relatively weakly compact subsets of Y . If Y is reflexive, then
a continuous linear operator T : X → Y is reflexive. We refer the reader to [16] for more
details.

We give the following characterization concerning (LF)-spaces.
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Proposition 2.6 Let E = ind n En and F = ind n Fn be two (LF)-spaces. Suppose that F
satisfies the condition (M0), and E is regular. Then the continuous linear operator T : E →
F is reflexive if, and only if, for all m ∈ N there exists n ∈ N such that the restriction
T : Em → Fn is reflexive.

Proof Suppose that T : E → F is reflexive. Fixedm ∈ N, by the continuity of T there exists
n ∈ N such that T : Em → Fn is continuous (see [14]). If we take B a bounded subset of
Em , due to the continuity of T we have that T (B) is bounded in Fn . Since F satisfies the
condition (M0), taking into account Valdivia’s result [24, Page 161] there exists an increasing
sequence (Uk)k∈N of subsets of F such that Uk is an absolutely convex 0-neighborhood of
Fk for all k ∈ N and the topologies induced on Uk from σ(F, F ′) and σ(Fn′ , F ′

n′) coincide,
for some n′ > k. From the boundedness of T (B), we can find λ > 0 such that T (B) ⊂ λUn .
Moreover, by assumption, T (B) is relatively weakly compact in F . This implies that T (B)

is relatively weakly compact in Fn′ , that means that T : Em → Fn′ is reflexive.
We assume now that the condition is fulfilled and prove that T : E → F is reflexive. Fix a

bounded subset B of E . Due to the regularity of E , we can findm ∈ N such that B is bounded
in Em . By assumption, there exists n ∈ N such that T : Em → Fn is reflexive. Hence, T (B)

is relatively weakly compact in Fn and so in F . ��

3 The sequence (LF)-spaces lp(V)

In this section, we introduce the sequence (LF)-spaces l p(V) and recall the main properties
of these spaces concerning regularity and completeness.

For all n ∈ N, Vn = (
vn,k

)
k∈N is a countable family of (strictly) positive sequences, called

weights, on N. We denote by V the sequence (Vn)n∈N and we assume that the following two
conditions are satisfied:

(1) vn,k(i) ≤ vn,k+1(i) for all n, k ∈ N and i ∈ N;
(2) vn,k(i) ≥ vn+1,k(i) for all n, k ∈ N and i ∈ N.

Given a system of weights V as above, for n, k ∈ N and 1 ≤ p ≤ ∞ we define as usual

l p(vn,k) := {
x = (xi )i∈N ∈ ω | pvn,k (x) := ‖(xivn,k(i))i∈N‖p < ∞}

,

where ‖ · ‖p denotes the usual l p norm. For p = 0 we set

c0(vn,k) :=
{

x = (xi )i∈N ∈ ω | lim
i→∞ vn,k(i)xi = 0

}

.

These spaces are Banach with the corresponding pvn,k norms and c0(vn,k) is Banach with the
norm inherited from l∞(vn,k). Since l p(vn,k+1) is continuously embedded into l p(vn,k), the
sequence {l p(vn,k)}k∈N of Banach spaces forms a projective spectrum. Hence, for all n ∈ N

and 1 ≤ p ≤ ∞, we can consider the echelon spaces

λp(Vn) :=
⋂

k∈N
l p(vn,k) and λ0(Vn) :=

⋂

k∈N
c0(vn,k).

Endowed with the projective topologies λp(Vn) = proj k l p(vn,k) (resp. λ0(Vn) =
proj k c0(vn,k)), these spaces are Fréchet with the topology defined by the corresponding
seminorms pn,k := pvn,k , k ∈ N.

Condition (2) implies that λp(Vn) is continuously embedded into λp(Vn+1). Hence, the
sequence {λp(Vn)}n∈N for 1 ≤ p ≤ ∞ ∪ {0} of Fréchet spaces forms an inductive spectrum
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and the spaces

l p(V) :=
⋃

n∈N
λp(Vn) and l0(V) :=

⋃

n∈N
λ0(Vn)

endowed with the inductive topologies l p(V) := ind n λp(Vn) (resp. l0(V) := ind n λ0(Vn))
are (LF)-spaces.

To describe the inductive topology of these spaces, we can associate to l p(V) the Nachbin
family in the usual way (see [8, 24]). Set

V :=
{

v = (vi )i∈N ∈ (0,∞)N | ∀n ∈ N ∃k = k(n) ∈ N : sup
i∈N

vi

vn,k(i)
< ∞

}

.

A sequence v belongs to V if, and only if, vi = infn∈N αnvn,k(n)(i), for some αn > 0,
k(n) ∈ N and for all i ∈ N. For 1 ≤ p ≤ ∞ we define in the usual way the Banach spaces

l p(v) := {x = (xi )i∈N | ‖(vi xi )i∈N‖p < ∞} and c0(v) :=
{

x = (xi )i∈N | lim
i→∞ vi xi = 0

}

.

For 1 ≤ p ≤ ∞ or p = 0 we denote by

Kp(V ) := proj
←

v∈V
lp(v) and K0(V ) := proj

←
v∈V

c0(v).

The spaces Kp(V ), for 1 ≤ p ≤ ∞ ∪{0}, are complete, being a projective limit of complete
spaces, and their seminorms will be denoted by pv , v ∈ V , when p is fixed and no confusion
shall arise.

