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Abstract
There are numerous cases of discrepancies between results obtained in the setting of real
Banach spaces and those obtained in the complex context. This article is a modern exposition
of the subtle differences between key results and theories for complex and real Banach spaces
and the corresponding linear operators between them.We deeply discuss some aspects of the
complexification of real Banach spaces and give several examples showing how drastically
different can be the behavior of real Banach spaces versus their complex counterparts.
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1 Introduction

By a complex (respectively, real) linear space, we mean a linear space over the field of
complex numbers C (respectively, real numbers R).

In the theory of Banach spaces and operator algebras these objects are usually considered
over the field of complex numbers, and a study over the field of real numbers has been
systematically studied in recent years (see [167]). Although R has very good properties
such as the Dedekind completion (i.e., every upper-bounded nonempty subset of R admits a
supremum) and the law of trichotomy (i.e., every nonzero real number is either positive or
negative), it fails to satisfy the fundamental theorem of algebra (i.e., there exist nonconstant
single-variable polynomials over R admitting no root in R). These facts entail that functional
analysts and operator theorists usually deal with complex linear spaces. Furthermore, there
are several pieces of evidence showing that complex linear spaces are more suitable to be
used in physics. For example, in quantum mechanics, the state of a system is described as
a vector in a complex Hilbert space. On more than one occasion, one has been faced with
results that are valid in the setting of complex Banach spaces and algebras but not in the
real context, and vice versa, for example, the existence of elements in a unital real Banach
algebra whose spectra contain no real numbers, or the impossibility of establishing a version
of the Mazur–Ulam theorem for complex normed spaces, which provides a complex affine
extension of every surjective isometry in that setting. Furthermore, we know from results by
Bourgain andSzarek the existence of two complexBanach spaceswhich are linearly isometric
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as real spaces but non-isomorphic as complex spaces [47, 251, 252]. An outstanding result
by Ferenczi shows that there exist two Banach spaces which are isometric as real spaces, but
totally incomparable as complex spaces; where two real or complex Banach spaces are said
to be totally incomparable if no infinite-dimensional subspace of the one is isomorphic to a
subspace of the other (see [89, Theorem 1]). Furthermore, this result shows that a theorem of
Godefroy and Kalton proving that if a separable real Banach space embeds isometrically into
a Banach space, then it embeds linearly isometrically into it (see [114]), cannot be extended
to the complex case.

In many topics such as real C∗-algebras, JB-algebras, real operator spaces, and KK -
theory, mathematicians studymathematical objects in the setting of real linear spaces; special
attention is received by bounded real linear operators acting on real Hilbert spaces. Thus, it
is an interesting problem to ask which results of the theory in the complex case still hold
for the real case, probably under some different hypotheses or more restricting assumptions,
and which facts valid in the complex case do not hold when we restrict ourselves to linear
spaces over the real field. Generally, there are some technical difficulties in translating the
known results related to the complex case to the real setting. One of the essential tools is
the “complexification” by means of which one may go from the real to the complex world
and prove the new results or employ some known facts and results, returning then to the real
setting in order to state the pursued results therein. This idea has been used many times with
the aim of extending the inherent results of complex analysis to a real setting.

A celebrated example of the use of complexification techniques to tackle a problem in a
real setting is the study of real analytic functions on (real) Banach spaces with the aid of the
properties of holomorphic functions. LetX and Y be Banach spaces over K = R or C and
let U ⊆ X be an open set. A mapping P : X → Y is an n-homogeneous polynomial if
there is an n-linear mapping L : X n → Y such that P(x) = L(x, . . . , x) for all x ∈ X .
The fact that a homogeneous polynomial P : X → Y or an n-linear mapping L : X n → Y
is continuous if and only if it is bounded on the unit ball, BX , of X , is a standard result
in the theory of polynomials between arbitrary Banach spaces (see, for instance, [80] for a
modern exposition on polynomials). If P : X → Y and L : X n → Y are a continuous
n-homogeneous polynomial and a continuous n-linear mapping, respectively, then we define
the norms of P and L by

‖P‖ = sup{‖P(x)‖ : x ∈ BX } and
‖L‖ = sup{‖L(x1, . . . , xn)‖ : x1, . . . , xn ∈ BX }, respectively.

A function f : U ⊆ X → Y is analytic (also called holomorphic in the case when
K = C) if f is defined by its Taylor series around every point a in U , that is,

f (x) =
∞∑

k=0
Pn(x − a), (1.1)

for all x in the open ball centered at a with radius ρ (B(a, ρ) in short), where Pn = 1
n! D̂

n f
(note that here D̂n f stands for the n-homogeneous polynomial associated with the n-th
Fréchet derivative of f ) and ρ > 0 is the radius of convergence of the series in (1.1). Recall
that ρ can be calculated by using the Cauchy–Hadamard formula

ρ = 1

lim supn ‖Pn‖
1
n

.

For more details on real and complex analytic mappings between Banach spaces, the reader
may consult [40–42, 80].
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It is well-known that in the case where X = Y = K, we have ρ = dist(a, ∂U ) and
that (1.1) is uniformly convergent to f on B(a, r) for all r ∈ (0, ρ). This is not necessarily
true for arbitrary X and Y , which motivates the definition of fully analytic functions. The
mapping f : X → Y is fully analytic in U if its Taylor series (1.1) converges uniformly in
every closed ball centered at a contained in U for each a ∈ U . Thus we define the radius of
analyticity, ρA, of f at a as the largest r > 0 such that f is fully analytic in the ball B(a, r).
Obviously, ρA ≤ ρ for every fully analytic mapping f : X → Y . Moreover, ifK = C, then
it follows from the Cauchy integral formula that ρA = ρ. It is not known whether ρA = ρ

is also true for real analytic functions. The interest in this problem can be traced back at
least to 1938, when Taylor [255] proved that ρA ≥ ρ√

2e
. Using the optimal complexification

constants of homogeneous polynomials (see [195]), the previous estimate can be improved to
ρA ≥ ρ

2 . A further improvement obtained byNguyen [200] in 2009 shows that ρA ≥ ρ√
e
. The

best estimate known nowadays is ρA ≥ ρ√
2
(see [117, 205]); however, that estimate can be

greatly improved for specific spaces. For instance, ρA = ρ for any (real or complex) Hilbert
space (see the discussion after the proof of [200, Theorem 1]). Also, it was established in
[49] that if ρA = ρ in �1(R), then we also have ρA = ρ for any real Banach space.

As shown in the previous paragraphs, the importance of complexifications is revealed in
the study of real analytic functions, but it manifests too in the study of many other impor-
tant questions being presented in the next sections. Complexifications have been employed
several times in the past, and nowadays are still subjected to study. A unified treatment on
complexifications was done in [195] (see also [157]), where, in addition to a number of gen-
eral results on the construction of several complexification norms, some optimal estimates
on the norm of the complex extension of polynomials and multilinear mappings are proved.
Other studies on complexifications can be found in [70, 127, 228, 270].

Complexifications and real forms also constitute a key procedure to study real C∗-algebras
[66, 133, 167], real J∗B-algebras [5, 74, 211], and real JB∗-triples [132], objects intensively
studied in the nineties, andwhose topicality is out of any doubt. Actually, in certain problems,
real structures are gaining protagonism and topicality. For example, the conclusion of the
Mazur–Ulam theorem produces real affine maps, while the recent contributions on Tingley’s
problem on the extension of isometries between the unit spheres of Banach spaces, C∗-
algebras, and JB∗-triples show that the desired extension is only real linear, and the theory of
real structures and morphisms is becoming more useful (see, for example, [25, 26, 31, 144,
189, 212, 262]). It is worth exploring the parallelisms and divergences of celebrated results,
like the Gleason–Kahane–Żelazko theorem, the Kadison–Schwarz inequality, the notions of
n-positive maps, the Russo–Dye theorem, the Bohnenblust–Karlin theorem, and the Kaup–
Banach–Stone theorem, in the real and complex settings. These results are revisited together
with a complete presentation of the original sources, the state-of-art of problems, and open
questions.

We have tried to write this expository article in a self-contained manner. However, a back-
ground of basic topics in the theory of Banach spaces is needed for an adequate understanding
of the topic.

2 Real vs complex linear spaces

This section contains the algebraic tools required to define the complexification of a real linear
space. The first subsections are devoted to refreshing the basic notions on complexifications
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of real linear spaces from a purely algebraic point of view. The analytic ingredients will
appear in subsequent subsections.

2.1 Linear algebra

By restricting the scalars to the real numbers, every complex linear spaceX can be regarded
as a real linear space, denoted by Xr . This process is called realification.

If X is a complex linear space of dimension n with a linear basis { f1, . . . , fn}, then
{ f1, i f1, . . . , fn, i fn} is a linear basis for Xr and so Xr is of dimension 2n.

A linear subspace M of X is a linear subspace of Xr , but the converse is not true. For
example, any nontrivial subspace of R

2 is a line passing 0, but clearly, it is not a subspace of
Cr ∼= R

2.
Using one of the determinants’ basic properties (i.e., det(T S) = det(T ) det(S)), we can

conclude that for each odd natural n there is no matrix T in Mn(R) such that T 2 = −I ,
whilst in Mn(C), there exist many examples of matrices satisfying this property.

For every commuting n × n complex matrices T and S, there exists a unitary matrix
U ∈ Mn(C) such that both U∗TU and U∗SU are upper-triangular, where ∗ denotes the
conjugate transpose operation. This result does not hold for matrices inMn(R). For example,

if T =
(

0 1
−1 0

)
and S =

(
1 1
−1 1

)
, then there is no matrix U ∈ Mn(R) with the required

properties (see [268, p. 76, Problem 3.]).

2.2 Complexification of real linear spaces

The process of producing a complex linear space from a real one is called complexification.
In such a process, the method follows similar techniques to those employed to construct C

from R.
A complex linear spaceX is called a complexification of a real linear space X if there is

a one-to-one/ injective real linear map ι : X → X such that the complex linear span of ι(X)

is X . Obviously, such a complex linear space is unique and will be denoted by Xc.
If X is a real linear space, then the direct sum Xc = X ⊕R X as a real linear space can be

endowed with a complex structure via the product by complex scalars defined by

(α + iβ)(x, y) := (αx − β y, αy + βx).

Identifying X with {(x, 0) : x ∈ X} and denoting {(0, x) : x ∈ X} by i X , we can write
Xc = X⊕R i X and denote (x, y) ∈ Xc by x+ iy. Note that Xc = X⊕R i X can be identified
with X ⊗R C in the context of real linear spaces and (X ⊗R C)r is nothing but X ⊗ �22 via
x⊗ (r + is) �→ x⊗ (r , s), where �22

∼= Cr is the two-dimensional real Hilbert space. In what
follows, all tensor products are real.

Furthermore, the mappings σ, τ : Xc → Xc defined by σ(x, y) = (−y, x) and τ(x, y) =
(x, y) = (x,−y), respectively, are complex linear and conjugate linear automorphisms on
Xc satisfying σ 2 = −IXc and τ 2 = IXc . As an example, Mn(C) = Mn(R)+ iMn(R).

Let X and Y be two real linear spaces and let Xc and Yc be their complexifications,
respectively. If T : X → Y is a real linear mapping, then one can define its complex
linear extension Tc : Xc → Yc by Tc(x + iy) = T (x) + iT (y). For each linear mapping
S : Xc → Yc, we can consider the complex linear operator S : Xc → Yc by S(x + iy) =
S(x − iy) = S

(
x + iy

)
. It is easy to check that S is of the form Tc for some real linear
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map T : X → Y if and only if S = S. Let L(Xc, Yc)sym denote the real linear space of all
S ∈ L(Xc, Yc) such that S = S. It follows from the previous arguments that the mapping

L(X , Y ) −→ L(Xc, Yc)sym

T �−→ Tc
(2.1)

is a real linear bijection, so L(X , Y ) and L(Xc, Yc)sym are indistinguishable as real linear
spaces.

3 Complex structure

Let X be a real linear space. If there is an automorphism σ : X → X such that σ 2 = −IX ,
then the product by scalars defined by (α+ iβ)x := αx + βσ(x) makes X a complex linear
space. In this case, we say that X admits a complex structure and denote it by Xσ .

Conversely, for each complex linear space X , the mapping σ : Xr → Xr defined by
σ(x) := i x is an automorphism on Xr with σ 2 = −IX .

It is easy to show that for a linear space X of finite dimension n, a necessary and sufficient
condition for the existence of an automorphism σ on X with σ 2 = −IX is that n is even.
In fact, if σ : �n2 → �n2 is such a map, then, by considering it as an n × n matrix with real
entries, we have

det(σ )2 = det(σ 2) = det(−I�22
) = (−1)n .

4 Complexifications of Banach spaces

After reviewing the basic algebraic procedure employed to construct the complexification
of a real linear space, we try to extend the analytic structure defined by a norm on a real
linear space to an appropriate norm on the complexification. In this section, we focus on
the complexification of Banach spaces. We will see that, in this case, we have different
approaches to extend the norm to the algebraic complexification.

First, note that if (X , ‖ · ‖) is a real Banach space with a continuous automorphism σ

on X satisfying σ 2 = −IX , then the complex linear space Xσ together with the product by
complex scalars defined in Sect. 3 and the norm given by

‖x‖0 = sup
t∈[0,2π ]

‖x cos t + σ(x) sin t‖ (4.1)

turns into a complexBanach space and ‖x‖ ≤ ‖x‖0 ≤ (1+‖σ‖)‖x‖ for all x ∈ X . Dieudonné
[78] was one of the first authors who found an example of an infinite-dimensional real Banach
space X (the James space) admitting no automorphism σ with the required property.

There are interesting questions on the existence, uniqueness, and the number of different
complex structures, up to isomorphisms, coexisting in a concrete real Banach space. There
exist many examples of Banach spaces admitting no complex structure (see, for example,
[78]), having a unique complex structure (see [90]), admitting exactly n + 1 nonequivalent
complex structures (see [89]), or having infinitely many complex structures up to isomor-
phisms (see [69], for more examples).
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4.1 Complex conjugation

LetX be a complex Banach space. Also, letX be the complex conjugate ofX , that is, the
same setX equippedwith the same norm and addition but whose product by complex scalars
is replaced with λ · x := λx . Clearly, the spaces X and X are isometrically isomorphic
as real Banach spaces; however, Bourgain [47] presented an example of a complex Banach
spaceX , given by an �2-sum of finite-dimensional spaces whose distances to their respective
conjugate spaces tend to infinity, such thatX andX are not isomorphic as complex Banach
spaces. Thus complex Banach spaces may be isomorphic as real Banach spaces while they
are not as complex spaces.

It is worth noting that for each continuous automorphism σ on X satisfying σ 2 = −IX ,
we have X−σ = Xσ , that is, X−σ is the complex conjugate space of Xσ .

4.2 Various norms on the complexification of a real Banach space

Assume that (X , ‖ · ‖) is a real Banach space. There are many ways, in general, to define a
(complete) norm ‖ · ‖c on the algebraic complexification Xc whose restriction to X gives the
original norm ‖ · ‖. Any such a space (Xc, ‖ · ‖c) is called a complexification of the Banach
space (X , ‖ · ‖). A complexification whose norm is reasonable (i.e., ‖x − iy‖ = ‖x + iy‖)
is called a reasonable complexification of X .

The minimal reasonable complexification is the Taylor complexification defined by

‖x + iy‖T := sup
t∈[0,2π ]

‖x cos t − y sin t‖.

In addition, any reasonable norm ‖| · |‖ on Xc is equivalent to the Taylor norm since, from
‖|x + iy|‖ = ‖|(cos(t)+ i sin(t))(x + iy)|‖, one can easily infer (see [195]) that

‖x + iy‖T ≤ ‖|x + iy|‖ ≤ 2‖x + iy‖T .

Tensor norms provide a systematic way to define reasonable norms on the complexifica-
tion. The interested reader is invited to consult [75, 232] for a complete account on tensors.
If X is a real Banach space, any tensor norm α on X ⊗ �22 is a reasonable norm on the com-
plexification (see, for instance, [195, Proposition 9]). As a matter of fact, it can be proved
(see, for example, [195]) that

‖x + iy‖T = sup{
√

ϕ(x)2 + ϕ(y)2 : ϕ ∈ X∗ and ‖ϕ‖X∗ ≤ 1}.
In other words, ‖ · ‖T can be alternatively described in terms of the injective tensor norm in
X ⊗ �22 or, equivalently, (Xc, ‖ · ‖T ) = X ⊗ε �22.

Another important reasonable norm on the complexification that is related to tensor norms,
named after Bochnak as the Bochnak norm, is defined as

‖x + iy‖B := inf

{
∑

k

|λk | ‖xk‖ : x + iy =
∑

k

λk ⊗ xk ∈ X ⊗R C

}
.

Observe that the Bochnak norm is nothing but the projective tensor norm in X ⊗ �22 or,
alternatively, (Xc, ‖ · ‖B) = X ⊗π �22.

Additional reasonable norms on the complexification are obtained by

‖x + iy‖(p) = 2min{1/2−1/p,0} sup
t∈[0,2π ]

(‖x cos t − y sin t‖p + ‖x sin t + y cos t‖p) 1
p
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for each p ∈ [1,∞). In the special case inwhich p = 2, ‖·‖(2) is the so-calledLindenstrauss–
Tzafriri norm (see [169]) and will be denoted by ‖ · ‖LT . Therefore,

‖x + iy‖LT := sup
t∈[0,2π ]

(‖x sin t + y cos t‖2 + ‖x cos t − y sin t‖2)1/2 .

The norm ‖ · ‖(1) was employed by Alexiewicz and Orlicz [4].
The following complexification norms have been considered by Kirwan [157] (we keep

author’s original notation):

γp(x + iy) = cp

(
1

2π

∫ 2π

0
‖x cos t − y sin t‖pdt

) 1
p

,

γp,q(x + iy) = cp,q

(
1

2π

∫ 2π

0

(‖x cos t − y sin t‖p + ‖x sin t + y cos t‖p) qp dt
) 1

q

,

where 1 ≤ p, q < ∞ and

cp =
(

1

2π

∫ 2π

0
| cos t |p

)− 1
p

,

cp,q =
(

1

2π

∫ 2π

0

(| cos t |p + | sin t |p) qp
)− 1

q

.

Interestingly, the reasonable complexification norms ‖ · ‖T , ‖ · ‖B , and ‖ · ‖LT complexify,
in a natural way, the real versions of the spaces �∞, �1, and �2, respectively (see [157, 195]),
that is, the complexifications of �∞(R), �1(R), and �2(R) endowed with the norms ‖ · ‖T ,
‖ · ‖B , and ‖ · ‖LT , are �∞(C), �1(C), and �2(C), respectively.

Finally, one may observe that if X is a real Banach lattice, then the norm

‖x + iy‖ = ‖ |x + iy| ‖
makes Xc into a complex Banach lattice, where |x + iy| := supt∈[0,2π ] |x cos t + y sin t | is
the extension of the modulus function | · | of X to Xc. It is shown in [198] that this norm is
induced by the so-called l-norm on X ⊗ �22.

4.3 Regular Banach spaces and complex strictly convex complexifications

A complex Banach space X is called regular if it is isomorphic to the complexification of
a real Banach subspace Y of Xr and is equipped with a reasonable norm.

For example, the complexification of any real Banach space (Y , ‖ · ‖) endowed with the
norm

‖y + i z‖ := sup
t∈[0,2π ]

(‖y sin t + z cos t‖ + ‖y cos t − z sin t‖) (y, z ∈ Y )

is regular. Some other examples are given by the complex spaces �p(N, C) andLp([0, 1], C),

1 ≤ p < ∞ equipped with their usual norms (see [90]).
A complex normed space X is said to be complex-strictly convex if the inequality

1

2π

∫ 2π

0
‖x + eit y‖dt > 1

holds for each x, y ∈ X with ‖x‖ = 1 and y �= 0 (this is formally stronger than the notion
of strict c-convexity but it is actually equivalent to it (cf. [83, Theorem 2]). Recall that a
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complex normed space X is called strictly c-convex if for all x, y ∈ X with ‖x || = 1,
‖x + λy‖ < 1 (|λ| ≤ 1) implies y = 0; see [112, Definition 1]).

The question for what real Banach spaces there is a complex-strictly convex norm on the
corresponding algebraic complexification, remains open. Kadets and Kellerman solved this
problem for all separable spaces, and they also showed that the statement holds for many,
but not all non-separable ones.

Theorem 4.1 [138, Theorem 1] Every separable real normed space X admits a complex
strictly convex complexification.

The conclusion in the previous theorem holds for some classes of nonseparable spaces; for
example, for spaces X with 1-norming separable subspases in X∗; however, certain spaces
of the form �∞(�) admit no complex strictly convex complexifications.

Some open questions remain open. We first recall that a complex Banach space X is
complex locally uniformly convex, if for every x ∈ X with ‖x‖ = 1 and every sequence
(yn) ⊂ X \{0} if limn→∞ 1

2π

∫ 2π
0 ‖x + eit yn‖dt = 1, then limn→∞ ‖yn‖ = 0.

It would be desirable to characterize those real Banach spaces, on which every equivalent
norm can be complexified to a complex-strictly convex one. It is not known, in particular,
whether �∞ has this property.

Another open question asks whether the statement of Theorem 4.1 remains true, if one
substitutes the complex-strict convexity by complex locally uniform convexity.

4.4 Complexification of Hilbert spaces

Let H be a real Hilbert space. The algebraic complexification, Hc = H + i H , of H can be
equipped with a natural inner product structure via the assignment

〈x + iy, x ′ + iy′〉 := (〈x, x ′〉 + 〈y, y′〉)+ i(〈y, x ′〉 − 〈x, y′〉).
In this case, the identity

‖x + iy‖2 = ‖x‖2 + ‖y‖2
holds for all x, y ∈ H . However, H is not orthogonal to i H in the Hilbert space Hc.

At this point it is interesting to observe that if X is any real Banach space and ‖ · ‖ν is any
reasonable complexification norm on Xc, then for every x + iy ∈ Xc and t ∈ R,

‖x + iy‖ν = ‖eit (x + iy)‖ν = ‖x cos t − y sin t + i(x sin t + y cos t)‖ν

≤ ‖x sin t + y cos t‖ + ‖x cos t − y sin t‖.
Hence, if

B(x + iy) = inf
t∈[0,2π ] (‖x sin t + y cos t‖ + ‖x cos t − y sin t‖) ,

then ‖x + iy‖ν ≤ B(x + iy). It is precisely when X is a real Hilbert space and ‖ · ‖ν is the
Bochnak norm that the latter inequality is in fact an equality. As a matter of fact, if H is a
real Hilbert space the Bochnack norm on Hc can be represented by a simpler formulas as

‖x + iy‖B = inf
t∈[0,2π ] (‖x sin t + y cos t‖ + ‖x cos t − y sin t‖)

and

‖x + iy‖B =
(
‖x‖2 + ‖y‖2 + 2

(‖x ||2 ‖y‖2 − 〈x, y〉2)1/2
)1/2

,
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where x, y ∈ H . The previous two formulas were proved in [98, Proposition 3]. We provide
below an alternative proof of the last formula communicated to the authors of [98] by the
anonymous referee in his/her report. First notice that (Hc, ‖·‖B) is nothing but the projective
tensor H ⊗π �22. Since span{x, y} ⊗π �22 is 1-complemented in H ⊗π �22, it suffices to check
the formula for �22 ⊗π �22. Identifying �22 ⊗π �22 with the Schatten 1-class S1(�22), the norm

of x + iy with x = (x1, x2) and y = (y1, y2) is given by ‖T ‖1 where T =
(
x1 y1
x2 y2

)
. It

is well-known that ‖T ‖1 = trace(T ∗T )1/2. Since T ∗T =
( ‖x‖2 〈x, y〉
〈x, y〉 ‖y‖2

)
, we have that

‖T ‖1 = √
λ1 +√

λ2 where λ1 and λ2 are the eigenvalues of T ∗T . It is elementary to show
that

λ1 = A +
√
B2 + C2,

λ2 = A −
√
B2 + C2,

where A = 1
2 (‖x‖2 + ‖y‖2), B = 1

2 (‖x‖2 − ‖y‖2) and C = 〈x, y〉, concluding the proof.
On the other hand, an argument based on elementary calculus leads to

B(x + iy) =
(
‖x‖2 + ‖y‖2 + 2

(‖x ||2 ‖y‖2 − 〈x, y〉2)1/2
)1/2

.

We reproduce the proof of the latter formula found in [98, Proposition 1]. For fixed vectors
x, y ∈ H , we define φxy : [0, 2π ] → R by

φxy(t) := ‖x cos t − y sin t‖ + ‖x sin t + y cos t‖,
for every t ∈ [0, 2π]. Then

φxy(t) =
√
A + B cos 2t − C sin 2t +√

A − B cos 2t + C sin 2t,

for every t ∈ [0, 2π]. Using elementary calculus it is easily seen that the mapping φxy attains
its infimum at a point t0 ∈ [0, 2π ] such that B cos 2t0−C sin 2t0 = ±√B2 + C2. Therefore

B(x + iy)2 =
[

inf
t∈[0,2π ]φxy(t)

]2

=
{√

A +
√
B2 + C2 +

√
A −

√
B2 + C2

}2

= 2A + 2
√
A2 − B2 − C2

= ‖x‖2 + ‖y‖2 + 2
{‖x‖2‖y‖2 − 〈x, y〉2}1/2.

To finish this series of comments on the connection between the Bochnak norm and the
mapping B in the context of Hilbert spaces it can be proved (see [98, Theorem 6]) that if
X is a real Banach space and ‖ · ‖ν is a reasonable complexificaton norm on Xc such that
‖x + iy‖ν = B(x + iy) for all x + iy ∈ Xc, then X is a Hilbert space.

In our seeking for similarities and differences between real and complex spaces, we note
that in a real Hilbert space H , the function f (x) = ‖x‖2, (x ∈ H ) is Fréchet differentiable
at every point and f ′(x)y = 2〈x, y〉, while this statement does not hold for complex Hilbert
spaces.

The conjugate linearity of the inner product of a complex Hilbert spaces in the second
variable also produces differences in the adjoint of a bounded linear operator between real
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or complex Hilbert spaces. For each bounded linear operator T : H → K between Hilbert
spaces, there exists a unique bounded linear operator T ∗ : K → H satisfying the identity

〈T x, y〉 = 〈x, T ∗y〉 for all x ∈ H and y ∈ K .

In the setting of real Hilbert spaces, the assignment T �→ T ∗ is an isometric (real) linear
isomorphism, while in the setting of complex Hilbert spaces, it is a conjugate linear isometric
isomorphism (i.e., (λT )∗ = λT ∗).

Along this note, the symbolB(X ,Y )will denote the complex (respectively, real) Banach
space of all bounded linear operators T : X → Y between complex (respectively, real)
Banach spaces endowed by the operator norm

‖T ‖ := sup{‖T x‖ : ‖x‖ = 1}.
We write B(X ) for the space B(X ,X ). According to this notation, the symbol X ∗ will
stand for B(X , C) (respectively, B(X , R)) whenX is a complex (respectively, real) Banach
space.

In the setting of complex Hilbert space operators, given an operator T ∈ B(H ), the
condition 〈T ξ, ξ 〉 = 0, for all ξ ∈ H implies that T is identically 0. The proof essentially
applies complex scalars; actually, such a result does not hold for bounded linear operators

on a real Hilbert space. Take, for example, H = �22 and T =
(

0 1
−1 0

)
as the matrix of 90

degrees clockwise rotation.
Let H be a complex Hilbert space. An operator T ∈ B(H ) is called (numerically)

positive if 〈T ξ, ξ 〉 ≥ 0 for every ξ ∈ H . It immediately follows that T ∗ = T , that is, T is
self-adjoint. However, if H is a real Hilbert space, then the positivity of T in the above terms

does not entail that T is self-adjoint. Consider, for example, H = �22 and T =
(

1 1
−1 1

)
.

Thus, it is reasonable that in the definition of positivity for bounded real linear operators on
a real Hilbert space, we add the self-adjointness condition of T (see Sect. 6.5 for a deeper
discussion in the setting of real C∗-algebras).

We continue in the complex setting, and suppose that T ∈ B(H ) is a bounded linear
operator for which there exists an orthonormal basis {e j : j ∈ �} of H consisting of
eigenvectors of T . Then for each j , it follows that T e j = λ j e j for some scalar λ j . It is easy
to see that T ∗e j = λ j e j for every j ∈ �. If H is a real Hilbert space, then each λ j is a real
number, and so T = T ∗. In the complex case, we can only conclude that T is normal (i.e.,
T T ∗ = T ∗T ). In other words, a real linear combination of mutually orthogonal projections
always gives a self-adjoint operator, while if we consider complex linear combinations, then
the result operator is only normal.

In the setting of complex Hilbert spaces, a linear functional ϕ : B(H ) → C is called
positive if ϕ(T ∗T ) ≥ 0 for every T ∈ B(H ). Such a functional is always self-adjoint in
the sense that ϕ(T ∗) = ϕ(T ) for all T ∈ B(H ). However, in the framework of real Hilbert
spaces, this assertion is not valid, in general. For example, assume that H = �22 and that

the linear functional ϕ : M2(R) → R defined by ϕ

(
α β

γ δ

)
= α + β + δ is positive but

not self-adjoint (see [229]). In Sect. 6.5, we include a detailed discussion on positive linear
functionals on real C∗-algebras.

The “complex plank problem” asks whether for a finite sequence (ξk)
n
k=1 of unit vectors

in a complex Hilbert space H , there exists a unit vector ξ ∈ H such that |〈ξ, ξk〉| ≥ 1/
√
n

for each k = 1, . . . , n (see [22]). This fact is not true, in general, in the setting of real Hilbert
spaces. For example, we can consider the usual real Hilbert space �22 and the unit vectors
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ξ1, . . . , ξ2n uniformly distributed around the circle. Then for each unit vector ξ ∈ �22, there
exists a vector ξk for some 1 ≤ k ≤ 2n such that |〈ξ, ξk〉| ≤ sin( π

2n ) ≤ π
2n (see [233, p.

706]). This topic will be addressed with more detail in Sect. 5.6.
We can conclude this subsection with an additional example illustrating the previous

notions. For a complex Hilbert spaceH , the subset B(H )sa of all self-adjoint or hermitian
operators onH (i.e., all T ∈ B(H ) with T ∗ = T ) is a norm closed real subspace of B(H ).
It is well-known that the algebraic complexification of B(H )sa is precisely the whole of
B(H ).

According to the usual terminology (see, for example, [45, §9, Definition 7]), for an
operator T in B(H ), where H is a real or complex Hilbert space, the (spatial) numerical
range of T is defined as the set

W (T ) = {〈T ξ, ξ 〉 : ξ is a unit vector in H }.
The numerical radius of T is defined by

w(T ) = sup{|λ| : λ ∈ W (T )}.
For a complex Hilbert space H , a remarkable result by Sinclair asserts that for each T ∈
B(H )sa , we have w(T ) = ‖T ‖ (see [45, 242]). A classical result in operator theory (see
[118, pp. 116–117]) assures that

1

2
‖T ‖ ≤ w(T ) ≤ ‖T ‖ for all T ∈ B(H ). (4.2)

As remarked by Iliševic et al. [127, Example 3.15], the Taylor complexification norm on
B(H ) of the restriction of the spectral or operator normonB(H )sa is precisely the numerical
radius w(·), that is,

w(T ) = ‖T ‖T = ‖H + i K‖ sup
t∈[0,2π ]

‖H cos t − K sin t‖

for all T = H + i K in B(H ) with H , K ∈ B(H )sa .
However, if H is a real Hilbert space, then the left-hand side inequality in (4.2) may be

not true. For example, let H = �22 and let T =
(
0 −1
1 0

)
to get w(T ) = 0 and ‖T ‖ = 1. In

the setting of real Banach spaces, Lumer [174, Theorem 1] proved a deep result showing the
existence of positive constants c1 and c2 such that

‖T ‖ ≤ c1w(T )+ c2w(T 2)1/2,

for every T ∈ B(X). In the case that H is a realHilbert spacewith dim(H) > 1, the inequality

‖T ‖ ≤ 2w(T )+ w(T 2)
1
2 ,

holds for all T ∈ B(H), and 2 and 1 are the best possible constants (see [174, Theorem 10]).
Such inequalities were discussed in [174].

4.5 Schauder basis

Several key results hold only for complex Banach (Hilbert) spaces but not for real Banach
(Hilbert) spaces since they depend on complex analysis techniques. Furthermore, some of
the facts in the setting of complex Banach (Hilbert) spaces can be proved for real spaces
under some extra conditions or changing some hypotheses.
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LetX be a real or complex Banach space. A (Schauder) basis ofX is a sequence (xn)∞n=1
such that for every vector x ∈ X , there exists a unique sequence (λn) of scalars such that
x = ∑∞

n=1 λnxn in the norm topology on X . A Schauder basis is called a 1-unconditional
basis if for every sequence of scalars (λn) and every sequence of scalars (εn) in the closed unit
ball of the corresponding field, it holds that

∥∥∑∞
n=1 εnλnxn

∥∥ ≤ ∥∥∑∞
n=1 λnxn

∥∥ (see [169]).
The existence of an unconditional Schauder basis in a real Banach space can be employed

to define a norm on its algebraic complexification (see [157]). Namely, if {en : n ∈ N} is an
unconditional Schauder basis of the real Banach space X , then

X̃ =
{

(λn) ∈ C
N :

∞∑

n=1
|λn |en converges in X

}

is a complex linear space. Moreover, every (λn) ∈ X̃ with λn = an + ibn can be viewed as
a vector x + iy ∈ X ⊕ i X , where

x =
∞∑

n=1
anen and y =

∞∑

n=1
bnen .

It is easy to furnish X̃ with a reasonable complexification norm by defining

‖(λn)‖unc =
∥∥∥∥∥

∞∑

n=1
|λn |en

∥∥∥∥∥
X

.

It was proved in [157, Prop 2.13] that if B = {en : n ∈ N} is a 1-unconditional monotone
Schauder basis for the real Banach space X (i.e.,

∥∥∑∞
n=1 rnen

∥∥
X ≤

∥∥∑∞
n=1 snen

∥∥
X whenever

rn ≤ sn for all n ∈ N), then B is also a 1-unconditional monotone Schauder basis for X̃ .
The different behavior of real and complex Banach spaces will be again contrasted. Kalton

and Wood [146, Theorem 6.1] proved that any two 1-unconditional bases (xn) and (yn) in a
complex Banach spaceX are isometrically equivalent in the sense that there is a permutation
σ on N such that yσ(n) = λnxn for all n, where the λn’s are scalars of modulus 1. However,
Lacey and Wojtaszczyk [163] showed that this conclusion does not hold for real L p-spaces
(see also [220]).

4.6 Extension of linear operators to the complexifications

Let X and Y be two real Banach spaces and let Xc and Yc be two arbitrary complexifications
of X and Y , respectively. If S ∈ B(X , Y ), then the operator Sc : Xc → Yc, defined in Sect.
2.2 by Sc(x + iy) = S(x) + i S(y), is bounded and there is a constant m such that ‖S‖ ≤
‖Sc‖ ≤ m‖S‖. As seen in (2.1), the real linear subspace B(Xc, Yc)sym = {Sc : S ∈ B(X , Y )}
is a real linear subspace of B(Xc, Yc), which can be algebraically identified with B(X , Y ).