Remark 3.1 The inclusion l p(V) ↪→ Kp(V ), for 1 ≤ p < ∞ ∪ {0}, is a topological
isomorphism into as a consequence of [24, Proposition 5.1].

For p = ∞, the inclusion l∞(V) ↪→ K∞(V ) also holds. We need to require, in addi-
tion, that the system of weights V satisfies the following condition (see [8, Theorem 7]):
∀(k(n))n∈N ⊂ N ∃v ∈ V ∀m ∈ N, wm ∈ Wm ∃M ∈ N such that

min
(
wm, v−1) ≤

M∑

n=1

v−1
n,k(n), (3.1)

where Wm denotes the system of all non-negative sequences which are dominated by
sequences of the form infk∈N αkv

−1
m,k(m), for some αk > 0, k(m) ∈ N. In the (LB)-case,

condition (3.1) is equivalent to condition (D) of Bierstedt and Meise (see [7]).
Furthermore, the inclusion l p(V) ↪→ Kp(V ), for 1 ≤ p < ∞ ∪ {0}, is also with dense

range. This means that Kp(V ) = l̂ p(V), where l̂ p(V) stands for the topological completion
of l p(V).

In the following,we recall the conditions forwhichwehave that l p(V) = Kp(V ) algebraically
and also topologically. Due to Remark 3.1, l p(V) = Kp(V ) if, and only if, the (LF)-space
l p(V) is complete.

In our context, the characterization of the regularity is due to Vogt [24], in terms of a
condition on the system of weights V .
Definition 3.2 We say that the sequence V = ((

vn,k
)
k∈N

)
n∈N satisfies the condition (WQ)

(or is of type (WQ)) if

∀n ∈ N ∃μ,m ∈ N ∀k, N ∈ N, ∃K ∈ N, S > 0, s.t .∀i ∈ N :
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vm,k(i) ≤ S(vn,μ(i) + vN ,K (i)).

Definition 3.3 We say that the sequence V = ((
vn,k

)
k∈N

)
n∈N satisfies the condition (Q) (or

is of type (Q)) if

∀n ∈ N ∃μ,m ∈ N ∀k, N ∈ N, R > 0 ∃K ∈ N, S > 0, s.t .∀i ∈ N :
vm,k(i) ≤ 1

R
vn,μ(i) + SvN ,K (i).

In [24], is shown the link between the (M) and (M0)-conditions (i.e., the acyclicity
and weak-acyclicity) and the (Q) and (WQ)-conditions. We find the characterization of the
regularity of the (LF)-spaces l p(V) in the following theorem of Vogt (see [24]).

Theorem 3.4 (1) For 1 < p < ∞, the following conditions are equivalent:

(i) V satisfies the condition (WQ);
(ii) l p(V) is regular;
(iii) l p(V) is complete;
(iv) l p(V) is reflexive.

(2) For p = 1,∞, the following conditions are equivalent:

(i) V satisfies the condition (WQ);
(ii) l p(V) is regular;
(iii) l p(V) is complete.

(3) For p = 0, the following conditions are equivalent:

(i) V satisfies the condition (Q);
(ii) l0(V) is regular;
(iii) l0(V) is complete.

By Remark 3.1 and Theorem 3.4 (see also [8]), we have

l0(V) = K0(V ) alg. and top. ⇔ V satisfies the condition (Q) (3.2)

l∞(V) = K∞(V ) alg. and top. ⇔ V satisfies the conditions (WQ) + (3.1) (3.3)

l p(V) = Kp(V ) alg. and top. 1 ≤ p < ∞ ⇔ V satisfies the condition (WQ). (3.4)

This result means that the inductive limit topology of the (LF)-spaces l p(V), under the above
conditions (3.2), (3.3), (3.4), coincide with the lc’one induced by the family of seminorms
(pv)v∈V .

4 Diagonal operators acting on lp(V)

From now on, we work with diagonal (multiplication) operators on the sequence (LF)-spaces
l p(V). We denote by ω the space of all the sequences ϕ = (ϕi )i∈N ∈ C

N. Given a sequence
ϕ = (ϕi )i∈N ∈ ω, we define the multiplication (or diagonal) operator as Mϕ : ω → ω such
that (xi )i∈N �→ (xiϕi )i∈N. If Mϕ acts continuously from a sequence lcHs X into a sequence
lcHs Y , we say that ϕ is a multiplier from X to Y .

Firstly, we characterize the multipliers between the sequence (LF)-spaces l p(V).

Theorem 4.1 Let V,W be two systems of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p ≤
∞ ∪ {0}, the following properties are equivalent:
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(1) Mϕ : l p(V) → l p(W) is well-defined;
(2) Mϕ : l p(V) → l p(W) is continuous;
(3) For all m ∈ N there exists n ∈ N such that for all k ∈ N there exist l ∈ N for which

sup
i∈N

wn,k(i)|ϕi |
vm,l(i)

< ∞. (4.1)

Proof Clearly, (2) implies (1) and (1) implies (2) by the ClosedGraph Theorem [16, Page 57].
Indeed, if x = (xi )i ⊂ l p(V) is a net convergent to x in l p(V) and (Mϕ(xi ))i is convergent
to y in l p(W), then y = ϕx = Mϕ(x). This proves that the graph of Mϕ is closed.

We prove the statement for 1 ≤ p ≤ ∞. The proof in the case p = 0 is analogous and so
is omitted.