Moreover, each T ∈ B(Xc, Yc) can be written in the form T = T1 + iT2, where T1 = T+T
2 ,

T2 = T−T
2i ∈ B(Xc, Yc)sym . Thus, algebraically B(Xc, Yc) = B(X , Y ) + B(X , Y ). But,

from the analytic point of view, we have two norms on B(Xc, Yc)sym , one inherited from
B(Xc, Yc) and another one obtainedwhen it is identifiedwithB(X , Y ) as a real Banach space.
Since, in general, ‖Sc‖ �= ‖S‖ (cf., see Example 6.16), the Banach space B(Xc, Yc) cannot
be identified with any complexification of B(Xc, Yc)sym ≡ B(X , Y ) with the operator norm
of the latter space.

Despite the difficulties, in the setting of real Hilbert spaces, the complex Banach space
B(Hc) actually is the complexification of B(H), where Hc is the complex Hilbert space
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obtained by complexifying H (see Sect. 4.4). Furthermore, B(H)c can be identified (com-

pletely isometrically) with a subspace ofM2(B(H)) via T + i S �→
(
T −S
S T

)
; in particular,

C can be identified with
{(

t −s
s t

)
∈ B(�22) : t, s ∈ R

}

as a real subspace ofM2(R) (see [228, page 1051]). We will revisit this construction in Sect.
6.5.

It is not hard to show that if we use the Taylor complexification in both real Banach spaces
X and Y , then ‖Sc‖ = ‖S‖ for every B(X , Y ) (with respect to the operator norm given by the
Taylor complexification norm). The same holds when we employ the Lindenstruass–Tzafriri
norm, the Bochnak norm, or the (p) norms (see [167, 195]). This particularly interesting
property motivates the concept of natural complexification procedure (see [195]). A natural
complexification procedure ν is a way to assign to each real Banach space X , a reasonable
complexification norm ‖ · ‖ν in such a manner that if X and Y are arbitrary real Banach
spaces and S ∈ B(X , Y ), then ‖Sc‖ν = ‖S‖, where ‖Sc‖ν must be understood as the
operator norm of Sc as an operator between (Xc, ‖ · ‖ν) and (Yc, ‖ · ‖ν). That is, B(X , Y )

and B((Xc, ‖ · ‖ν), (Yc, ‖ · ‖ν))sym are isometrically isomorphic as real Banach spaces.

4.7 Extension of operators and injectivity: real vs complex cases

A real or complex Banach space X is said to be injective if for every Banach space Z and
every subspace Y of Z , each operator T ∈ B(Y , X) admits an extension T ∈ B(Z , X).
Additionally, if λ > 0 then we say that X is λ-injective if the extension T can be chosen
so that ‖T ‖ ≤ λ‖T ‖. Obviously, if X is 1-injective then any T ∈ B(Y , X) can be extended
to a ‖T ‖ ≤ λ‖T ‖ with preservation of its norm, i.e., ‖T ‖ = ‖T ‖. The space �∞ is a good
example of an injective space. As a matter of fact, X is injective if and only if it is a C(K )

space with K being an extremely disconnected compact space as proved by Nachbin [196]
and Kelley [152]. The study of injective Banach spaces has attracted the attention of many
researchers since at least the 1940’s, generating a vast literature. For a comprehensive global
view on the topic we recommend [19], where the interested reader will be able to check
that most of the results proved for real injective Banach spaces can be also established in
a complex setting without much difficulty. However there is one significant consideration
between the real and complex cases thatmust be underlined. This difference has been detected
within the context of separably injective Banach spaces. Recall that a real or complex Banach
space X is separable injective if for every separable Banach space Z and every subspace Y
of Z , each operator T ∈ B(Y , X) admits an extension T ∈ B(Z , X). The concept of λ-
separable injectivity is defined similarly. The spaces c and c0 are 2-separably injective (see
[214] and [246]). Actually c0 is the only separable Banach space that is separably injective
(see [269]). The above mentioned difference between real and complex separably injective
spaces is found in the following characterization of real 1-separably injective spaces (see for
instance[19, Proposition 2.30]).

Proposition 4.2 A real Banach space X is 1-separably injective if and only if every countable
family of mutually intersecting balls has nonempty intersection.

To translate the previous characterization into a complex setting a new property must be
defined. We say that a family of balls {B(xξ ; rξ )}ξ in a Banach space X over K is weakly
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intersecting if for every norm one f ∈ X∗ the balls {B( f (xξ ), rξ )}ξ have nonempty inter-
section. The previous property was introduced in [126]. Using this terminology, the complex
analog of Proposition 4.2 would be

Proposition 4.3 A complex Banach space X is 1-separably injective if and only if every
countable family of weakly intersecting balls has nonempty intersection.

4.8 Spectrum of an operator

Let X be a real Banach space. The (real) spectrum of an operator T ∈ B(X) may be defined
as the set

{λ ∈ R : T − λIX is not invertible in B(X)},
where IX denotes the identity operator on X . It is well-known that this definition has several
handicaps. For example, the spectrum of a bounded linear operator T on a real Banach space

X given by this definition may be empty, such as, the case where X = �22 and T =
(

1 2
−2 0

)
.

Thus matrices with real entries may have complex eigenvalues.
Thus it is more appropriate to define the spectrum of T ∈ B(X) as the spectrum of Tc in

B(Xc), that is, the set

sp(T ) := {λ ∈ C : Tc − λIXc is not invertible in B(Xc)}.
An elementary spectral theorem affirming that the identity sp(p(T )) = p(sp(T )) is true

for any bounded linear operator T acting on a complex Hilbert spaceH and any polynomial
pwith complex coefficients, can be obtained because a polynomial with complex coefficients
is a product of polynomials of degree 1. However, the fundamental theorem of algebra fails
to be true in the context of polynomials with real coefficients; therefore, the spectral theorem
stated above does not hold in this setting for the suggested real spectrum. For example, let

X = �22, let T =
(

0 1
−1 0

)
, and let p(t) = t2.

The reader is referred to Sect. 6, where a more detailed study on the similarities and
differences between real and complex Banach algebras is conducted.

4.9 Invariant subspaces

A subspaceM of a real or complex Banach spaceX is said to be invariant under an operator
T ∈ B(X ) if T (M ) ⊆ M . The subspace M is called nontrivial if {0} �= M �= X . If
M is invariant under every bounded linear operator commuting with T , then it is called
hyperinvariant for T .

The problem of whether every bounded operator T on a complex (or real) Banach space
X possesses a nontrivial closed subspace M which is T -invariant has been a long standing
problem in functional analysis. Enflo provided a counterexample to this question for Banach
spaces in 1976, although due to the high complexity of Enflo’s construction, his 100 page
long paper was not published until 1987, [87] (see, also, e.g., [8, 62, 171, 221]). The problem
still remains open for separable Hilbert spaces.

Let X be an infinite-dimensional separable real Banach space. If T ∈ B(X) has a nontrivial
invariant closed subspace M , then M + iM is a nontrivial closed subspace of Xc invariant
under Tc. If T has no nontrivial closed invariant subspaces, then it is an interesting question
to ask whether the same is true for Tc ∈ B(Xc) (see [1, Conjecture 3]).
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Lomonosov [171] proved that if a nonscalar bounded linear operator T on a complex
Banach space commutes with a nonzero compact linear operator, then T admits a nontrivial
hyperinvariant closed subspace. In his proof, Lomonosov used an essential property, that is,
bounded linear operators on a finite-dimensional complex space have eigenvalues.

Hooker [125, p. 132] provided, among other results, a counterexample to Lomonosov’s
result in the real setting. The linear isometry

T (x1, y1, x2, y2, . . .) = (−y1, x1,−y2, x2, . . .)

on the real Hilbert space �2 has no nontrivial closed hyperinvariant subspaces.
It is worth noting that for each real Banach space X and each nonscalar operator T ∈

B(X) commuting with a nonzero compact linear operator on X , the following statements are
equivalent (see [243]):

(i) T has a nontrivial closed hyperinvariant subspace;
(ii) For each pair of real numbers α and β with β �= 0, we have (α − T )2 + β2 �= 0.

4.10 Dual

Let X be a complex Banach space. For any f in the dual space, X ∗, of X , consider the
linear functional Reϕ : Xr → R given by

(Reϕ)(x) := Re(ϕ(x)) (x ∈ Xr ).

A classic result in functional analysis affirms that the assignment ϕ �→ Reϕ provides an
isometric real linear isomorphism from (X ∗)r onto (Xr )

∗.
On the other hand, if X is a real Banach space and φ1, φ2 ∈ X∗, then the mapping defined

by

˜(φ1 + iφ2)(x + iy) = φ1(x)− φ2(y)+ i (φ2(x)+ φ1(y))

is a linear functional in (Xc)
∗. As a matter of fact,

� : (X∗)c � φ1 + iφ2 �→ ˜(φ1 + iφ2) ∈ (Xc)
∗

is a natural isomorphism between ((X∗)c, ‖·‖ν) and ((Xc)
∗, ‖·‖ν) for any natural complexi-

fication procedure ν (see, for instance, [195]). Hence if Xc is a reasonable complexification of
a real Banach space X , then (Xc)

∗ is a reasonable complexification of the real Banach space
X∗. However, the natural isomorphism � is not always an isometry for any 2-dominating
natural complexification procedure ν (i.e., ‖x + iy‖ν ≥

√‖x‖2 + ‖y‖2 for all x, y ∈ X )
or any 2-dominated complexification procedure ν (i.e., ‖x + iy‖ν ≤

√‖x‖2 + ‖y‖2 for all
x, y ∈ X ), unless ν is the Lindenstrauss–Tzafriri complexification procedure (see [195,
Proposition 14]), in which � is an isometry whenever X is a real Hilbert space.

According to a well-known property of the projective and injective tensor norms, for any
real Banach space X , it follows that (X ⊗ε �22)

∗ = X∗ ⊗π �22 and (X ⊗π �22)
∗ = X∗ ⊗ε �22,

where �22 is identified with Cr . In terms of complexifications, the duality existing between
the injective and projective tensor norms translates into the identities

(Xc, ‖ · ‖T )∗ = ((X∗)c, ‖ · ‖B) and (Xc, ‖ · ‖B)∗ = ((X∗)c, ‖ · ‖T )

for the Taylor and Bochnak norms on the complexification.
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In a milestone contribution, Bishop and Phelps [37] showed that for each real Banach
space X and each closed bounded convex subset M of X , the set

{φ ∈ X∗ : φ attains its supremum on M }
of linear functionals supported at points ofM is norm-dense in X∗ (see [2, 65] and references
therein for some generalization in several various directions). Lomonosov [171, 172] showed
that this statement cannot be extended to general complex Banach spaces by constructing a
closed bounded convex set with no support points.

4.11 Extension of polynomials andmultilinear mappings to the complexification

It is convenient to recall first the most basic definitions and results about polynomials on
Banach spaces. The reader is referred to the excellent monograph [80] for a complete and
modern exposition on polynomials on Banach spaces. Amapping P : X → Y between real
or complex linear spaces, is an n-homogeneous polynomial if there is an n-linear mapping
L : X n → Y satisfying P(x) = L̂(x) := L(x, . . . , x) for all x ∈ X . According to a well-
known algebraic polarization identity, for each n-homogeneous polynomial P : X → Y ,
there exists a unique symmetric n-linear mapping L : X n → Y (i.e., L(x1, . . . , xn) =
L(xσ(1), . . . , xσ(n)) for any (x1, . . . , xn) ∈ X n and any permutation σ of the first n natural
numbers) such that P = L̂ . The unique symmetricn-linearmapping L is called thepolar of P .
The standard notations to represent the linear spaces of all n-homogeneous polynomials from
X intoY , the n-linear mappings fromX intoY , and the symmetric n-linear mappings from
X into Y are given by Pa(

nX ;Y ), La(
nX ;Y ), and Ls

a(
nX ;Y ), respectively. Naturally,

a map P : X → Y is a polynomial of degree at most n if

P = P0 + P1 + · · · + Pn,

where Pk ∈ Pa(
kX ;Y ) (1 ≤ k ≤ n) and P0 : X → Y is a constant function. The polyno-

mials of degree at most n between the normed spacesX andY are denoted byPn,a(X ;Y ).
If Y is K (either R or C), then Pa(

nX ;K), La(
nX ;K), Ls

a(
nX ;K), and Pn,a(X ;K) are

customarily replaced by Pa(
nX ), La(

nX ), Ls
a(

nX ), and Pn,a(X ), respectively.
As it happens with linear operators, there are polynomials and multilinear mappings

between Banach spaces that are not continuous. Actually, the set of noncontinuous polynomi-
als is extraordinarily large from an algebraic viewpoint (see [107]). In any case, the continuity
of polynomials and multilinear maps between infinite-dimensional Banach spaces is tightly
related to the boundedness. For Banach spacesX and Y , a polynomial P ∈ Pn,a(X ;Y ) or
a multilinear mapping L ∈ La(

nX ;Y ) is continuous if and only if it is bounded on the open
or closed unit ball of X , denoted by BX and BX , respectively. In that case, the formulas

‖P‖ = sup{‖P(x)‖Y : ‖x‖X ≤ 1},
‖L‖ = sup{‖L(x1, . . . , xn)‖Y : ‖xk‖X ≤ 1, k = 1, . . . , n},

define a complete norm in the spaces of continuous (bounded) n-homogeneous polynomials,
continuous (bounded) polynomials of degree at most n, continuous (bounded) n-linear map-
pings, and continuous (bounded) symmetric n-linear mappings between the Banach spaces
X and Y , denoted by P(nX ;Y ), Pn(X ;Y ), L(nX ;Y ), and Ls(nX ;Y ), respectively.
We will rather use P(nX ), Pn(X ), L(nX ), and Ls(nX ), whenever Y = K.

Throughout the rest of this section, X andY will be a pair of realBanach spaces.Multilinear
mappings in La(

n X; Y ) admit a unique extension to a multilinear mapping in La(
n Xc; Yc).

Indeed, if L ∈ La(
n X; Y ), then the mapping
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Lc(x
0
1 + i x11 , . . . , x0n + i x1n ) =

∑

ε j=0,1
i

n∑
j=1

ε j

L(xε1
1 , . . . , xεn

n ) (x0k , x1k ∈ X)

is in La(
n Xc; Yc) and extends L (see the introduction of [157]). In addition, if L is bounded,

then Lc is bounded too for any pair of reasonable complexification norms in Xc and Yc.
However, the norm of Lc depends strongly on the complexification norms used in Xc and Yc.

Similarly, if P ∈ Pa(
n X; Y ), then P admits a unique complex extension to a homogeneous

polynomial Pc ∈ Pa(
n Xc; Yc) given by (see [255, p. 313])

Pc(x + iy) =
[ n2 ]∑

k=0
(−1)k

(
n

2k

)
L(xn−2k y2k)+ i

[ n−12 ]∑

k=0
(−1)k

(
n

2k + 1

)
L(xn−(2k+1)y2k+1)

for every x, y in X , where L ∈ Ls
a(

n X; Y ) is the polar of P and L(xl ym) denotes
L(x, . . . , x︸ ︷︷ ︸

l times

, y, . . . , y︸ ︷︷ ︸
m times

) for l + m = n.

Another useful formula to handle the complexification of any polynomial in Pa(
n X) is

given by the following identity (see [157, Theorem 4.12]):

Pc(x + iy) = 2n

2π

∫ 2π

0
P(x cos θ + y sin θ)einθdθ.

Any polynomial P of degree at most n in Pn,a(X; Y ) can be also extended uniquely to a
polynomial Pc ∈ Pn,a(Xc; Yc). If P = ∑n

k=0 Pk with Pk ∈ Pa(
n X; Y ), then we just need

to set Pc =∑n
k=0 Pk,c, where Pk,c is the complexification of Pk for all k = 1, . . . , n. In the

special case where Y = R, a modification of the argument employed in [157, Theorem 4.12]
(see [192]) can be employed to prove that

Pn,c(x + iy) = 2n

2π

∫ 2π

0
P(x cos θ + y sin θ)einθdθ.

If P is a bounded polynomial in Pn(X; Y ), then its complex extension, Pc, also is a
bounded polynomial in Pn(Xc; Yc) for any choice of reasonable complexification norms
in Xc and Yc, although the norm of Pc depends strongly on the complexification norms
considered in Xc and Yc (see further down). In the special case of a finite-dimensional space
(RN , ‖ · ‖), the complexification of a polynomial P on R

N is the polynomial on C
N that

results by replacing real by complex variables in P , that is, the polynomial Pc in N complex
variables is defined by

Pc(x + iy) = P(x1 + iy1, . . . , xN + iyN )

for x = (x1, . . . , xN ) and y = (y1, . . . , yN ) in R
N .

It is simple to prove that if P ∈ Pn(X; Y ) or L ∈ L(n X; Y ), then Pc and Lc are con-
tinuous as maps between the complex Banach spaces (Xc‖ · ‖Xc ) and (Yc, ‖ · ‖Yc ) for any
choice of reasonable complexification norms ‖ · ‖Xc and ‖ · ‖Yc . It would be desirable to be
able to complexify polynomials and multilinear mappings with preservation of their norms.
However, that is rarely the case. If P ∈ Pn(X; Y ) or L ∈ L(n X; Y ), then no matter what
complexification normswe consider in Xc and Yc, the complex extensions Pc and Lc of P and
L always satisfy ‖Pc‖ ≥ ‖P‖ and ‖Lc‖ ≥ ‖L‖. The problem of estimating the size of ‖Pc‖
has a long standing tradition. Already in 1946, Visser [260] proved that if P ∈ Pn(�

m∞(R))

with P = Pn + · · · + P1 + P0 and Pk ∈ P(k�m∞(R)) for k = 1, . . . , n and P0 ∈ R, then

‖Pn,c‖T ≤ 2n−1‖P‖,
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where, as usual, Pk,c is the complex extension of Pk for k = 1, . . . , n. Observe that, as
we have commented, the Taylor norm complexifies real �∞-spaces in a “natural” way, and
therefore

‖Pk,c‖T = sup{|Pk(z1, . . . , zm)| : (z1, . . . , zm) ∈ C
m and ‖(z1, . . . , zm)‖∞ ≤ 1}.

Interestingly, the constant 2n−1 is optimal and equality is attained for the nth Chebysehev
polynomials of the first kind Tn . Recall that Tn(x) = cos(n arctan x) for x ∈ [−1, 1]. In a
similar fashion, it can be proved (see [218, 219, 222]) that for n ≥ 2, we have the optimal
estimate

‖Pn−1,c‖T ≤ 2n−2‖P‖
with equality attained for the Chebyshev polynomial Tn−1. The following generalization to
polynomials on an infinite-dimensional real Banach space can be found in [195, Propositions
16 and 18] (see also [157], where a slightly worse estimate is obtained).

Theorem 4.4 [195, Propositions 16 and 18]Let X be a real Banach space, let ν be any natural
complexification procedure, and let P ∈ Pn(X) with P = Pn + Pn−1+ · · ·+ P1+ P0. Then
the following estimations hold:

‖Pn,c‖ν ≤ 2n−1‖P‖,
‖Pn−1,c‖ν ≤ 2n−2‖P‖ (n ≥ 2).

In particular, if P ∈ P(n X) and L ∈ L(n X), then

‖Pc‖ν ≤ 2n−1‖P‖,
‖Lc‖ν ≤ 2n−1‖L‖.

None of the constants can generally be improved.

In the previous result, equality is attained in the first two estimates for the Chebyshev
polynomials Tn and Tn−1, respectively. On the other hand, the n-homogeneous polynomial
defined on �22 by

P(x, y) = Re(x + iy)n,

for x, y ∈ R, and its polar L satisfy

‖Pc‖T = 2n−1‖P‖,
‖Lc‖T = 2n−1‖L‖.

Complexification norm estimates of polynomials and multilinear mappings can be signif-
icantly improved when using specific natural complexification procedures. This is the case
of the Bochnak norm (see [40, p. 276] and [42]).

Theorem 4.5 Let X be a real Banach space. Then, for every L ∈ L(n X), it follows that

‖Lc‖B = ‖L‖.

Also, for the (p) norms, we have the following result.
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Theorem 4.6 [195, Proposition 19] Let X be a real Banach space and let 1 ≤ p ≤ ∞. Then
for any L ∈ L(n X) (n ≥ 2), it holds that

‖Lc‖(p) ≤

⎧
⎪⎪⎨

⎪⎪⎩

2n/2−1/2‖L‖ if 1 ≤ p ≤ 4/3,

2n/2−2/q ‖L‖ if 4/3 ≤ p ≤ 2,

2n/q−1 ‖L‖ if 2 ≤ p ≤ ∞,

where q is the conjugate of p, that is, 1
p + 1

q = 1 and q = 1 if p = ∞.

The constant given in the previous proposition is sharp at least for p ≥ 2, and equality is
achieved for the polar of the polynomial defined on �22 by

P(x, y) = Re(x + iy)n,

where x, y ∈ R (see [195]).
The estimates on the complexification of homogeneous polynomials andmultilinear forms

appearing in Theorem 4.4 need to be increased by a factor 2 when vector-valued polynomials
and multilinear operators are considered.

Theorem 4.7 [195, Proposition 25] Let X and Y be real Banach spaces, let P ∈ P(n X; Y ),
and let L ∈ L(n X; Y ). Then

‖Pc‖T→B ≤ 2n‖P‖,
‖Lc‖T→B ≤ 2n‖L‖,

where ‖Pc‖T→B (respectively, ‖Lc‖T→B ) denotes the norm of Pc (respectively, Lc) as a
polynomial respectively, multilinear operator) between the complex Banach spaces (Xc, ‖ ·
‖T ) and (Yc, ‖ · ‖B). None of the inequalities can generally be improved.

We recall that a natural complexification procedure ν is 2-dominating if ‖x + iy‖ν ≥√‖x‖2 + ‖y‖2 for all x and y in any real Banach space X . In the case of homogeneous
polynomials and 2-dominating natural complexification procedures, we know the following
result.

Theorem 4.8 ([195, Proposition 20] and [192, Propositions 3.10 and 3.12]) Let X be a real
Banach space and let ν be a 2-dominating natural complexification procedure. If P ∈ P(n X),
then

‖Pc‖ν ≤ 2n−2‖P‖, if n is even,

‖Pc‖ν ≤ 2n−3/2‖P‖, if n is odd.

If, in addition, X is a real Hilbert space, then

‖Pc‖ν ≤ 2
n−2
2 ‖P‖.

The last inequality is optimal, and equality is reached for the polynomial defined on �22
by P(x, y) = Re(x + iy)n . Observe that the Linsdenstrauss–Tzafriri norm is 2-dominating.
Also, if P ∈ P(2X), then any 2-dominating natural complexification procedure satisfies
‖Pc‖ν = ‖P‖. This ideal situation never holds when the Taylor complexification is employed
(see [195, Proposition 22]).
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Estimates on the norm of the complexification of nonhomogeneous polynomials have
also been studied by several authors in the past. For real polynomials P on the real line with
degree at most n, Erdös [88] proved that

‖Pc‖D ≤ |Tn(i)| · ‖P‖[−1,1],
where D = {z ∈ C : |z| ≤ 1} is the closed unit disk in the complex plane, ‖Pc‖D =
maxz∈D |P(z)|, and ‖P‖[−1,1] = maxx∈[−1,1] |P(z)|. Obviously, the constant |Tn(i)| cannot
generally be improved. For general real Banach spaces, the following result is known.

Theorem 4.9 [195, Proposition 29] Let P be a polynomial of degree ≤ n on a real Banach
space X and let ν be a natural complexification procedure. Then

‖Pc‖ν ≤ 2n/2|Tn(i)| · ‖P‖.

4.12 Zeros of polynomials in Banach spaces

To finish this section, we would like to address a topic of study (subsets and subspaces of
zeros of polynomials) that has just, recently, started to develop. Thus, although it has rapidly
caught the eyes of many researchers in the field, there is still plenty of ongoing work on
it. This topic is closely related to that of lineability and spaceability (which, in a nutshell,
consists of the study of existence of large algebraic structures within certain subsets in a
topological vector space), we refer the interested reader to the works [11, 12, 36, 67] for a
thorough study of the notions of lineability and spaceability.

The study of the zeros of polynomials on complex spaces, due to its fundamental nature,
has an old origin dating back at least to the 1950’s (see, e.g., [16] for references to ear-
lier works). The case of polynomials on C

n has been widely investigated but the case of
polynomials on infinite-dimensional Banach spaces seems to be an even richer source of
challenging questions. Let us present here a classical and well-known result due to Plichko
and Zagorodnyuk (1998) which is regarded as the starting point for the infinite-dimensional
case.

Theorem 4.10 [217] If X is an infinite-dimensional complex Banach space and P is an
n-homogeneous polynomial on X, then P−1(0) contains an infinite-dimensional subspace
Y .

On the other hand, if we move to the real scalar setting, the situation is totally different.
This can be seen by means of the polynomial P : �2 → R given by

P(x) =
∞∑

j=1
x2j .

In the finite-dimensional case, the field (R or C) makes a big difference.
For instance, for the 2-homogeneous polynomial

P : C
n → C, P(z) = z21 + · · · + z2n,

we have that P−1(0) contains a vector space of dimension [ n2 ], since
span{e1 + ie2, e3 + ie4, e5 + ie6, . . .} ⊂ P−1(0),

where i = √−1, and e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), etc. Nothing important
can be said for P−1(0) if K = R. As the following theorem reveals, this example is, in fact,
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illustrative of the general situation in the case K = C (see, e.g., [13, 14, 17, 95, 96], and the
references therein).

Theorem 4.11 [14, 17, 217, 264] Let X be a complex Banach space. Given positive integers
n and k, there is an integer m(n, k) ∈ N such that, whenever dim(X) = k and P : X → C

is an n-homogeneous polynomial, the set P−1(0) contains a subspace of dimension at least
m(n, k). Moreover, m(n, k) →∞ as k →∞.

Corollary 4.12 [14, 17, 217, 264] Let P : C
k → C be an arbitrary (not necessarily homoge-

neous) polynomial of degree n. Then there is a subspace V ⊂ C
k, whose dimension depends

only on k, such that dim(V ) →∞ as k →∞, satisfying the condition P|V ≡ P(0).

Let us point out that, when one considers polynomials of the form
∑

x2j , the case of
real polynomials needs a special approach, where odd-homogeneous polynomials and even-
homogeneous polynomials are investigated by different fronts (see, e.g., [16]).

The following two results also show how different the answer may end up being when
comparing the real and complex frameworks.

Theorem 4.13 [15]Given any real, separable, infinite-dimensional Banach space X and any
odd n ∈ N, there is an n-homogeneous polynomial P : X → R such that P−1(0) does not
contain an infinite-dimensional subspace.

Theorem 4.14 [93] Let E be a complex Banach space containing �∞. For every n, every
n-homogeneous P : E → C vanishes on a nonseparable subspace of E.

Moreover, in [93] it is also shown that in the case of real �∞, if P : �∞ → R vanishes
on a copy of c0, then P ≡ 0 on a nonseparable subspace. Furthermore, in 2009, Avilés and
Todorcevic [20] showed that there exists a 2-homogeneous polynomial P : �1(ℵ1) → C

such that P−1(0) contains no nonseparable subspace.

Theorem 4.15 (Avilés and Todorcevic [20]) There exists a 2-homogeneous polynomial P :
�1(c) → C such that P−1(0) contains both separable and nonseparable maximal subspaces.

Avilés and Todorcevic [20] also provide new viewpoints on the research of the zero set of
complex polynomials, including new techniques and connections with results related to the
existence of certain partitions.

Regarding the case of 2-homogeneous polynomial on a real Banach space X , let us recall
that a 2-homogeneous polynomial P : X → R is said to be positive definite if P(x) ≥ 0 for
every x ∈ X and P(x) = 0 only for x = 0. The following very recent results by Ferrer are
of major importance in this direction (for the case of a compact topological Hausdorff space
K ).

Theorem 4.16 [94] The space C(K ) satisfies the following dichotomy. Either

(i) It admits a positive definite continuous 2-homogeneous real-valued polynomial, or
(ii) Every continuous 2-homogeneous real-valued polynomial vanishes in a non-separable

closed linear subspace.

When X = c0 (�) the following result holds for general polynomials (non necessarily
homogeneous):

Theorem 4.17 [94] Let � be an uncountable set. If P : c0 (�) → R is a continuous poly-
nomial, then there is a closed linear subspace E of c0 (�) such that E ⊂ P−1 (0) and E is
isometric to c0 (�) .
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Also, Ferrer et al. [97] proved that whenever X is a real Banach space which cannot
be linearly and continuously injected into a Hilbert space, then for any 2-homogeneous
continuous polynomial P on X , the zero set P−1(0) is not separable.

5 Real and complex (classical) polynomial inequalities

5.1 Real and complex polarization constants

For real or complex Banach spaces X and Y , it has been already mentioned that any poly-
nomial in Pa(

nX ;Y ) is induced by a unique symmetric n-linear mapping in Ls
a(

nX ;Y ),
whichwe call the polar of P . Along this note, the symbol L̂ stands for the polynomial induced
by L . According to this notation, the mapping

Ls
a(

nX ;Y ) � L �→ L̂ ∈ Pa(
nX ;Y )

is a natural linear isomorphism, whose inverse is given by the so-called polarization formula
(see [80, Corollaries 1.6 and 1.7]). The following is just one of the many forms in which the
polarization formula can be found in the literature:

L(x1, . . . , xn) = 1

2nn!
∑

ε=±1
ε1 · · · εn P(ε1x1 + · · · + εnxn).

By restricting our attention to continuous polynomials and continuous symmetric multilinear
mappings, the following estimates establish a relationship between the norms of a polynomial
P ∈ P(nX ;Y ) and the norm of its polar L ∈ Ls(nX ;Y ):

‖P‖ ≤ ‖L‖ ≤ nn

n! ‖P‖. (5.1)

While the first inequality is trivial since P is a restriction of L , the second can be derived from
the polarization formula (see [80, Proposition 1.8] for amodern proof). The previous estimates
show that the natural algebraic isomorphism L �→ L̂ is also a topological isomorphism
between the spaces Ls(nX ;Y ) and P(nX ;Y ) with norm 1, and whose inverse has norm
at most nn

n! . It is important to mention that the constant nn
n! cannot generally be improved

since the polynomial �n(x1, . . . , xn) = x1 · · · xn defined on �n1(K) and its polar Ln satisfy
‖Ln‖ = nn

n! ‖�n‖. All polynomials satisfying the latter identity are called extremal.

Although nn
n! is optimal, in general, it might be improved for specific spaces. This serves

as a motivation for the definition of the nth polarization constant K(n,X ) of a Banach space
X over K:

K(n,X ) = inf{C > 0 : ‖L‖ ≤ C‖L̂‖ for all L ∈ Ls(nX )}.
Also, the polarization constant of X is defined as

K(X ) = lim sup
n

n
√

K(n,X ).

The calculation of K(n,X ) and K(X ) has been studied in the past in several occasions.
Depending on whether K is R or C, different techniques are used, and sometimes different
results are obtained. We present below some remarkable results on this topic, stressing the
difference between the real and complex case.

It has been pointed out above that K(n; �n1) = nn
n! . The constant

nn
n! , however, is attained

in different ways, depending on whether K is R or C.
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Theorem 5.1 [236, Corollary 2] An n-dimensional complex Banach space is isometrically
isomorphic to �m1 (C) if and only if C(n, E) = nn

n! . Also, if C(n, E) = nn
n! and L ∈ Ls(n E) is

extremal, that is, ‖L‖ = nn
n! ‖L̂‖, then L̂(z1, . . . , zn) = cz1, . . . , zn for some c ∈ C.

The previous result states that there is, essentially, a unique extremal polynomial in any n-
dimensional complex Banach space E with C(n, E) = nn

n! . The same remains true for real
Banach spaces with dimension two or three. However, it is no longer true when n ≥ 4.

Theorem 5.2 [158, Corollaries 10 and 12] If n ≥ 4 and |γi j | ≤ 1
3·44 for 1 ≤ i < j ≤ n, then

the polynomials

P(x1, . . . , xn) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c

(
x1x2x3x4 + ∑

1≤i< j≤4
γi j (x2i − x2j )

2

)
if n = 4,

c

(
x1x2x3x4 + ∑

1≤i< j≤n
γi j (x2i − x2j )

2

)
x5 · · · xn if n > 4,

with c ∈ R, are extremal in P(n�n∞).

Another remarkable difference between the real and complex cases in connection with
polarization constants occurs in Hilbert spaces. It is well-known that K(n;H ) = 1 for
any real or complex Hilbert space H and every n ∈ N. Hence Ls(nH ) and P(nH ) are
isometrically isomorphic no matter whether H is a real or complex Hilbert space. The fact
K(n;H ) = 1was proved by Kellogg [153] and Van der Corput and Schaake [68] whenH is
finite-dimensional. Banach [24] gave a proof in the case when H = �2. For a comprehensive
exposition on the topic the reader is referred to [80, 121].

The divergence between the conclusions in the real and complex cases can be found in
the following result.

Theorem 5.3 [33, Proposition 2.8] If X is a real Banach space such that R(n, X) = 1 for
every n ∈ N, then X is a Hilbert space. Actually, R(2, X) = 1 is enough to conclude that X
is a Hilbert space.

The previous result is not true in the complex setting. If H is a complex Hilbert space
and H ⊕∞ C is the space H × C endowed with the norm

‖(x, λ)‖∞ = max{‖x‖, |λ},
then H × C is not a complex Hilbert space, and C(n,H ⊕∞ C) = 1 (see [237, p. 94]).

The value of the polarization constants of �∞-type spaces is also another issue, where the
real and complex cases diverge. It is well-known (see, for instance, [80] or [121]) that

C(n, �m∞) ≤ n
n
2 (n + 1)

n+1
2

2nn! .

However, the same estimate does not hold forR(n, �m∞). Indeed, if P ∈ P(4�4∞(R)) is defined
by

P(x1, x2, x3, x4) = (x21 − x22 )2 − (x23 − x24 )2

and L is its polar, then

‖L‖ ≥ 3‖P‖,
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which implies that R(4, �4∞) ≥ 3 > 25
√
5

24 ≥ C(4, �4∞) (see [235]).
The polarization constant of finite-dimensional spaces behaves differently in real and

complex Banach spaces, as shown recently. If X is a finite-dimensional complex Banach
space, then C(X ) = 1 (see [79, Theorem 1.1]). However, it was proved in [79] that R(�d1) >

1.
The last topic we shall deal with in connection to the polarization constants emerges from

the following result by Harris [121, Theorem 1]:

Theorem 5.4 LetX be a complex Banach space, P ∈ P (nX )with polar L ∈ Ls (nX ) and
k1, . . . , km ∈ N ∪ {0} such that k1 + · · · + km = n. Assume that x1, . . . , xm are unit vectors
in X satisfying

‖z1x1 + · · · + zmxm‖ ≤ ‖(z1, . . . , zm)‖p
for all (z1, . . . , zm) ∈ C

m and for a given 1 ≤ p ≤ ∞ (here, ‖ · ‖p denotes the usual
p-norm). Then,

∣∣∣L
(
xk11 , . . . , xkmm

)∣∣∣ ≤ k1! · · · km !n
n
p

k
k1
p
1 · · · k

km
p

m n!
‖P‖ .