(2)⇔(3). The diagonal operator Mϕ : l p(V) → l p(W) is continuous if, and only if, for all
m ∈ N the diagonal operator Mϕ : λp(Vm) → l p(W) is continuous. From Grothendieck’s
Factorization Theorem [14, Page 147], Mϕ is continuous if, and only if, for all m ∈ N there
exists n ∈ N such that Mϕ : λp(Vm) → λp(Wn) is well-defined and continuous. Now the
diagonal operator between the echelon spaces is continuous if, and only if, for all k ∈ N

there exists l ∈ N such that Mϕ : l p(vm,l) → l p(wn,k) is continuos. Consider the isometries
Mvm,l : l p(vm,l) → l p such that (xi )i∈N �→ (vm,l(i)xi )i∈N and Mwn,k : l p(wn,k) → l p such

that (xi )i∈N �→ (wn,k(i)xi )i∈N. Setting φ :=
(

wn,k (i)ϕi
vm,l (i)

)

i∈N, then Mφ = Mwn,k ◦Mϕ ◦M−1
vm,l

.

Taking into account that Mφ : l p → l p is continuous if, and only if, φ is bounded (see [4,
Lemma 15]), we get (4.1).

��
A similar characterization holds for the boundedness of multiplication operators between
the sequence (LF)-spaces l p(V). We need to recall the characterization of boundedness for
operators acting between Fréchet spaces (see [4, Lemma 25]).

Lemma 4.2 Let E = proj m Em and F = proj m Fm be Fréchet spaces such that E =⋂∞
m=1 Em,with each (Em, ‖·‖m)aBanach space (resp. F = ⋂∞

m=1 Fm,with each (Fm, ‖·‖m)

a Banach space). Moreover, it is assumed that E is dense in Em and that Em ↪→ Em+1 for all
m ∈ N (resp. Fm ↪→ Fm+1 for all m ∈ N). Then the continuous linear operator T : E → F
is bounded if, and only if, there exists l ∈ N such that for all k ∈ N the operator T has a
unique continuous linear extension T : El → Fk.

Remark 4.3 We observe that Lemma 4.2 continues to hold even if T is not assumed to be
continuous. The result follows with the same proof contained in [4, Lemma 25].

Theorem 4.4 Let V,W be two systems of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p <

∞ ∪{0}, assume that l p(W) is regular. Then Mϕ is bounded if, and only if, there exists n ∈ N

such that for all m ∈ N there exists l ∈ N such that for all k ∈ N

sup
i∈N

wn,k(i)|ϕi |
vm,l(i)

< ∞. (4.2)

Proof By Proposition 2.3 (1), Mϕ : l p(V) → l p(W) is bounded if, and only if, there exists
n ∈ N such that for all m ∈ N the restriction Mϕ : λp(Vm) → λp(Wn) is bounded. Using
Lemma 4.2, this holds if, and only if, there exists l ∈ N such that for all k ∈ N the operator
Mϕ has a unique continuous linear extension Mϕ : l p(vm,l) → l p(wn,k). As in the proof of
Theorem 4.1, this is equivalent to requiring that (4.2) is satisfied.

The same also holds for p = 0. ��
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The next target is to describe when a diagonal operator between the sequence (LF)-spaces
l p(V) is compact. Before giving the result, we need to recall the characterization of the
compactness of multiplication operators between the Banach spaces l p and c0. The proof is
left to the reader.

Lemma 4.5 Let φ ∈ ω. The following assertions hold:

(1) The multiplication operator Mφ : c0 → c0 is compact if, and only if, φ ∈ c0.
(2) For 1 ≤ p < ∞, the multiplication operator Mφ : l p → l p is compact if, and only if,

φ ∈ c0.

As for the boundedness, we also need a characterization of the compactness for operators
acting between Fréchet spaces. Again we refer to [4].

Lemma 4.6 Let E = proj m Em and F = proj m Fm be Fréchet spaces such that E =⋂∞
m=1 Em,with each (Em, ‖·‖m)aBanach space (resp. F = ⋂∞

m=1 Fm,with each (Fm, ‖·‖m)

a Banach space). Moreover, it is assumed that E is dense in Em and that Em ↪→ Em+1 for all
m ∈ N (resp. Fm ↪→ Fm+1 for all m ∈ N). Then the linear operator T : E → F is compact
if, and only if, there exists l ∈ N such that for all k ∈ N the operator T has a unique compact
linear extension T : El → Fk.

Theorem 4.7 Let V,W be two systems of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p <

∞ ∪ {0}, assume that l p(W) satisfies the condition (M). Then Mϕ is compact if, and only if,
there exists n ∈ N such that for all m ∈ N there exists l ∈ N such that for all k ∈ N

lim
i→∞

wn,k(i)|ϕi |
vm,l(i)

= 0. (4.3)

Proof By Proposition 2.3 (2), Mϕ : l p(V) → l p(W) is compact if, and only if, there exists
n ∈ N such that for all m ∈ N the restriction Mϕ : λp(Vm) → λp(Wn) is compact. Using
Lemma 4.6, this holds if, and only if, there exists l ∈ N such that for all k ∈ N the extension
Mϕ : l p(vm,l) → l p(wn,k) is compact. We prove that it is equivalent to the limit (4.3).
Consider the isometries Mvm,l : l p(vm,l) → l p such that (xi )i∈N �→ (vm,l(i)xi )i∈N and

Mwn,k : l p(wn,k) → l p such that (xi )i∈N �→ (wn,k(i)xi )i∈N. Setting φ :=
(

wn,k (i)ϕi
vm,l (i)

)

i∈N,
then Mφ = Mwn,k ◦ Mϕ ◦ M−1

vm,l
. Thus, Mϕ is compact if, and only if, Mφ : l p → l p is

compact. Due to Lemma 4.5, this holds if, and only if, φ ∈ c0, i.e., if φ vanishes at infinity.
The same also holds for p = 0. ��

To describe when diagonal operators between the sequence (LF)-spaces l p(V) are Montel,
firstly, we characterize when diagonal operators between the echelon spaces are Montel.