Moreover, if X = �mp , then there exist P ∈ P (nX ), L ∈ Ls (nX ) with L �≡ 0, and unit
vectors x1, . . . , xm ∈ X for which equality is attained.

Under the assumptions of the previous result, considering that

‖z1x1 + · · · + zmxm‖ ≤ |z1| + · · · + |zm | ≤ ‖ (z1, . . . , zm) ‖1
for any m-tuple of unit vectors x1, . . . , xm , it follows that

∣∣∣L
(
xk11 , . . . , xkmm

)∣∣∣ ≤ k1! · · · km !nn
kk11 · · · kkmm n! ‖P‖ .

The previous estimate is sharp, however k1!···km !nn
k
k1
1 ···kkmm n! might be replaced by a better (smaller)

constant for a specific choice of X . This motivates the definition of the generalized polar-
ization constants:

Definition 5.5 If X is a Banach space over K and k1, . . . , km ∈ N ∪ {0}, then
K(k1, . . . , km,X ) denotes

inf{M > 0 : |L(xk11 , . . . , xkmm )| ≤ M‖L̂‖, L ∈ Ls(nX ), x1, . . . , xm ∈ SX }.
The comments made above show clearly that for all complex Banach spaces X , we have

1 ≤ C(k1, . . . , km,X ) ≤ k1! · · · km !nn
kk11 · · · kkmm n! ,

where the second inequality is sharp.
The study of R(k1, . . . , km,X ) for any real Banach space X is subjected to two differ-

ential facts with respect to the complex case:

(1) First, it is not true in general that

R(k1, . . . , km,X ) ≤ k1! · · · km !nn
kk11 · · · kkmm n!

for all real Banach space X .
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(2) Second, the best upper bound on R(k1, . . . , km,X ) for arbitrary real Banach spacesX
is not known.

As for the first issue, it was proved in [235] that R(2, 2, �4∞(R)) = 3 whereas C(2, 2,X ) ≤
8
3 < 3 for any complex Banach space X . The second fact is still under study nowadays.
Several estimates on R(k1, . . . , km,X ) are known, but the best fit for R(k1, . . . , km,X ) is
still an open question to our knowledge. Harris (see [122, Corollary 7]) proved that for any
real Banach space X , we have

|L(xk11 , . . . , xkmm )| ≤
√

nn

kk11 · · · kkmm
‖P‖

for every k1, . . . , km ∈ N ∪ {0} with k1 + · · · + km = n, unit vectors x1, . . . , xm ∈ X and

P ∈ P(n X) with polar L ∈ Ls(n X). However, the constant
√

nn

k
k1
1 ···kkmm

seems to be far from

being optimal since, letting m = n and k1 = . . . = kn = 1, we arrive at

‖L‖ ≤ n
n
2 ‖P‖,

which can be substancially improved according to (5.1). Another estimate on R(k1, . . . ,

km, X) can be found in Harris’ comments to problems 73 and 74 of the Scottish Book (see
[239]), where it is shown that

R (k1, . . . , km, X) ≤ nnrl

n!

with r = 1+ e−2

2
and l =

∑m

i=1

⌈
ki
2

⌉
.

Let us mention, to finish this section, that Papadiamantis and Sarantopoulos [204]
established a number of analogs of Theorem 5.4 in a real setting. For instance, if X is
the a real L p(μ) with p ≥ 1, x1, . . . , xm are unit vectors in X with disjoint supports,
k1, . . . , km ∈ N∪{0}with k1+· · ·+ km = n, and P ∈ P(n X) with polar L ∈ Ls(n X), then

|L(xk11 , . . . , xkmm )| ≤ c(k1, . . . , km, p)‖P‖,
where

c(k1, . . . , km, p) =

⎧
⎪⎨

⎪⎩

(k p−11 +···+k p−1m )
n
p

n! if p ≥ n,

m
n−p
p (kn−11 +···+kn−1m )

n! if p < n.

5.2 Real and complex polynomial Bohnenblust–Hille inequality

If X is a Banach space, then the problem of computing the value of the norms

‖P‖ : = sup{|P(x)| : x ∈ BX },
‖L‖ : = sup{|L(x1, . . . , xm)| : x1, . . . xm ∈ BX }

is usually intractable. For this reason, it would be interesting to obtain reasonably good
estimates on it. In the case that X is finite-dimensional, the �p norm of the coefficients
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of a given polynomial on K
n (K = R or C) is much easier to handle. Recall that an m-

homogeneous polynomial in K
n can be written as

P(x) =
∑

|α|=m
aαx

α,

where x = (x1, . . . , xn) ∈ K
n , α = (α1, . . . , αn) ∈ (N ∪ {0})n , |α| = α1 + · · · + αn , and

xα = xα1
1 · · · xαn

n .
Thus we define the �p norm of P , with p ≥ 1, as

|P|p =
⎛

⎝
∑

|α|=m
|aα|p

⎞

⎠

1
p

.

If E has finite dimension n, then the polynomial norm ‖ · ‖ and the �p norm | · |p (p ≥ 1)
are equivalent, and therefore, there exist constants k(m, n), K (m, n) > 0 such that

k(m, n)|P|p ≤ ‖P‖ ≤ K (m, n)|P|p (5.2)

for all P ∈ P(mE). The latter inequalities may provide a good estimate on ‖P‖ as long as
we know the exact value of the best possible constants k(m, n) and K (m, n) appearing in
(5.2).

The problem presented above is an extension of the well-known polynomial
Bohnenblust–Hille inequality. It was proved in [43] that there exists a constant Dm ≥ 1
such that for every P ∈ P(m�n∞), we have

|P| 2m
m+1

≤ Dm‖P‖. (5.3)

Observe that (5.3) coincides with the first inequality in (5.2) for p = 2m
m+1 except for the fact

that Dm in (5.3) can be chosen in such a way that it is independent from the dimension n.
As a matter of fact, Bohnenblust and Hille [43] showed that 2m

m+1 is optimal in (5.3) in the

sense that for p < 2m
m+1 , any constant D fitting in the inequality

|P|p ≤ D‖P‖,
for all P ∈ P(m�n∞), depends necessarily on n.

The polynomial andmultilinear Bohnenblust–Hille inequalities were only rediscovered in
the last fewyears. These inequalities (or,more precisely, the constants appearing in them)have
shown tohavequite an impact in several fields ofmathematics, such as operator theory, Fourier
and harmonic analysis, complex analysis, analytic number theory, and quantum information
theory (see, for example, [29, 35, 38, 39, 76, 77, 81, 82, 188, 210] and references therein).

The best constants in (5.3) may depend on whether we consider the real or the complex
version of �n∞, which motivates the following definition:

DK,m := inf
{
D > 0 : |P| 2m

m+1
≤ D‖P‖, for all n ∈ N and P ∈ P(m�n∞)

}
.

If we restrict our attention to P(m�n∞) for some n ∈ N, then we define

DK,m(n) := inf
{
D > 0 : |P| 2m

m+1
≤ D‖P‖ for all P ∈ P(m�n∞)

}
.

Note that DK,m(n) ≤ DK,m for all n ∈ N.
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It was recently shown in [29] that the complex polynomial Bohnenblust–Hille inequality
is, at most, subexponential, that is, for any ε > 0, there is a constant Cε > 0 such that

DC,m ≤ Cε (1+ ε)m

for all positive integers m. However, in the real case, the behavior is quite different, more
precisely,

lim sup
m

D1/m
R,m = 2.

5.3 Bernstein andMarkov type inequalities in Banach spaces

Estimates on the derivatives of polynomials are known as Bernstein andMarkov inequalities.
The classical estimates on the norm of the first and successive derivatives of a polynomial in
one real variable proved by the brothersMarkov in the late 19th century have been generalized
in several forms to the case of polynomials in an arbitraryBanach space.Markov [179] proved
in 1892 that

‖P(k)‖ ≤ n2(n2 − 12) · · · (n2 − (k − 1)2)

1 · 3 · · · (2k − 1)
‖P‖

for every polynomial in Pn(R). The norms are calculated as the supremum of the absolute
value over the unit interval [−1, 1]. Equality is attained for the nth Chebyshev polynomial
of the first kind, namely, Tn(x) = cos(n arccos x) for x ∈ [−1, 1]. The result had been
previously proved by Markov in 1889 for the first derivative, motivated by a question of
Mendeleiev, author of the periodic table, who was interested in estimating the maximum
value of the derivative of a quadratic polynomial. Markov’s estimate on the kth derivative
was generalized in 2002 to polynomials on a real Hilbert space [193] and for polynomials
on an arbitrary real Banach space in 2010 [123] (see also [244, 245]). In fact, if X is a real
Banach space, then

‖D̂(k)P(x)‖ ≤ n2(n2 − 12) · · · (n2 − (k − 1)2)

1 · 3 · · · (2k − 1)
‖P‖

for every P ∈ Pn(X) and every x ∈ X with ‖x‖ ≤ 1. In the last inequality D(k)P stands for
the k-th Fréchet derivative of P and accordingly, D̂(k)P is the k-homogeneneous polynomial
induced by D(k)P .

The situation is completely different in the complex setting. First, the well-known Bern-
stein’s inequality of trigonometric polynomials states that

|T ′(θ)| ≤ n‖T ‖
for all θ ∈ R and every trigonometric polynomial T of degree n. As a consequence of
Bernstein’s inequality, complex polynomials in Pn(C) satisfy

‖P(k)‖ ≤ n!
(n − k)! ‖P‖,

where now the norms are calculated as the supremum of the modulus over the unit disk.
Equality is attained for P(z) = zn . This divergence between the real and complex cases in
one variable is translated to the infinite-dimensional case.
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It is interesting to observe that in any real Hilbert space H , homogeneous polynomials
satisfy the following estimate:

‖DP(x)‖ ≤ n‖P‖
for all x ∈ H with ‖x‖ ≤ 1 and every P ∈ P(nH). Hence homogeneous polynomials on a
real Hilbert space satisfy Bernstein’s inequality. As a matter of fact, this is a characteristic
property of real Hilbert spaces, that is, a real Banach space X is an inner product space if
and only if ‖DP(x)‖ ≤ n‖P‖ for all x ∈ X with ‖x‖ ≤ 1 and every P ∈ P(n X) (see,
for instance, [80]). Here we find another worth mentioning difference between the real and
complex settings since Bernstein’s inequality does not characterize complex inner product
spaces. Indeed, in [121], it was shown that �2∞(C) satisfies Bernstein’s inequality, although
it is not a Hilbert space.

There is yet one more significant difference between real and complex Bernstein-Markov
type inequalities in Banach spaces. In the rest of the section, we restrict our attention to
homogeneous polynomials on Banach spaces. Sarantopoulos found in 1991 a good Markov
estimate for the polynomial associated to the kth Fréchet derivative of a homogeneous polyno-
mial on a complex Banach space (see [238]). Sarantopoulos results in this line were improved
by Harris in 1997. If X is a complex Banach space, then (see [122, Corollary 3])

‖D̂k P(x)‖ ≤
⎧
⎨

⎩

nnk!
kk (n−k)n−k ‖P‖ if ‖x‖ ≤ 1,

nnk!
kk (n−k)n−k ‖P‖‖x‖n−k if ‖x‖ ≥ 1,

for all P ∈ P(nX ). In particular,

‖D̂k P‖ ≤ nnk!
kk(n − k)n−k

‖P‖.

The latter estimate had already been established by Harris in 1975 [121, Corollary 1]. The
constant nnk!

kk (n−k)n−k cannot generally be improved since equality is attained in X = �21(C).
Markov’s inequalities for homogeneous polynomials on real Banach spaces provide dif-

ferent estimaes. In general, these type of problems in a real setting are more difficult to tackle.
In addition, the results that are known for real Banach spaces are not so explicit and clear as
Harris’ estimates. Let us see what we know for real homogeneous polynomials. Harris [122]
proved that there exist constants cn,k > 0 such that

‖D̂k P(x)‖ ≤ cn,k‖P‖
where X is any real Banach space, x ∈ BX , P ∈ P(n X) and the optimal choice for cn,k can
be obtained as a solution to an extremal problem for polynomials of one real variable. The
following bounds on cn,k follow from [238]:

nnk!
kk(n − k)n−k

≤ cn,k ≤
(
n

k

)
n

n
2 k!

k
k
2 (n − k)

n−k
2

,

for 1 ≤ k ≤ n. The upper bound can be improved for large values of n as follows: there
exists a constant M > 0 such that

cn,k ≤ (Mn log n)k .

The latter bound is due to Nevai and Totik [199] and seems to provide the exact asymptotic
growth of the cn,k’s at least for k = 1 and k = 2 (see [223]). Unfortunately no closed
formula is known to provide the exact value of the cn,k’s. However, the method developed
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by Harris [122] can be applied to approach not only the exact value of cn,k for a given
choice of n and k, but also a procedure to construct a homogeneous polynomial for which
‖D̂k P(x)‖ = cn,k‖P‖ (see [122, Table I]).

5.4 Linear polarization constants

In the literature, linear polarization constants represent the ratio between the norm of the
product of linear forms and the product of the norms of the linear forms. More specifically,
if X is a Banach space, real or complex, and L1, . . . , Ln are n bounded linear functionals
in X ∗, then the n-homogeneous polynomial P ∈ P(nX ) defined by

P(x) = L1(x) . . . Ln(x)

obviously satisfies

‖P‖ ≤ ‖L1‖ . . . ‖Ln‖.
On the other hand, it can be proved ([34]) that there exists a universal constant Kn , depending
only on n, such that

‖L1‖ . . . ‖Ln‖ ≤ Kn‖P‖.
The authors of [34] showed that whenever X is a complex Banach space then

‖L1‖ . . . ‖Ln‖ ≤ nn‖L1 . . . Ln‖ (5.4)

for every choice of bounded linear functionals L1, . . . , Ln ∈ X ∗. Moreover, ifX = �n1(C)

and Lk(z1, . . . , zn) = zk , then

‖L1‖ . . . ‖Ln‖ = nn‖L1 . . . Ln‖,
proving that, at least in a complex setting, Kn = nn is the smallest possible constant in the
inequality

‖L1‖ . . . ‖Ln‖ = Kn‖L1 . . . Ln‖
for all complex Banach spaces X and all L1, . . . , Ln ∈ X ∗.

For real Banach spaces, using a complexification argument, it can also be proved that
there exists a universal constant Kn depending only on n such that

‖L1‖ . . . ‖Ln‖ ≤ Kn‖L1 . . . Ln‖ (5.5)

for every real Banach space X and every L1, . . . , Ln ∈ X∗. However, the best (smallest)
possible choice for Kn in (5.5) does not need to be nn , as it happens in the complex case.
The question of whether the best fit for Kn in (5.5) is nn or not remained as an open problem
for some time. It was already proved in [34] that (5.5) holds with Kn = nn at least for
n = 1, 2, 3, 4, 5, but it was not until 2004 that a full answer to the problem was found. As
a matter of fact, Kn can be replaced by nn in (5.5) for all n ∈ N (see [224]). Moreover, if
X = �n1(R) and Lk(x1, . . . , xn) = xk , then

‖L1‖ . . . ‖Ln‖ = nn‖L1 . . . Ln‖.
The estimates (5.4) and (5.5) motivate the definition of linear polarization constants.

Although nn is optimal in general in (5.4) and (5.5), it might be improved for specific choices
of X .
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Definition 5.6 ([34]) We define the n-th linear polarization constant of the (real or complex)
Banach space X as

cn(X ) = inf{M > 0 : ‖L1‖ . . . ‖Ln‖ ≤ M‖L1 . . . Ln‖ : L1, . . . , Ln ∈ X ∗}.
Alternatively, we also have

cn(X ) = 1/ inf
L1,...,Ln∈SX ∗

sup
‖x‖=1

|L1(x) . . . Ln(x)|.

The linear polarization constant of X is defined as

c(X ) = lim sup
n

n
√
cn(X ).

Interestingly, lim supn can be replaced by limn in the definition of c(X ) (see [224, Proposition
4]). It is also worth to mention that c(X ) = ∞ if and only if dim(X ) = ∞ (see [224,
Proposition 12]).

The calculation of the constants cn(X ) for specific choices of X is, in most cases, a
winding struggle. Only a selected bunch of linear polarization constants are known with
precision. For example, we have already shown that cn(�n1(K)) = nn . Further, if L1(μ) is
any real or complex L1-space with dim(L1(μ)) ≥ n, then cn(L1(μ))) = nn . In general,
the results and the techniques required to study linear polarization constants depend strongly
on whether we consider real or complex Banach spaces. The study of linear polarization
constants in Hilbert spaces is a paradigmatic example of the dichotomy existing between the
real and complex cases, for which reason we will devote special attention to Hilbert spaces.

The calculation of cn(�n2(K)) plays a central role in the theory of polarization constants
since cn(�n2(K)) is a lower bound for cn(X ) wheneverX is an infinite-dimensional Banach
space over K. In other words

Theorem 5.7 [224] If X is an infinite-dimensional Banach space, then

cn(�
n
2(K)) ≤ cn(X ) ≤ n

n
2 cn(�

n
2(K)),

for all n ∈ N.

In 1998, Arias-de-Reyna made the following significant advancement:

Theorem 5.8 [10] If x1, . . . , xn are unit vectors in a complex Hilbert spaceH endowed with
the inner product 〈·, ·〉, then

sup
‖x‖=1

|〈x, x1〉 . . . 〈x, xn〉| ≥ n−
n
2 . (5.6)

In other words, cn(H ) ≤ n
n
2 . Further, cn(�n2(C)) = n

n
2 for all n ∈ N and therefore

cn(H ) = n
n
2 whenever dim(H ) ≥ n.

The proof of Arias-de-Reyna remarkable result relies on complex Gaussian variables and
cannot be adapted to �n2(R). As a matter of fact, the question of whether cn(�n2(R)) = n

n
2

remains as an open problem nowadays despide the efforts of many mathematicians. It is
important to observe that (5.6) follows from the so-called complex plank problem described
on page 14.

Several works have been devoted to establish a real version of Theorem 5.8, but no
complete success have been achieved so far. We present below some results related to the
generalization of Theorem 5.8 to the real case.
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First we have to say that cn(�n2(R)) = n
n
2 at lest for n ≤ 5 (see [224, Proposition 15] and

[206, Theorem 2]). In fact [206, Theorem 2] actually shows that cn(�d2(R)) = n
n
2 whenever

n ≤ min{d, 5}.
Now, if x1, . . . , xn are unit vectors in �n2(R) and 0 ≤ λ1 ≤ · · · ≤ λn are the eigenvalues

of the Gram matrix, i.e., the positive definite Hermitian matrix A = [〈x j , xk〉]1≤ j,k≤n , then

• Marcus, 1997 (see [178] and [224]):

sup
‖x‖=1

|〈x, x1〉 · · · 〈x, xn〉| ≥ (λ1/n)n/2.

• Matolcsi, 2005 (see [184]): If x1, . . . , xn are linearly independent then

sup
‖x‖=1

|〈x, x1〉 · · · 〈x, xn〉| ≥
(

n
1
λ1
+ · · · + 1

λn

)n/2

n−n/2.

• Matolcsi, 2005 (see [185]):

sup
‖x‖=1

|〈x, x1〉 · · · 〈x, xn〉| ≥
√

λ1 . . . λnn
−n/2.

• Muñoz, Sarantopoulos and Seoane, 2010 (see [194]):

sup
‖x‖=1

|〈x, x1〉 · · · 〈x, xn〉| ≥ max
{
(λ1/n)n/2 , (1/λnn)n/2} .

On the other hand, the reader may find of interest the following evolution of the bounds
known on cn(�n2):

• Litvak, Milman and Schechtman, 1998 (see [170]):

cn(�
n
2(R)) ≤ (4e2γ n)

n
2 ,

where γ is the Euler–Mascheroni constant and 4e2γ ≈ 12.6892.
• García-Vázquez and Villa, 1999 (see [108]):

cn(�
n
2(R)) ≤ (2eγ n)

n
2 ,

where 2eγ ≈ 3.5622.
• A straightforward use of complexifications yields:

cn(�
n
2(R)) ≤ (2n)

n
2 /4 < (2n)

n
2 .

• Frenkel, 2008 (see [99]):

cn(�
n
2(R)) ≤

(
3
√
3

e
n

) n
2

,

where 3
√
3

e ≈ 1.9115.
• Muñoz, Sarantopoulos and Seoane, 2010 (see [194]):

cn(�
n
2(R)) ≤ n(

√
2n)

n
2 ,

for sufficiently lage n’s.

Linear polarization constants have also been estimated for other Banach spaces, producing
different results in real and complex settings. We have already mentioned that
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• cn(H ) = n
n
2 for any complex Hilbert space with dim(H ) ≥ n (see [10]).

• cn(L1(μ)) = nn for any real or complex L1 space with dim(L1(μ)) ≥ n (see [34]).

Other estimates and exact values of various linear polarization constants are listed below:

• Kroó and Pritsker, 1999 (see [161]):

cn(�
2∞(C)) = 2n−1.

• Révész and Sarantopoulos, 2004 (see [224]): If p, q ≥ 1 with 1/p + 1/q = 1, the
complex L p(μ) satisfies

cn(L p(μ)) ≤
{
nn/p if 1 ≤ p ≤ 2,

nn/q if p ≥ 2.

If, in addition, dim(L p(μ)) ≥ n and 1 ≤ p ≤ 2, then

cn(L p(μ)) = nn/p.

• Révész and Sarantopoulos, 2004 (see [224]): If n, d ∈ N, then

cn(�
d
1(K)) = max

k1+···+kd=n
ki≥0

nn

kk11 · · · kkdd
=

d−1∏

l=0

( n

[ n+ld ]
)[ n+ld ]

.

In particular, if n = m · d , then
cn(�

d
1(K)) = dn .

• Anagnostopoulos and Révész, 2006 (see [6] and [194]):

cn(�
2
2(R)) = 2n−1.

• Anagnostopoulos and Révész, 2006 (see [6]):

Ke
n
2 ≤ cn(�

2
2(C)) ≤ Me

n
2

where 0 < K < M .
• From the previous two results it is easily seen that

c(�22(R)) = 2 whereas c(�22(C)) = e

2
.

• To describe the asymptotic growth of a sequence, in particular c(�dp(K)), we shall use
the standard symbols� and≺. Observe that for any two sequences of real numbers (ad)
and (bd), ad ≺ bd means that ad ≤ Lbd for some positive constant L , whereas ad � bd
means that ad ≺ bd and bd ≺ ad . Then

c(�dp(K)) �
{ p
√
d, if 1 ≤ p ≤ 2,

√
d, if p ≥ 2,

and
√
d ≺ cn(�

d∞(K)) ≺ d
1
2+ε, for all ε > 0.

The previous asymptotic estimates are due to Carando, Pinasco and Rodríguez (see [60]).
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5.5 Norm of products of polynomials: the factor problem for homogeneous
polynomnials

IfX is a Banach space and Pj ∈ P(k jX ) with 1 ≤ j ≤ n are n homogeneous polynomials
on X , then it is straightforward to show that

‖P1 . . . Pn‖ ≤ ‖P1‖ . . . ‖Pn‖.
At the other end of the scale, it was proved in [34] that there exists a universal constant
Mk1,...,kn > 0 depending only on the degrees k1, . . . , kn such that

‖P1‖ . . . ‖Pn‖ ≤ Mk1,...,kn‖P1 . . . Pn‖.
Estimates of this type fall within the so-called factor problem. This problem had already been
studied for products of polynomials in one (complex) variable many decades earlier than the
question was stated for Banach spaces by Benítez, Sarantopoulos and Tonge [34].

The calculation of the best (smallest) possible value of Mn1,...,nk for all or specific Banach
spaces has been a fruitful field of interest for many great mathematicians in the last 20 years.
It was proved in [34] that

Mk1,...,kn =
(k1 + · · · + kn)k1+···+kn

kk11 . . . kknn

wheneverX is any complex Banach space. For this choice of the constant Mk1,...,kn , equality
is attained in ‖P1‖ · · · ‖Pn‖ ≤ Mk1,...,kn‖P1 . . . Pn‖ (see [34, Example 1]) for X = �1(K)

and

Pj ((xi )
∞
i=1) = xk1+···+k j−1+1 · · · xk1+···+k j .

Observe that letting k1 = . . . = kn = 1, we recover the estimate

‖L1‖ . . . ‖Ln‖ ≤ nn‖L1 . . . Ln‖
for all L1, . . . , Ln ∈ X ∗, showing that the factor problem for homogeneous polynomials
generalizes the linear polarization problem.

In the following we shall present other estimates related to the factor problem for homoge-
neous polynomials on Banach spaces. The fisrt thing that should be pointed out is the lack of
known sharp estimates for arbitrary real Banach spaces. Some of the most succesful attempts

to improve the constant Mk1,...,kn = (k1+···+kn)k1+···+kn
k
k1
1 ...kknn

have been focused on Hilbert spaces.

In 1998, Boyd and Ryan (see [48]) proved that

‖P1‖ . . . ‖Pn‖ ≤ (k1 + · · · + kn)!
k1! . . . kn ! ‖P1 . . . Pn‖

for Pj ∈ P(k jH ) (1 ≤ j ≤ n), where H is a complex Banach sapace. The constant,
however, is not optimal. In 2012, Pinasco [215] found the following improvement of the
previous estimate

‖P1‖ . . . ‖Pn‖ ≤
√

(k1 + · · · + kn)k1+···+kn

kk11 . . . kknn
‖P1 . . . Pn‖.

Moreover, the constant is sharp whenever the complex Hilbert spaceH satisfies dim(H ) ≥
n, and equality is attained for the polynomials defined by Pi (z) = zkii for 1 ≤ i ≤ n, where
(z1, . . . , zn) are the first n coordinates of z with respect to an orthonormal basis ofH . As for
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real Hilbert spaces, it is easy to derive an estimate using the last inequality in combination
with the Lindenstrauss–Tzafriri complexification norm (see page 9), however, that estimate
can be greatly enhanced. Actually,Malicet et al. (see [175]) proved in 2016 that the inequality

‖P1‖ . . . ‖Pn‖ ≤
√√√√2k1+···+kn�

(
k1 + · · · + kn + d

2

)

�
( d
2

)
kk11 . . . kknn

‖P1 . . . Pn‖,

holds whenever H is a d-dimensional real Hilbert space and Pj ∈ P(k jH ) (1 ≤ j ≤ n).
For complex L p(μ) spaces we have (see [59])

‖P1‖ . . . ‖Pn‖ ≤ p

√
(k1 + · · · + kn)k1+···+kn

kk11 . . . kknn
‖P1 . . . Pn‖.

Interestingly, equality is attained in the previous estimate for any choice of polynomials Pj

of degree n j (1 ≤ j ≤ n) such that Pj and Pk do not share any common variables for
1 ≤ j �= k ≤ n (see [59]).

Some of the estimates that have appeared in this section have been recently improved in
finite-dimensional spaces, real or complex. For instance, if X is a d-dimensional Banach
space over K, then (see [61, Theorem 2.1])

‖P1‖ . . . ‖Pn‖ ≤ (CK4ed)
∑n

j=1 k j

2
2

CK

‖P1 . . . Pn‖,

where CR = 1, CC = 2 and, as usual, Pj ∈ P(k jX ) (1 ≤ j ≤ n).
Now, if H is a d-dimensional Hilbert space over K, then (see [61, Proposition 2.2])

‖P1‖ . . . ‖Pn‖ ≤
(
eHdCK

4

)∑n
j=1 k j

‖P1 . . . Pn‖,

where CR = 1, CC = 2, Hd =∑n
j=1 1

j and Pj ∈ P(k jH ) (1 ≤ j ≤ n).

5.6 Real and complex plank problems and their relationship with linear polarization
constants

To understand the essence of plank problems we need to introduce a few concepts.

Definition 5.9 Let X be a Banach space over K and K ⊂ X a convex body (convex,
compact set with nonempty interior). Then

• A plank P in X is a set of points laying between two parallel hyperplanes, i.e.,

P = {x ∈ X : | f (x)− f (a)| ≤ δ},
where f ∈ X ∗, δ > 0 and a ∈ X . If f has norm 1, then the width of P is w(P) = 2δ.

• If F is a hyperplane ofX , the width w(K , F) of K parallel to F is the distance between
two supporting hyperplanes to K parallel to F (see Fig. 1).

• The minimum width of K is w(K ) = infF w(K , F).
• If P is a plank parallel to the hyperplane F , the width of P relative to K is wK (P) =

w(P)/w(K , F).
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Fig. 1 Width w(K , F) of K parallel to F and minimum width of K

The study of plank problems goes back to the 1930’s when Tarski posed the question:

If K is a convex body (in R
n) covered by n planks of widths w1, . . . , wn , is it true that

w1 + · · · + wn ≥ w(K )?

Intuition tells us that the answer to the latter question is yes, however a formal proof of
Tarski’s problem is not easy. Tarski gave his own proof for a disc in R

2 in 1932 (see [254]
for Tarski’s original solution or [156] for a modern exposition). Tarski’s plank problem was
proved in general byBang in 1951 [27]. At the end of his paper, Bang also posed the following
strengthened version of Tarski’s plank problem:

If K is a convex body covered by the planks P1, . . . , Pn , is it true that wK (P1)+· · ·+
wK (Pn) ≥ 1?

A positive answer to Bang’s plank problem was found by Ball in 1991 (see [21]) for convex
bodies with central symmetry. Ball’s solution is formulated in terms of real Banach spaces.

Theorem 5.10 [21] If X is a real Banach space, f1, . . . , fn ∈ X ∗ have norm 1, and
t1, . . . , tn ≥ 0 with t1 + · · · + tn = 1, then there exists a unit vector x ∈ X such that
| fk(x)| ≥ tk for 1 ≤ k ≤ n.

The previous result will be called from now on Ball’s real plank theorem. There exists a
very close connection between Ball’s plank theorem and linear polarization constants. This
relationship is revealed by letting tk = 1

n (1 ≤ k ≤ n) in Theorem 5.10. Then for any
f1, . . . , fn ∈ SX ∗ there exists x ∈ SX such that

| fk(x)| ≥ 1

n
.

Hence

inf
f1,... fn∈SX ∗

‖ f1 . . . fn‖ ≥ 1

nn
,
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Fig. 2 Proving that for any distribution of 2n points a1, . . . , a2n within the unit circle and any normalized
x ∈ R

2 there is some ak with 1 ≤ k ≤ 2n for which |〈x, ak 〉| < 1√
2n

from which the nth linear polarization constant of X satisfies cn(X ) ≤ nn for all real
Banach spaces. This estimate, which is optimal, was already mentioned in page 38, and was
proved in [224].

Ball’s plank theorem for real Banach spaces (Theorem 5.10) admits an analog for complex
Hilbert spaces, although with a slightly different statement.

Theorem 5.11 [22] Let (H , 〈·, ·〉) be a complex Hilbert space, a1, . . . , an unit vectors in
H , and t1, . . . , tn ≥ 0 with

∑n
k=1 t2k = 1. Then there exists a unit vector x ∈ H such that

|〈x, ak〉| ≥ tk for 1 ≤ k ≤ n. In particular

|〈x, a1〉 · · · 〈x, an〉| ≥ t1 . . . tn .

The previous result will be named Ball’s complex plank theorem from now on. Observe
that putting tk = 1√

n
in Theorem 5.11, for every unit vectors a1, . . . , an there exists x with

‖x‖ = 1 such that

|〈x, a1〉 · · · 〈x, an〉| ≥ n−
n
2 .

From the previous fact we can infer straightforwardly that the n-th linear polarization constant
of a complexHilbert spaceH is atmost n

n
2 , or equivalently cn(H ) ≤ n

n
2 . Equality is attained

whenever dim(H ) ≥ n, providing an alternative proof of Theorem 5.7. Unfortunately Ball’s
complex plank theorem is not true for real Hilbert spaces in general. Indeed, as pointed out
by Kirwan [233, p. 706], if we distribute 2n points a1, . . . , a2n within the unit circle in R

2,
then for any unit vector x in the plane there is some ak with 1 ≤ k ≤ 2n for which

|〈x, ak〉| = cos
(π

2
− θ
)
= sin θ ≤ sin

π

n
≤ π

n
<

1√
2n

,

(see Fig. 2).
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6 Real Banach algebras, real C∗-algebras, real J∗B-algebras, and real
JB∗-triples

Banach algebras have been among the most studied objects in functional analysis since the
beginning of the theory. A real or complex Banach algebra is a real or complex Banach space
(A , ‖ · ‖) equipped with an associative (and bilinear) product A ×A → A , (a, b) �→ ab,
satisfying

‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A .

The latter condition is clearly a link between the algebraic and the analytic structures assuring
the continuity of the norm.Different substructures are obtained by adding extra hypotheses on
the Banach algebra. For example, a real or complex Banach algebraA is called commutative
if its product enjoys the property that ab = ba for all a, b ∈ A . We say that A is unital
if there exists a necessarily unique element 1 ∈ A satisfying 1a = a = a1 for all a ∈ A .
Clearly, every complex Banach algebra is a real Banach algebra by just restricting the product
by scalars to the real field. The center of a real or complex Banach algebra A (denoted by
Z(A)) will consist in all elements a ∈ A such that az = za for all a ∈ A.

We will see a good list of examples along with the paper. For the moment, we begin
with the best-known models. For each compact Hausdorff space K , the spaces C(K , R) and
C(K ) = C(K , C) of all real-valued and complex-valued functions on K , respectively, are
examples of commutative real and complex Banach algebras with respect to the supremum
norm and the pointwise product. Let F stand for a closed subset of K . The set CR

F (K ) :=
{ f ∈ C(K ) : f (F) ⊆ R} is a closed real subalgebra ofC(K ). These Banach algebras always
admit a unit, namely, the constant function 1. For a locally compact Hausdorff space �, the
Banach spaces C0(�, R) and C0(�), respectively, of all real-valued and complex-valued
continuous functions on � vanishing at infinity are examples of nonunital commutative real
or complex Banach algebras when equipped with the supremum norm and the pointwise
product. We observe that for every real or complex Banach space X , the space B(X ), of
all bounded linear operators on X , is a real or complex Banach algebra with respect to the
composition and the operator norm. In particular, the Banach spaces Mn(R) and Mn(C)

are real and complex Banach algebras with respect to the matricial product and the operator
norm. These latter examples are unital but noncommutative Banach algebras if dim(X ) ≥ 2.