Remark 4.8 We recall a known result about the relative compactness for l p (see [19, Chapter
15]). For 1 ≤ p < ∞, a subset K of l p is relatively compact if, and only if, for every ε > 0
there exists j0 ∈ N such that for every x ∈ K we have

∑∞
j= j0+1 |x j |p < ε p . Analogously,

for p = 0 a subset K of c0 is relatively compact if, and only if, for every ε > 0 there exists
j0 ∈ N such that for every x ∈ K we have sup j≥ j0+1 |x j | < ε.

Let A = (an)n∈N denote a Köthe matrix, i.e., an increasing sequence of strictly positive
functions an . We consider

λ∞(A)+ = {x = (xi )i∈N ∈ ω | ‖(anx)n∈N‖∞ < ∞ and xi > 0 ∀i ∈ N}.
The following useful description of the bounded sets in a Köthe echelon space is due to
Bierstedt et al. [9].
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Proposition 4.9 Let A = (an)n∈N be a Köthe matrix. For 1 ≤ p < ∞ ∪ {0}, a subset
B of λp(A) is bounded if, and only if, there exists a ∈ λ∞(A)+ such that B ⊆ Ba :={

x ∈ ω |
∥
∥
∥
(

xi
a(i)

)

i∈N

∥
∥
∥
p

≤ 1

}

.

First of all, we study the case p < ∞. Fixed a weight v, we recall that c0 is isomorphic

to c0(v) through to the map (xi )i∈N �→
(

xi
v(i)

)

i∈N. Hence, taking into account Remark 4.8,

a subset K of c0(v) is relatively compact if, and only if, for every ε > 0 there exists j0 ∈ N

such that for every x ∈ K we have sup j≥ j0+1 v( j)|x j | < ε. Analogously for 1 ≤ p < ∞.

Proposition 4.10 Let A = (an)n∈N, B = (bm)m∈N be two Köthe matrices and fix ϕ =
(ϕi )i∈N ∈ ω. For 1 ≤ p < ∞ ∪ {0}, assume that Mϕ : λp(A) → λp(B) is continuous. The
diagonal operator Mϕ is Montel if, and only if, for every a ∈ λ∞(A)+ and for all m ∈ N

lim
i→∞ a(i)|ϕi |bm(i) = 0. (4.4)

Proof Observe that from [22,Lemma1],Mϕ : λp(A) → λp(B) is continuous for 1 ≤ p < ∞
if, and only if, Mϕ : λ0(A) → λ0(B) is continuous. We prove the statement for p = 0. The
proof in the case 1 ≤ p < ∞ is analogous and so is omitted.

Suppose that Mϕ : λ0(A) → λ0(B) is Montel. Given a ∈ λ∞(A)+ and m ∈ N, the set
Ba is bounded in λ0(A) due to Proposition 4.9. By assumption, Mϕ is Montel, so Mϕ(Ba)

is relatively compact in λ0(B) and hence in c0(bm). Now it is easy to see that a( j)e j ∈ Ba

for all j ∈ N. Moreover, Mϕ((a( j)e j ) j∈N) = (ϕ j a( j)e j ) j∈N. Furthermore, the sequence
(ϕ j a( j)e j ) j∈N converges to 0 coordinatewise in C

N. Since Mϕ(Ba) is relatively compact
in c0(bm), the topology of c0(bm) on Mϕ(Ba) coincides with the topology induced by C

N.
This means that the sequence (ϕ j a( j)e j ) j∈N converges to 0 in c0(bm) and so (4.4) holds
(‖e j‖c0(bm ) = bm( j)).

We assume now that the condition is fulfilled and prove that Mϕ : λ0(A) → λ0(B) is
Montel.Wewant to prove that for afixedbounded subsetB ofλ0(A) the setMϕ(B) is relatively
compact in c0(bm) for all m ∈ N. To do this, since B is bounded, we apply Proposition 4.9
and choose a ∈ λ∞(A)+ such that B ⊂ Ba . It suffices to show that Mϕ(Ba) is relatively
compact in c0(bm) for allm ∈ N, that is, using Remark 4.8, for every ε > 0 andm ∈ N there
exists j0 ∈ N such that for every y ∈ Mϕ(Ba) we have sup j≥ j0+1 bm( j)|y j | < ε. Hence,
fixedm ∈ N and ε > 0, since (4.4) holds, we can choose j0 ∈ N such that a( j)|ϕ j |bm( j) < ε

for all j ≥ j0 + 1. If y ∈ Mϕ(Ba), then y = (yi )i∈N = (ϕi xi )i∈N and |xi | ≤ a(i) for all
i ∈ N. Then, if j ≥ j0 + 1 and y ∈ Mϕ(Ba), we get

|y j |bm( j) ≤ a( j)|ϕ j |bm( j) < ε.

��
Therefore, the case p < ∞ is characterized. Now we prove that the same characterization
holds for p = ∞.

Proposition 4.11 Let A = (an)n∈N, B = (bm)m∈N be two Köthe matrices and fix ϕ =
(ϕi )i∈N ∈ ω. Assume that Mϕ : λ∞(A) → λ∞(B) is continuous. Then Mϕ is Montel if, and
only if, Mϕ : λ0(A) → λ0(B) is Montel.

Proof First of all, let observe that Mϕ : λ∞(A) → λ∞(B) is continuous if, and only if,
Mϕ : λ0(A) → λ0(B) is continuous (see [22, Lemma 1]). Moreover, if Mϕ : λ∞(A) →
λ∞(B) is Montel and B is a bounded subset of λ0(A), then Mϕ(B) is relatively compact in
λ∞(B) and hence in λ0(B), since λ0(B) is a closed subspace of λ∞(B) andMϕ(B) ⊂ λ0(B).
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We suppose that Mϕ : λ0(A) → λ0(B) is Montel. Applying [13, Corollary 2.3], then
Mt

ϕ : λ0(A)′b → λ0(B)′b is Montel. Note that λ0(A)′b and λ0(B)′b are complete (LB)-spaces
(see [6, Proposition 10]). Then applying [13, Corollary 2.4], we get that Mtt

ϕ : (λ0(A)′b)′b →
(λ0(B)′b)′b is Montel. Since Mtt

ϕ = Mϕ on λ∞(A) and λ∞(A) is the bidual of λ0(A) (resp.
λ∞(B) is the bidual of λ0(B)), we get the claim. ��
Thus, we can characterize when a diagonal operator between the sequence (LF)-spaces l p(V)

is Montel. The proof is an application of Propositions 2.4, 4.10 and 4.11.

Theorem 4.12 Let V , W be two systems of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p ≤
∞ ∪ {0} assume that l p(V) is regular and lp(W) satisfies the condition (M). Suppose that
the diagonal operator Mϕ : l p(V) → l p(W) is continuous. Then Mϕ is Montel if, and only
if, for all m ∈ N there exists n ∈ N such that for every vm ∈ λ∞(Vm)+ and for all k ∈ N

lim
i→∞ vm(i)|ϕi |wn,k(i) = 0.

Now we treat the reflexivity of diagonal operators.
To study the Köthe echelon case, we have to make a distinction. For p = 1, 0,∞, we want

to show that a diagonal operator acting between the echelon spaces isMontel if, and only if, it
is reflexive. Let A = (an)n∈N, B = (bm)m∈N be twoKöthematrices and fix ϕ = (ϕi )i∈N ∈ ω.
For p = 1, 0,∞, assume that Mϕ : λp(A) → λp(B) is continuous (see [22, Lemma 1]). We
have:

(i) If p = 1, by Schur’s Theorem (see [26, Page 136]) a bounded subset B of λ1(A) is weakly
(relatively) compact if, and only if, it is (relatively) compact. So, Mϕ : λ1(A) → λ1(B)

is reflexive if, and only if, it is Montel;
(ii) If p = 0, we prove that Mϕ : λ0(A) → λ0(B) is reflexive if, and only if, it is Montel. We

only have to show that the condition is necessary. So, suppose that Mϕ : λ0(A) → λ0(B)

is reflexive. By a result of Grothendieck [14] (see also [16, Page 204]), this implies
that Mϕ = Mtt

ϕ maps λ∞(A) = (λ0(A)′b)′b in λ0(B). In particular, we have that
Mϕ(λ∞(A)+) ⊂ λ0(B). This is equivalent to requiring that for every a ∈ λ∞(A)+
and m ∈ N

lim
i→∞ a(i)|ϕi |bm(i) = 0.

By Proposition 4.10, since (4.4) holds, we get the claim.
(iii) If p = ∞, we have that Mϕ : λ∞(A) → λ∞(B) is reflexive if, and only if, it is Montel.

Indeed applying [13, Corollaries 2.3, 2.4], Mϕ : λ∞(A) → λ∞(B) reflexive implies
Mϕ : λ0(A) → λ0(B) reflexive. From the above case (ii), we get that this is equivalent
to being Montel.

Thus, we can give a first characterization. The proof is an application of Propositions 2.4, 2.6
and the above considerations.

Theorem 4.13 Let V , W be two systems of weights and fix ϕ = (ϕi )i∈N ∈ ω. For p =
1, 0,∞, assume that l p(V) is regular and lp(W) satisfies the condition (M0). Suppose that
the diagonal operator Mϕ : l p(V) → l p(W) is continuous. Then Mϕ is reflexive if, and only
if, Mϕ is Montel.

Proof We only have to prove that if Mϕ is reflexive, then Mϕ is Montel. By Proposition 2.6,
for allm ∈ N there exists n ∈ N such that the restrictionMϕ : λp(Vm) → λp(Wn) is reflexive.
But Mϕ : λp(Vm) → λp(Wn) is reflexive if, and only if, it is Montel. Therefore, applying
Proposition 2.4, the diagonal operator Mϕ is Montel (take into account Remark 2.5). ��
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Now we consider the case 1 < p < ∞. Observe that since λp(A) and λp(B) are reflexive
spaces [6, Proposition 9], trivially the diagonal operator Mϕ : λp(A) → λp(B) is reflexive.
But in general, the diagonal operator does not necessarily have to be Montel, since it is not
Montel even between the Banach spaces l p (take an = bn = 1).