Despite the fact that the general strategy in this paper consists in extending the norm
from a real structure to its algebraic complexification, with the unique condition that the
corresponding extension preserves the same algebraic and analytic structures assumed on
the real object, there exists another procedure consisting in assuming that we already have
an appropriate extension and considering a suitable real subspace whose complexification is
the structure fromwhich we began. In analogy with what has been considered in the previous
sections, we deal with real forms of complex Banach spaces. Suppose that τ : X → X is a
conjugate-linear isometry of period 2 (i.e., τ 2 = I dX ) on a complex Banach spaceX . The
set

X τ := {x ∈ X : τ(x) = x}
of all τ -fixed points in X is a closed real subspace and hence a real Banach space when
equipped with the restricted norm. The real Banach space X τ is called a real form of the
space X . A mapping τ satisfying the above properties is called a conjugation on X . If X
is regarded as the complexification ofX τ , then ‖x − iy‖ = ‖τ(x + iy)‖ = ‖x + iy‖ for all
x, y ∈ X τ , that is, X with its original norm is a reasonable complexification in the sense
we employed in Sect. 4.2.
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Let us illustrate this construction with an example. Suppose that K is a compact Hausdorff
space. By the celebrated Banach–Stone theorem, every surjective conjugate-linear isometry
� : C(K ) → C(K ) is of the form

�( f )(t) = u(t) f (σ (t)) ( f ∈ C(K ), t ∈ K ),

where σ : K → K is a homeomorphism and u ∈ C(K ) with |u(t)| = 1 for all t ∈ K .
Hence every conjugation τ on C(K ) must be of the form τ( f )(t) = u(t) f (σ (t)) with
u(σ (t)) = u(t) and σ 2(t) = t for all t ∈ K . The real form C(K )τ is a real Banach space
whose complexification is C(K ), and its norm admits an extension to C(K ). However, the
structure of the real form is, in principle, different from a C(K )-space. Namely, C(K )τ need
not be a subalgebra of C(K )—we will see later that it admits a concrete geometric Jordan
structure—. Assuming u = 1 in C(K ), the real form C(K )τ is a real Banach subalgebra of
C(K ).

If τ is a conjugation on a complex Banach algebraA and τ is multiplicative, then the real
form A τ is a real Banach algebra.

Clearly, the unit element in a unital real or complex Banach algebra A satisfies ‖1‖ ≥ 1.
It is well-known that we can renormA with another Banach algebra norm in such a way that
the unit element has norm one. For this purpose, we shall consider the representation of A
intoB(A ) through the left and right multiplication operators.We recall that a homomorphism
(respectively, isomorphism) between two real or complexBanach algebrasA andB is a linear
(respectively, bijective linear) mapping � : A → B preserving the associative product, that
is, �(ab) = �(a)�(b) for all a, b ∈ A . We can consider the linear maps

L : A → B(A ) and R : A → B(A )

defined by L(a) = La : A → A , La(x) := ax and R(a) = Ra : A → A , Ra(x) := xa,
respectively. It is well-known that L and R are two homomorphisms. These maps are called
the left and right regular representations ofA intoB(A ), respectively. One of the advantages
of the left (respectively, right) regular representation is that, assuming that A is unital, by
renorming it via the norm ‖|a|‖ := ‖La‖B(A ) (respectively, ‖|a|‖ := ‖Ra‖B(A )), we find
an equivalent algebra norm on A satisfying ‖|1|‖ = 1. Henceforth, we shall assume that for
each unital (real or complex) Banach algebra A , we have ‖1‖ = 1.

A conjugate-linear multiplicative mapping between two complex Banach algebras will be
called a conjugate-linear homomorphism. A conjugate-linear isomorphism is a conjugate-
linear bijection that is also multiplicative.

A real or complex Banach algebraA without unit can be always regarded as a norm closed
subalgebra of a unital Banach algebra. It suffices to consider the unitization A1 = A ⊕K1
with the obvious extension of the product and the norm ‖a + λ1‖ := ‖a‖ + |λ| (see [46,
Definition I.3.1]). We can also consider the left regular representation and the subalgebra of
B(A ) generated by L(A ) and the identity on A . In the latter case, we have

‖a + λ1‖ := ‖La + λI dA ‖B(A ) = sup
‖x‖≤1

‖ax + λx‖ (a ∈ A , λ ∈ K).

6.1 Standard complexification of a Banach algebra

From a strictly algebraic point of view, given a real Banach algebra A, there is only one natural
extension of its product to an associative product on its complexification Ac = A+i A, which
is defined by

(a + ib)(c + id) = ac − bd + i(ad + bc) (a, b, c, d ∈ A).
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Clearly, Ac is commutative whenever A is, and if A admits a unit 1, the same element is
a unit in Ac. When we regard A merely as a Banach space, we can consider its Taylor
complexification given in Sect. 4.2 (see page 9) whose norm is given by

‖x + iy‖T := sup
t∈[0,2π ]

‖x cos t − y sin t‖ (x + iy ∈ Ac).

By considering the left regular representation of Ac as a subalgebra of B(Ac, ‖ · ‖T ) (with
the operator norm given by the Taylor complexification), we define a Banach algebra norm
on Ac given by this representation, that is,

‖a + ib‖T ,a := ‖La+ib‖B(Ac,‖·‖T ) = sup
‖(x+iy)‖T≤1

‖(a + ib)(x + iy)‖T .

This complex Banach algebra (A, ‖ · ‖T ,a) (respectively, this norm ‖ · ‖T ,a) is called the
standard complexification of A (respectively, the standard norm) in references like [174]. If
‖ · ‖r is any reasonable complete norm on the complex space Ac, for example, ‖x + iy‖pp :=
‖x‖p + ‖y‖p with 1 ≤ p < ∞, and ‖x + iy‖∞ := max{‖x‖, ‖y‖}—We recall that all
reasonable norms on Ac are equivalent to the Taylor norm (see page 9)—, then we can
reproduce the above procedure to obtain a complex Banach algebra norm ‖ · ‖r ,a on Ac. All
these complex Banach algebra norms are reasonable and equivalent to ‖ · ‖T ,a .

As narrated in themonographs [46, §13] and [167, §2.1], there is another method to extend
the norm of a real Banach algebra (A, ‖ · ‖) to a norm on the complex Banach algebra Ac.
Namely, let BA denote the closed unit ball of A and let V denote the absolutely convex hull
of the set BA × {0} in Ac, that is,

V = |co| (BA × {0}) =
⎧
⎨

⎩
∑

j

α j a j : a j ∈ BA × {0}, α j ∈ C with
∑

j

|α j | ≤ 1

⎫
⎬

⎭ ,

which is an absorbent set in Ac. The Minkowski functional associated with V defines a
reasonable, complete algebra norm ‖ · ‖m on Ac, whose open unit ball is precisely V and its
restriction to A coincides with ‖ · ‖ and satisfies

max{‖a‖, ‖b‖} ≤ ‖a + ib‖m ≤ 2max{‖a‖, ‖b‖}
for all a, b ∈ A (see [46, Proposition I.13.3] or [167]). The reader interested in additional
results on the complexification of a normed real algebra can also consult [57, §1.1.5]. As
remarked in the just quotedmonograph, “Due to the power of complexmethods, the possibility
of regarding (isometrically) any real normed algebra as a real subalgebra of a normed
complex algebra becomes a relevant fact.” The complexification method in [57] by means
of the projective tensor norm, is precisely the one by Bonsall and Duncan [46], and has the
advantage that it works without problems in the non-associative setting.

All the above procedures define equivalent reasonable algebra norms on the complexifi-
cation of a real Banach algebra A. It should be noted that the processes of unitization and
complexification on a real Banach algebra can be interchanged, and the resulting algebra
does not change. If Ac is the complexification of A equipped with a reasonable com-
plete Banach algebra norm ‖ · ‖, then we can define a conjugation τ on Ac given by
τ(a + ib) = a + ib = a − ib, which is clearly a period-2 isometry, because the norm
on the complexification is reasonable. Furthermore, the conjugation τ is a conjugate-linear
homomorphism on Ac, and A = Aτ

c is a real Banach subalgebra of Ac.
Each complex Banach algebraA can be always regarded as a real Banach algebra,AR, by

just restricting the product by scalars to the real field. Conversely, it is interesting to have tools
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to determine if a real Banach algebra is obtained from a complex one in this way. According to
the standard terminology, a real (normed) algebra is said to be of complex type if it is possible
to extend the scalar multiplication to complex scalars so that the algebra becomes a complex
(normed) algebra under an equivalent norm (cf. [129,Definition 6.1]). The following technical
characterization of real normed algebras of complex type was established by L. Ingelstam
with tools developed by I. Kaplansky [147] and a complex norm given by a formula close to
the Taylor complexification.

Theorem 6.1 [129, Proposition 6.2 and Corollary 6.3]A real normed algebra A is of complex
type if and only if there exists a continuous linear operator J on A satisfying:

(a) J is an A-module homomorphism, that is,

J (ab) = J (a)b = a J (b), for all a, b ∈ A;
(b) −J 2 is the identity map on A.

Furthermore, the equivalent Banach algebra complex norm is given by

‖|x |‖ = max
θ∈R ‖ cos(θ)x + sin(θ)J (x)‖ (x ∈ A).

Consequently, a real (normed) algebra A with identity 1 is of complex type if and only if there
exists an element ι in the center of A, satisfying ι2 = −1.

The mapping J in the previous theorem is called a complex multiplication. Propositions
2.1 and 2.2 in [130] prove that every complex multiplication on a real normed algebra A is
automatically continuous in any of the following cases:

(a) A is a real Banach algebra with an approximate identity;
(b) the set of (left or right) topological divisors of 0 is not all of A.

Whether the original norm of a real Banach algebra is not only equivalent to a complex
Banach algebra norm, but it is itself a complex norm is another type of question. We shall
add some answer.

Proposition 6.2 Let A be a real normed algebra with norm ‖·‖. Then we can define a product
by complex scalars on A making the latter a complex normed algebra for its original norm
if and only if there exists a continuous linear operator J on A satisfying:

(a) J is an A-module homomorphism, that is,

J (ab) = J (a)b = a J (b) for all a, b ∈ A;
(b) −J 2 is the identity map on A;
(c) For each real θ the mapping cos(θ)I dA + sin(θ)J is a non-expansive mapping on A.

Proof For the “only if” part we observe that if there exists a product by complex scalars
making (A, ‖ · ‖) a complex normed algebra, by defining J (a) = ia the first two proerties
are clear, and for the last one

‖(cos(θ)I dA + sin(θ)J )(a)‖ = ‖(cos(θ)+ i sin(θ))a‖ = ‖a‖ (a ∈ A, θ ∈ R).

For the sufficient implication, it is clear that defining (α+iβ)a = αa+β J (a) (α+iβ ∈ C,
a ∈ A),weget a structure of complex algebra on A. It remains to prove that the original norm is
a complex norm. Since for each θ ∈ R, by hypothesis, we have ‖ cos(θ)I dA+sin(θ)J‖ ≤ 1,
the linear mapping cos(θ)I dA + sin(θ)J is a bijection with inverse cos(θ)I dA − sin(θ)J ,
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which is also non-expansive, we deduce that cos(θ)I dA+ sin(θ)J is a linear isometry for all
real θ . Therefore, for a non-zero complex numberα+iβ wewrite α+iβ = |α+iβ|(cos(θ)+
i sin(θ)) to get

‖(α + iβ)a‖ = ‖(α + iβ)a‖ = |α + iβ|‖ cos(θ)a + sin(θ)J (a)‖
= |α + iβ|‖(cos(θ)I dA + sin(θ)J )(a)‖ = |α + iβ|‖a‖. ��

We shall see later (see Theorem 6.14 below) that in the setting of real C∗-algebras, the
Gelfand-Naimark axiom is a powerful geometric tool to simplify the conclusion of Theorem
6.1 and Proposition 6.2.

An element a in a real or complex unital algebra A is called invertible if there exists b in
A with ab = ba = 1. This element b is unique, it is called the inverse of a in A , and it will
be denoted by a−1. If A is a unital real Banach algebra and Ac denotes its complexification,
then it is easy to check that the set A−1 of all invertible elements in A coincides with the
intersection of A with the set A−1c of all invertible elements in Ac. Therefore, the usual
topological properties of A−1 and of the inverse mapping hold in the real setting, too.

If A is a unital real Banach algebra, then the spectrum of an element a ∈ A, σA(a), is
defined as the spectrum of a in the complexification of A, that is,

σA(a) := σAc (a) = {λ ∈ C : a − λ1 /∈ A−1c }. (6.1)

If A is not unital, then the spectrum of an element a ∈ A is defined as the spectrum of
this element in the unitization of A, which is precisely the spectrum of the element in the
complexification of A. Therefore, by the celebrated Gelfand theorem, the spectrum of each
element is a nonempty compact subset of the complex plane, bounded by the norm of the
element. As in the case of operators (see page 19), if we define the spectrum of an element
in a unital real Banach algebra A in terms of real numbers and invertible elements in A, then
we might find an empty set. So, the natural definition for the spectrum in the setting of real
Banach algebras is the one given in (6.1).

Since the natural conjugation a + ib �→ a + ib = a − ib on the complexification, Ac, of
a real Banach algebra A is a conjugate-linear unital homomorphism, it is not hard to see that

σAc

(
a + ib

) = σAc (a − ib) = σAc (a + ib) (for all a + ib ∈ Ac),

and consequently

σA(a) = σAc (a) = σAc (a) = σA(a) (for all a ∈ A). (6.2)

By [57, Proposition 1.1.100] we also know that

σAc (a) = σA(a) = {α + iβ : α, β ∈ R such that (a − α1)2 + β21 /∈ A−1c }, (6.3)

for all a ∈ A.
The spectral radius of an element a ∈ A is defined as the corresponding spectral radius

in the complexification, that is,

r(a) = rA(a) = rAc (a) = max{|λ| : λ ∈ sp(a)}.
Since the famous Gelfand–Beurling formula holds for every complex Banach algebra (see
[18, Theorem 3.2.8]), we conclude that the same identity is also true for real Banach algebras,
that is,

r(a) = lim
n→∞‖an‖ 1

n = max{|α + iβ| : α, β ∈ R such that (a − α1)2 + β21 /∈ A−1c }.
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Before dealing with more concrete structures, like real and complex C∗-algebras, we
revisit some results requiring a simple background. A fascinating achievement in the theory
of Banach algebras is the so-called Gleason–Kahane–Żelazko theorem.

Theorem 6.3 (Gleason–Kahane–Żelazko theorem [111, 143, 265]) Let F : A → C be a
nonzero linear mapping, where A is a complex Banach algebra. Then the following state-
ments are equivalent:

(a) F(a) ∈ sp(a) for every a ∈ A ;
(b) F is unital if A is unital or admits a unital extension to the unitization of A and maps

invertible elements to invertible elements;
(c) F is multiplicative.

The mapping F is continuous if it satisfies any of the previous equivalent conditions.

This is nowadays one of the fundamental contributions in functional analysis and the
theory of complex Banach algebras, and it is contained in most reference books (see, for
example, [230, Theorem III.10.9], [203, Theorem 2.4.13], or [46, Theorem II.17.7]). The
Gleason–Kahane–Żelazko theorem still is a pole of attraction (see, for example, [181, 182,
226, 257–259]). However, during its early years, its importance was disputed. For example,
in [230, p. 25], it was affirmed that “This striking result has apparently found no interesting
applications as yet”—nothing farthest from its real role in mathematics—. Subsequent years
have witnessed a whole explosion of new ideas and applications coming out induced by
this important result. Indeed, the Gleason–Kahane–Żelazko theorem was applied by Cabello
Sánchez and Molnár [55] while studying the reflexivity of the isometry group and the auto-
morphism group of uniform algebras and topological algebras of holomorphic functions, by
Cabello Sánchez [56] for investigation of the Banach algebras L∞(μ) for variousmeasuresμ

, and by Jiménez-Vargas et al. [134] in exploration of the algebraic reflexivity of the isometry
group of some spaces of Lipschitz functions.

It is worth noting that Choda and Nakamura [64] gave two short proofs of the Gleason–
Kahane–Żelazko theorem in the special case in which A is a C∗-algebra, while a simple
proof for complex Banach algebra with a hermitian involution was established by Chō [63].

TheGleason–Kahane–Żelazko theorem is not valid for real Banach algebras. For example,
let A = C([0, 1], R) be the real algebra of all continuous real-valued functions on [0, 1] and
let F : A → R, F( f ) := 1

2 ( f (0)+ f (1)) ( f ∈ A). Since

min{ f (0), f (1)} ≤ F( f ) = 1

2
( f (0)+ f (1)) ≤ max{ f (0), f (1)} ( f ∈ A),

the intermediate value theorem implies that F( f ) ∈ sp( f ) for all f ∈ A, but it can be
easily checked that F is not multiplicative (see [240]). Another example can be given by the
mapping G : A → R, G( f ) = ∫ 10 f (t)dt . By the mean value theorem, G( f ) lies in sp( f )
for all f ∈ A, and clearly, G is not multiplicative.

Despite the obstacles in the real setting, Kulkarni established the following version of the
Gleason–Kahane–Żelazko theorem for real Banach algebras, which was originally proved
by an ingenious application of functional calculus and Hadamard’s factorization theorem.

Theorem 6.4 (Kulkarni–Gleason–Kahane–Żelazko theorem, [162]) Let F : A → C be a
nonzero linear map, where A is a unital real Banach algebra. Then the following statements
are equivalent:
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(i) F is multiplicative;
(ii) F(1) = 1 and F(a)2 + F(b)2 lies in sp(a2 + b2) for all a, b ∈ A with ab = ba;
(iii) F(1) = 1 and F(a)2+F(b)2 �= 0 for all a, b ∈ A with ab = ba and a2+b2 invertible.

The original Gleason–Kahane–Żelazko theorem can be derived from the previous result
via the following ingenious idea: Let A be a complex Banach algebra and let F : A → C a
linear mapping satisfying statement (b) in Theorem 6.3. Given two elements a and b in A
such that ab = ba and a2+ b2 is invertible, the identity a2+ b2 = (a+ ib)(a− ib) implies
that (a + ib) and (a − ib) are invertible, and hence F(a)2 + F(b)2 = F(a + ib)F(a − ib)
must be a nonzero complex number.