In this case, what we have is this characterization. The proof is an obvious consequence
of Theorem 3.4.

Proposition 4.14 Let V , W be two systems of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 <

p < ∞, assume that l p(W) is regular. Then the diagonal operator Mϕ : l p(V) → l p(W) is
continuous if, and only if, it is reflexive.

5 Spectrum of diagonal operators acting on lp(V)

Let X be a lcHs and let L(X) denote the space of all continuous linear operators from X into
itself. Given T ∈ L(X), the resolvent set of T is defined by

ρ(T , X) := {λ ∈ C | λI − T : X → X is bijective and (λI − T )−1 ∈ L(X)}
and the spectrum of T is defined by σ(T , X) := C \ ρ(T , X). The point spectrum is defined
by

σp(T , X) := {λ ∈ C | λI − T is not injective}.
Unlike for Banach spaces, it may happens that ρ(T , X) = ∅ or that ρ(T , X) is not open
in C (see, e.g., [3]). This is the reason why many authors consider the subset ρ∗(T , X) of
ρ(T , X) consisting of all λ ∈ C for which there exists δ > 0 such that Bδ(λ) := {μ ∈
C | |μ − λ| < δ} ⊆ ρ(T , X) and the set {(μI − T )−1 | μ ∈ Bδ(λ)} is equicontinuous
in L(X). If X is a Fréchet space, then it suffices that this set is bounded in Ls(X), where
Ls(X) denotesL(X) endowedwith the strong operator topology. The advantage of ρ∗(T , X),
whenever it is not empty, is that it is open and the resolvent map is holomorphic from
ρ∗(T , X) into Lb(X) (see, e.g., [2, Proposition 3.4]), where Lb(X) denotes L(X) endowed
with the topology of the uniformconvergence on bounded subsets of X ). Define theWaelbrock
spectrum σ ∗(T , X) := C \ ρ∗(T , X), which is a closed set containing σ(T , X).

We start studying the point spectrum of the diagonal operators. The proof of this result is
standard and so is omitted (see [4] for an analogous one).

Lemma 5.1 Let V be a system of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p ≤ ∞ ∪ {0}
we have that

σp(Mϕ, l p(V)) = {ϕi | i ∈ N}.
We determine the resolvent set of the diagonal operators acting between the sequence

(LF)-spaces l p(V). Compare with [22, Proposition 1] for Köthe echelon spaces.

Proposition 5.2 LetV be a system of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p ≤ ∞ ∪{0},
the following assertions are equivalent:

(1) μ ∈ ρ(Mϕ, l p(V));
(2) For all m ∈ N there exists n ∈ N such that for all k ∈ N there exist l ∈ N for which

sup
i∈N

vn,k(i)

vm,l(i)|ϕi − μ| < ∞. (5.1)
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Proof Define φ := (φi )i∈N ∈ ω such that φi := 1
ϕi−μ

. Clearly, Mφ is the continuous inverse
of Mϕ −μI , whenever it exists. Applying Theorem 4.1, we obtain the equivalence of (1) and
(2). ��

Now we determine the Waelbrock spectrum. In contrast to what happens for the diagonal
operators acting betweenKöthe echelon spaces [22, Theorem1], for the sequence (LF)-spaces
l p(V) we have to require the completeness of the inductive limit.

Theorem 5.3 Let V be a system of weights and fix ϕ = (ϕi )i∈N ∈ ω, For 1 ≤ p ≤ ∞ ∪ {0},
suppose that l p(V) = Kp(V ) algebraically and topologically (see (3.2), (3.3), (3.4)). Then

σ ∗(Mϕ, l p(V)) = σ(Mϕ, l p(V)) = {ϕi | i ∈ N}. (5.2)

Proof Firstly, we prove the second equality of (5.2). By Lemma 5.1, we have that

{ϕi | i ∈ N} = σp(Mϕ, l p(V)) ⊆ σ(Mϕ, l p(V)) ⊆ σ(Mϕ, l p(V)),

and hence {ϕi | i ∈ N} ⊆ σ(Mϕ, l p(V)). For the other inclusion, let μ /∈ {ϕi | i ∈ N}. Then
there is δ > 0 such that |ϕi − μ| > 2δ for all i ∈ N. Therefore, arguing as in the proof of
Proposition 5.2, we deduce that μ ∈ ρ(Mϕ, l p(V)). Suppose that μ ∈ σ(Mϕ, l p(V)). This
implies thatμ ∈ ∂σ (Mϕ, l p(V)). Thus, there exists λ ∈ σ(Mϕ, l p(V)) such that |μ−λ| < δ.
Hence, for all i ∈ N we get

|ϕi − λ| ≥ |ϕi − μ| − |μ − λ| > δ.

Again, arguing as in the proof of Proposition 5.2, we deduce that λ ∈ ρ(Mϕ, l p(V)), which is
a contradiction. This prove that μ /∈ σ(Mϕ, l p(V)) and hence σ(Mϕ, l p(V)) ⊆ {ϕi | i ∈ N}.

Now we prove the first equality of (5.2). It is sufficient to prove that if λ /∈ {ϕi | i ∈ N},
then λ ∈ ρ∗(Mϕ, l p(V)). So, fix λ /∈ {ϕi | i ∈ N}. As done in the previous case, there exists
δ > 0 such that if |μ − λ| < 2δ, then μ ∈ ρ(Mϕ, l p(V)). Hence, we only have to show
that the set {(Mϕ − μI )−1 | |μ − λ| < δ} is equicontinuous. By Lemma 5.1, we know that
ϕi ∈ σ(Mϕ, l p(V)), and thus |ϕi − μ| ≥ 2δ for all i ∈ N. If μ ∈ C is such that |μ − λ| < δ,
then for all i ∈ N we get that |ϕi − μ| > δ. For x ∈ l p(V) set yμ := (Mϕ − μI )−1x , i.e.,
yμ = M(

1
ϕi−μ

)

i

x , for all μ ∈ C with |μ − λ| < δ. Then, for all i ∈ N we have

|yμ
i | =

∣
∣
∣
∣

xi
ϕi − μ

∣
∣
∣
∣ ≤ |xi |

δ
.

Taking into account that l p(V) = Kp(V ) topologically by assumption, the inductive limit
topology is given by the seminorm system (pv)v∈V and

pv

(
(Mϕ − μI )−1x

) ≤ pv(x)

δ
,

for all v ∈ V and μ ∈ C with |μ − λ| < δ. This proves the equicontinuity of the set
{(Mϕ − μI )−1 | |μ − λ| < δ} and our thesis. ��

6 Ergodic properties

An operator T ∈ L(X), with X a lcHs, is called power bounded if {T n}n∈N is an
equicontinuous subset of L(X).
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The Cesàro means of an operator T ∈ L(X) are defined by

T[n] := 1

n

n∑

m=1

Tm, n ∈ N.

The operator T is called mean ergodic (resp. uniformly mean ergodic) if {T[n]}n∈N is a
convergent sequence inLs(X) (resp. inLb(X)). The Cesàro means of T satisfy the following
identity

T k

k
= T[k] − k − 1

k
T[k−1], k ≥ 2.

So, it is clear that T k

k → 0 in Ls(X) as k → ∞, whenever T is mean ergodic. Obviously,
this holds also whenever T is power bounded. If X is a Montel lcHs, then the operator T
is uniformly mean ergodic whenever it is mean ergodic. Furthermore, in reflexive Fréchet
spaces (or (LF)-spaces, see [1, Corollary 2.7]) every power bounded operator is necessarily
mean ergodic. If the space (or the (LF)-space, see [1, Proposition 2.8]) is Montel, every
power bounded operator is necessarily uniformly mean ergodic. The converse of these two
statements is not true in general (see, e.g., [15, Sect. 6]).

We start giving the following result. For Köthe echelon spaces, it is well-known (see [22,
Lemma 3]).

Lemma 6.1 Let V be a system of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p ≤ ∞ ∪ {0},
suppose that T := Mϕ ∈ L(l p(V)) satisfies that T k x

k → 0 as k → ∞ for each x ∈ l p(V).
Then ‖ϕ‖∞ ≤ 1. This holds in particular if T is power bounded or mean ergodic.

Proof For all j ∈ N, let e j = (δi, j )i∈N. The sequence (e j ) j∈N clearly belongs to l p(V ). By
assumption,

lim
k→∞

|ϕk
j |
k

= lim
k→∞

|(T ke j ) j |
k

= 0,

with (T ke j ) j the j-th coordinate of T ke j . This implies |ϕ j | ≤ 1 and so we get the thesis.

If T is power bounded or mean ergodic, then T k

k converges to 0 in Ls(l p(V )). ��
The condition of Lemma 6.1 is not only necessary, as the following theorem shows. We
use the characterization of the power boundedness of the diagonal operators acting between
Köthe echelon spaces, contained in [22, Proposition 2].

Lemma 6.2 Let A = (an)n∈N be a Köthe matrix and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p ≤
∞ ∪{0}, the diagonal operator Mϕ ∈ L(λp(A)) is power bounded if, and only if, ‖ϕ‖∞ ≤ 1.

Theorem 6.3 Let V be a system of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p ≤ ∞ ∪ {0},
the diagonal operator Mϕ ∈ L(l p(V)) is power bounded if, and only if, ‖ϕ‖∞ ≤ 1.

Proof If Mϕ is power bounded, from Lemma 6.1 we get that ‖ϕ‖∞ ≤ 1.
Suppose now that ‖ϕ‖∞ ≤ 1. For any x ∈ l p(V), there exists n ∈ N such that x ∈ λp(Vn).

It is easy to see that under the assumption |ϕi | ≤ ‖ϕ‖∞ ≤ 1 for all i ∈ N, the diagonal operator
is defined pointwise in such a way: Mϕ : λp(Vn) → λp(Vn). Applying Lemma 6.2, we get
that the diagonal operator is power bounded on the step λp(Vn). This implies that it is power
bounded on l p(V). ��
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The same also holds for the mean ergodicity. Again, we need to recall the characterization of
the mean ergodicity for the diagonal operators acting between Köthe echelon spaces given
in [22, Theorem 2].

Lemma 6.4 Let A = (an)n∈N be a Köthe matrix and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p <

∞ ∪ {0}, the diagonal operator Mϕ ∈ L(λp(A)) is mean ergodic if, and only if, ‖ϕ‖∞ ≤ 1.

Theorem 6.5 Let V be a system of weights and fix ϕ = (ϕi )i∈N ∈ ω. For 1 ≤ p < ∞ ∪ {0},
the diagonal operator Mϕ ∈ L(l p(V)) is mean ergodic if, and only if, ‖ϕ‖∞ ≤ 1.

Proof If Mϕ is mean ergodic, from Lemma 6.1 we get that ‖ϕ‖∞ ≤ 1.
Suppose now that ‖ϕ‖∞ ≤ 1. As done in Theorem 6.3, fixed x ∈ l p(V), the diagonal

operator is defined pointwise from λp(Vn) to λp(Vn), for some n ∈ N. Applying Lemma 6.4,
we get that {(Mϕ)[k]x}k∈N is a convergent sequence in λp(Vn). Since λp(Vn) is continuously
embedded into l p(V), we obtain the thesis. ��
Observe that in Theorems 6.3 and 6.5 completeness of l p(V) was not required.

Finally, we discuss the uniform mean ergodicity. In contrast to what happens for the
diagonal operators acting between Köthe echelon spaces [22, Theorem 3], for the sequence
(LF)-spaces l p(V) we have to require the completeness of the inductive limit.

Theorem 6.6 LetV be a system of weights and fixϕ = (ϕi )i∈N ∈ ω. For all 1 ≤ p ≤ ∞ ∪{0},
suppose that l p(V) = Kp(V ) algebraically and topologically (see (3.2), (3.3), (3.4)). The
following assertions are equivalent:

(1) Mϕ ∈ L(l∞(V)) is mean ergodic;
(2) Mϕ ∈ L(l∞(V)) is uniformly mean ergodic;
(3) Mϕ ∈ L(l0(V)) is uniformly mean ergodic;
(4) For 1 ≤ p < ∞, Mϕ ∈ L(l p(V)) is uniformly mean ergodic;
(5) ‖ϕ‖∞ ≤ 1 and for all n ∈ N, for each vn ∈ λ∞(Vn)+ and v ∈ V

lim
k→∞ sup

i∈N\J
vivn(i)|ϕi ||1 − ϕk

i |
k |1 − ϕi | = 0,

where J := {i ∈ N : ϕi = 1}.
Proof Fix a seminorm pv . In the present case these seminorms define the lc-topology of
l p(V). We may assume without loss of generality that ϕi �= 1 for all i ∈ N, that means
J = ∅. Otherwise, we split the space into two sectional subspaces and observe that in the
subspace in which ϕi = 1, the diagonal operator acts as the identity.

(1)⇒(5). Clearly ‖ϕ‖∞ ≤ 1, by Lemma 6.1. Fix n ∈ N, v ∈ V and vn ∈ λ∞(Vn)+. Since
Mϕ is mean ergodic and vn ∈ λ∞(Vn)+ ⊂ l∞(V), we have

lim
k→∞ sup

i∈N
vivn(i)|ϕi ||1 − ϕk

i |
k |1 − ϕi | = lim

k→∞ pv

(
(Mϕ)[k]vn

) = 0.

(5)⇒(4). We show that for a fixed B ∈ B(l p(V))

sup
(xi )i∈B

pv

(
(Mϕ)[k](x)

) → 0

as k → ∞. Observe that

sup
(xi )i∈B

pv

(
(Mϕ)[k](x)

) = sup
(xi )i∈B

(
∑

i∈N

(
vi |xi ||ϕi ||1 − ϕk

i |
k |1 − ϕi |

)p) 1
p

.
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Taking into account that by assumption l p(V) is regular (Theorem 3.4), there exists n ∈ N

such that B ∈ B(λp(Vn)). Hence, we can choose vn ∈ λ∞(Vn)+ as in Proposition 4.9, getting

sup
(xi )i∈B

pv

(
(Mϕ)[k](x)

) ≤ sup
i∈N

vivn(i)|ϕi ||1 − ϕk
i |

k |1 − ϕi | sup
(xi )i∈B

(
∑

i∈N

( |xi |
vn(i)

)p
) 1

p

≤ sup
i∈N

vivn(i)|ϕi ||1 − ϕk
i |

k |1 − ϕi | → 0, as k → ∞,

by assumption.
(5)⇒(2). It follows as in the previous case arguing with the l∞ norm.
(2)⇒(1). Trivial.
(4)⇒(5). Suppose that Mϕ is uniformly mean ergodic. In particular, Mϕ is mean

ergodic, hence from Theorem 6.5 ‖ϕ‖∞ ≤ 1. Fix vn ∈ λ∞(Vn)+ and v ∈ V and set

B :=
{

x ∈ ω |
∥
∥
∥
(

xi
vn(i)

)

i∈N

∥
∥
∥
p

≤ 1

}

. B is bounded in λp(Vn) from Proposition 4.9 and

hence in l p(V). Let x ∈ B.

Given j ∈ N such that ϕ j �= 1, we set y j
j := vn( j) and y j

i := 0 if j �= i . Then we put

y j = (y j
i )i∈N. We have that y j ∈ B and

pv

(
(Mϕ)[k](y j )

)
= v jvn( j)|ϕ j ||1 − ϕk

j |
k |1 − ϕ j | .

Therefore

sup
j∈N,ϕ j �=1

v jvn( j)|ϕ j ||1 − ϕk
j |

k |1 − ϕ j | ≤ sup
(xi )i∈B

pv

(
(Mϕ)[k](x)

) → 0, as k → ∞

since Mϕ is uniformly mean ergodic.
(3)⇒(5). It follows as in the previous case arguing with the l∞ norm.
(2)⇒(3). Trivial. ��
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