If instead of studying the algebraic reflexivity of the isometry group and local isometries
and automorphisms, we are interested in 2-local isometries and automorphisms (or their weak
versions), in the way introduced by Šemrl [241] and Larson and Sourour [164], like in the
studies conducted by Hatori et al. [124] on 2-local isometries and 2-local automorphisms
between uniform algebras, on weak-2-local isometries between uniform and Lipschitz alge-
bras by Li et al. [168] and by Jiménez Vargas and Villegas-Vallecillos [135], then we realize
that the appropriate tool is the following theorem due to Kowalski and Słodkowski. We omit
additional details for the sake of brevity.

Theorem 6.5 (Kowalski–Słodkowski theorem [160]) Let A be a complex Banach algebra
and let � : A → C be a mapping satisfying �(0) = 0 and

�(x)−�(y) ∈ σ(x − y)

for every x, y ∈ A . Then � is linear and multiplicative.

The following spherical versions of the Gleason–Kahane–Żelazko and Kowalski–
Słodkowski theorems, which are suitable tools to study weak-2-local isometries can be found
in [168]. From now on, we write T for the unit sphere of C.

Theorem 6.6 (Spherical Gleason–Kahane–Żelazko theorem, [168, Proposition 2.2]) Let F :
A → C be a linear mapping, where A is a unital complex Banach algebra. Suppose that
F(a) ∈ T sp(a) for every a ∈ A . Then the mapping F(1)F is multiplicative.

Theorem 6.7 (Spherical Kowalski–Słodkowski theorem, [168, Proposition 3.2]) Let A be a
unital complex Banach algebra and let � : A → C be a mapping satisfying the following
properties:

(a) � is 1-homogeneous;
(b) �(x)−�(y) ∈ T σ(x − y) for every x, y ∈ A .

Then � is linear, and there exists λ0 ∈ T such that λ0� is multiplicative.

An interesting contribution due to Oi (see [201]) shows that by replacing hypothesis (a)

in the previous theorem by the condition �(0) = 0 we can get a similar conclusion to that
in the Kowalski–Słodkowski theorem.

Theorem 6.8 [201] Let A be a unital complex Banach algebra and let � : A → C be a
mapping satisfying the following properties:

(a) �(0) = 0;
(b) �(x)−�(y) ∈ T σ(x − y) for every x, y ∈ A .

Then � is is complex-linear or conjugate-linear and �(1)� is multiplicative.

The Gleason–Kahane–Żelazko and Kowalski–Słodkowski theorems are now influencing
on the developing of new problems in the fruitful line of preservers.We shall see some related
results after presenting the basic background on C∗-algebras.
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6.2 Division real Banach algebras

This is an appropriate moment to introduce another example of a real Banach algebra. We
refer to one of the few mathematical models about which we know the exact date and place
in which they were invented. We are speaking about Hamilton’s quaternions, whose origins
were explicitly dated in a letter by Hamilton to his friend and fellow mathematician Graves,
in which he wrote “And here (at Brougham Bridge) there dawned on me the notion that we
must admit, in some sense, a fourth dimension of space for the purpose of calculating with
triples ... An electric circuit seemed to close, and a spark flashed forth.” (Dublin, 16th of
October 1843).

The algebra of quaternions, H, is the four-dimensional real linear space with basis
{1, i, j, k} and associative multiplication defined by

1 is the identity and i2 = j2 = k2 = −1 = i jk.

All the other possible products follow from these identities, for example, i j = (i jk)(−k) =
−(−k) = k, jk = (−i)(i jk) = i, j i = j(i jk)(k j) = −( jk) j = −i j = −k. The algebra H

is noncommutative. When equipped with the Euclidean norm

‖α + βi + γ j + δk‖ := (α2 + β2 + γ 2 + δ2)
1
2 ,

the quaternions become a real Banach algebra, and this norm actually satisfies the identity

‖h1h2‖ = ‖h1‖ ‖h2‖ for all h1, h2 ∈ H

(see [46, Definition I.14.3]). There is a matricial identification ofH in terms of 4×4 matrices
with real entries in which H embeds in M4(R) as a real subalgebra via the assignment

α + βi + γ j + δk �→

⎛

⎜⎜⎝

α −β −γ −δ

β α −δ γ

γ δ α −β

δ −γ β α

⎞

⎟⎟⎠ .

Each nonzero quaternion h = a + bi + cj + dk has a unique inverse given by

h−1 = 1

a2 + b2 + c2 + d2
(a − bi − cj − dk).

A real or complex Banach algebraA is called a division algebra if every nonzero element
inA is invertible. By the celebrated Gelfand–Mazur theorem, each complex normed division
algebra is isometrically isomorphic to C (see [46, Theorem I.14.2]). The real setting is
completely different. Clearly, R and C are real division Banach algebras, and as we have
seen before, H also enjoys this property. This list exhausts all possibilities, because for each
real normed division algebra A, there exists an isomorphism � of A onto R, C, or H such
that ‖�(x)‖ = r(x) (x ∈ A) (see [46, Theorem I.14.7]).

Here we have another difference between real and complex Banach algebras. Any unital
complex Banach algebra A is commutative if for some κ > 0, the inequality

‖a‖2 ≤ κ‖a2‖
holds for all a ∈ A (see [46, Corollary II.16.8]). The same conclusion does not hold for real
Banach algebras. For example, the real Banach algebra H actually satisfies ‖a2‖ = ‖a‖2 for
all a ∈ H.
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Let us return to the problem of determining whether a real Banach algebra admits an
structure of complex Banach algebra for the same product and a subtle equivalent norm.
A necessary condition on a unital real Banach algebra to admit a complex structure is to
contain C1 in its center, and consequently its center must be at least two dimensional. Since
the center of H is R1, we can immediately deduce that H does not admit a complex structure
as an algebra.

6.3 Complexification of Banach ∗-algebras

An algebra involution on a real (respectively, complex) Banach algebra A is a real linear
(respectively, conjugate-linear) mapping ∗ : A → A satisfying

(a) (ab)∗ = b∗a∗ for all a, b ∈ A ;
(b) (a∗)∗ = a for all a ∈ A .

The self-adjoint or hermitian part of A is the set

Asa = {a ∈ A : a∗ = a},
while the skew symmetric part of A is defined as

Askew = {a ∈ A : a∗ = −a}.
The setsAsa andAskew are real subspaces of A. IfA is a complex Banach algebra, then also
Askew = iAsa . In any case, we have

A = Asa ⊕R Askew.

A real or complex Banach algebra equipped with an algebra involution is called a real or
complex Banach ∗-algebra. In some references, like in [46, Definition I.12.15], a real or
complex Banach ∗-algebra is a real or complex Banach algebra A together with an algebra
involution ∗ satisfying ‖a∗‖ = ‖a‖ for all a ∈ A .

A ∗-homomorphism (respectively, a ∗-isomorphism) between real or complex Banach ∗-
algebras A and B is a homomorphism (respectively, isomorphism) � : A → B satisfying
�(a∗) = �(a)∗ for all a ∈ A . Conjugate-linear ∗-homomorphisms and conjugate-linear
∗-isomorphisms are similarly defined.

If A is a complex Banach ∗-algebra and τ : A → A is an involution and a conjugate-
linear ∗-homomorphism, then the real form A τ is a real Banach ∗-subalgebra of A . In the
other direction, by assuming that A is a real ∗-algebra, Ac can be endowed with the involution
(a1 + ia2)∗ = a1 − ia2. Furthermore, if A is a real Banach ∗-algebra satisfying ‖a‖ = ‖a∗‖
for all a ∈ A, then the standard extension of the involution ∗ to Ac also is an isometry with
respect to the norm defined by

‖|a + ib|‖T ,a = max{‖La+ib‖B(Ac,‖·‖T ), ‖Ra+ib‖B(Ac,‖·‖T )}.
Namely, for the Taylor norm, we have

‖(a + ib)∗‖T = ‖a∗ − ib∗‖T := sup
t∈[0,2π ]

‖ cos(t)a∗ + sin(t)b∗‖

= sup
t∈[0,2π ]

‖(cos(t)a + sin(t)b)∗‖ = sup
t∈[0,2π ]

‖ cos(t)a + sin(t)b‖ = ‖a + ib‖T ,
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and it follows from this that

‖La∗−ib∗‖B(Ac,‖·‖T ) = sup
‖(x+iy)‖T≤1

‖(a∗ − ib∗)(x + iy)‖T
= sup

‖(x+iy)‖T≤1
‖(x + iy)∗(a + ib)‖T = ‖Ra+ib‖B(Ac,‖·‖T ),

and similarly ‖Ra∗−ib∗‖B(Ac,‖·‖T ) = ‖La+ib‖B(Ac,‖·‖T ), which implies that

‖|(a + ib)∗|‖T ,a = ‖|a∗ − ib∗|‖T ,a = ‖|a + ib|‖T ,a .

Clearly, the Taylor norm on the complexification can be replaced by any of the norms on the
complexification defined in Sect. 6.1.

We arrive now to one of the starring models in mathematics, operator algebras, and a
source of models for physics. A C∗-algebra is a complex Banach ∗-algebra A satisfying the
celebrated Gelfand–Naimark axiom:

‖a∗a‖ = ‖a‖2 for all a ∈ A . (6.4)

Given a locally compact Hausdorff space � and a C∗-algebra A , we write Cb(�,A ) for
the Banach space of all bounded continuous functions from � to A and by C0(�,A ) the
closed subspace of all functions f ∈ Cb(�,A ) such that ‖ f ‖ vanishes at infinity equipped
with the supremum norm ‖ f ‖ = supt∈� ‖ f (t)‖. When equipped with the pointwise sum,
product, and involution, these spaces are C∗-algebras. The space B(H ), of all bounded
linear operators on a complex Hilbert space H , with the operator sum, product, and norm
and with the adjoint operation as an involution, is a C∗-algebra, which is noncommutative
when dim(H ) > 1. In the particular case in which H is n-dimensional for some natural
n, the C∗-algebra B(H ) naturally identifies with the algebra Mn(C) of (complex) n × n
matrices. The subalgebra K (H ) of all compact linear operators on H is a C∗-subalgebra
of B(H ). A subalgebra of a C∗-algebra A is a subspace that is also closed for products. A
subset S of A is called self-adjoint if a∗ ∈ S for all a ∈ S. Actually, every norm closed
self-adjoint subalgebra of some B(H ) is a C∗-algebra because the Gelfand–Naimark axiom
(6.4) is automatically inherited in this case.

The celebrated Gelfand–Naimark theorem establishes that every C∗-algebra is isometri-
cally ∗-isomorphic to a norm closed self-adjoint subalgebra of some B(H ) (see [110], [46,
Theorem V.38.10], and [253, Theorem I.9.18]). In the original result stated by Gelfand and
Naimark [110], the definition of C∗-algebra included an extra axiom assuring that 1+ x∗x is
invertible for all x ∈ A . This extra axiom was shown to be superfluous by Fukamiya [105],
Kelley and Vaught [154], and Kaplansky [148].

There is a natural way to define a real analogue of a known algebraic-analytic structure
by considering real forms under conjugations preserving some required algebraic-analytic
structure. For example, if τ : A → A is a conjugation on a C∗-algebra preserving the
product, then the real formA τ is a norm closed self-adjoint real subalgebra ofA . According
to this procedure, a real C∗-algebra A is a real form of a C∗-algebra A under a conjugation
τ which is also a ∗-automorphism on A , equivalently, a real Banach ∗-algebra whose com-
plexification Ac admits a structure of C∗-algebra with a norm that extends the norm of A and
the involution of Ac is the standard extension of the involution on A (see [167, Definition
5.1.1] or [113, 129, 133, 202]). This is one of the equivalent definitions of real C∗-algebras;
however, its handicap resides in the need of working with a superstructure of a C∗-algebra. In
order to have an intrinsic definition not requiring an external structure, we recall the following
result borrowed from the book of Li [167].
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Theorem 6.9 [167, Corollary 5.2.11 and Proposition 7.3.4]Let A be a real Banach ∗-algebra.
Then the following statements are equivalent:

(1) A is a real C∗-algebra;
(2) A is isometrically ∗-isomorphic to a norm closed self-adjoint subalgebra of B(H) for

some real Hilbert space H;
(3) A is hermitian (i.e., sp(a) ⊆ R for all a ∈ Asa) and ‖a∗a‖ = ‖a‖2 for all a ∈ A;
(4) A is symmetric (i.e., a∗a ≥ 0 for all a ∈ A) and ‖a∗a‖ = ‖a‖2 for all a ∈ A;
(5) 1 + a∗a is invertible in A (if A is nonunital, then we consider its unitization) and

‖a∗a‖ = ‖a‖2 for all a ∈ A;
(6) The inequality

‖a∗‖ ‖a‖ ≤ ‖a∗a + b∗b‖
holds for all a, b ∈ A.

The equivalence (1) ⇔ (3) is due to Ingelstam [129]. It should be noted that the equivalent
definition provided by statement (5) is the notion employed by Goodearl [113], Chu et al.
[66], and Isidro and Rodríguez-Palacios [133].

Clearly, every C∗-algebra is a real C∗-algebra when it is regarded as a real Banach ∗-
algebra.

Let us consider the C∗-algebra Mn(C) and a conjugation τ : Mn(C) → Mn(C),
τ((ai j )) = (ai j ). Clearly, τ is a conjugate-linear ∗-automorphism on Mn(C) and the real
formMn(R) = Mn(C)τ is a real C∗-algebra whose algebra involution is just the transposi-
tion on Mn(R), the product is the matrix product, and the C∗-norm is the operator norm.

Another interesting example of a real noncommutative unital C∗-algebra is the algebra
of quaternions H described in page 57. In this case, we consider the involution ∗ on H

defined by (α + βi + γ j + δk)∗ = α − βi − γ j − δk. It is not hard to check that for each
a = α + βi + γ j + δk ∈ H, we have

‖a∗a‖ = α2 + β2 + γ 2 + δ2 = ‖a‖2,
and since H is a division algebra, we can deduce that it is a real C∗-algebra.

It should be added here that the mapping

α + βi + γ j + δk �→

⎛

⎜⎜⎝

α −β −γ −δ

β α −δ γ

γ δ α −β

δ −γ β α

⎞

⎟⎟⎠

is an isometric ∗-monomorphism from H intoM4(R) = B(�42(R)) (see [167, Example (2)]).
In the real setting, the extra axiom “1+ a∗a is invertible in A” does not follow from the

other assumptions. For example, if we equip C (with its usual product and module) with the
involution λ� = λ, the axiom ‖λ�λ‖ = |λ2| = |λ|2 holds for all λ ∈ C. However, 1+ i�i = 0
is not invertible in C.

We can now get back to the Gleason–Kahane–Żelazko and Kowalski–Słodkowski theo-
rems as a source of inspiration for new results on preservers. For example, by relaxing the
hypothesis of linearity in the Gleason–Kahane–Żelazko, and replacing it by the preserva-
tion of products, Touré et al. [258, Problem 1.5] consider the converse of this result in the
following preserver problem: Let A be a complex unital Banach algebra, and suppose that
φ : A → C is a continuous and multiplicative mapping satisfying φ(x) ∈ sp(x) for all
x ∈ A. Is φ automatically linear?
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Under the above conditions, assuming additionally that sp(x) is totally disconnected for
each x ∈ A, then a multiplicative mapping φ : A → C with φ(x) ∈ sp(x) for each x ∈ A,
is linear if and only if it is continuous on A (see [258, Corollary 2.3]). Assuming that A is
a unital C∗-algebra and φ satisfies the commented assumptions, then there exists a (unique)
character ψφ on A satisfying

φ(eλx ) = eλψφ(x),

for all x ∈ A, λ ∈ C [258, Theorem 3.2 and Corollary 3.3]. The mapping φ and the induced
character ψφ share many linear properties, and if A is a von Neumann algebra or a commu-
tative C∗-algebra, then it turns out that φ itself is linear, and that it coincides with its induced
character (see [258, Theorem 3.13], and [257, Theorem 2.5]). The culminating point is the
next result due to Brits, Mabrouk and Touré:

Theorem 6.10 [52, Theorem 2.1] Let A be a C∗-algebra, and let φ : A → C be a continuous
multiplicative mapping such that φ(x) ∈ sp(x) for all x ∈ A. Then φ is a character of A.

Another related problem, more in the line of preservers, reads as follows: Let A be a
complex and unital Banach algebra. Suppose φ : A → C is a mapping satisfying the
following properties:

(P1) φ(x)φ(y) ∈ sp(xy), for all x, y ∈ A;
(P2) φ is unital, i.e., φ(1) = 1;
(P3) φ is continuous on A.

Is φ a character?

Theorem 6.11 [257] Let A be a complex and unital Banach algebra, and let φ : A → C be
a map satisfying the properties (P1)-(P3) above. Then the following statements hold:

(a) If σ(x) is totally disconnected for each x ∈ A, then φ is a character of A;
(b) If A is a unital C∗-algebra, the mapping

ψφ(x) := φ

(
x + x∗

2

)
+ iφ

(
x − x∗

2i

)

defines a character on A. Moreover, φ and ψφ coincide on the principal component of
the invertible group of A.

For additional results and generalizations in this line the reader can consult [53, 54, 187].
The preserver problems on real structures are on their very early stages.

6.4 The Russo–Dye theorem

An element u in a unital real or complex C∗-algebra is called unitary if uu∗ = 1 = u∗u. The
set of all unitary elements in a unital real or complexC∗-algebra A is actually a subgroup of A.
The Russo–Dye theorem is a key result in the field of functional analysis, which is nowadays
contained in most books and basic references. The theorem, whose statement appears below,
was originally proved by Russo and Dye [231] in 1966. A surprisingly elementary proof was
given by Gardner [109].

Theorem 6.12 (Russo–Dye theorem, [231]) For each (complex) unital C∗-algebra A , the
closure of the convex hull of the unitary elements in A is the closed unit ball.
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Actually, the open unit ball of each unital C∗-algebra A is inside the convex hull of the
unitary elements in A (see [109]). Kadison and Pedersen [141] sharpened this conclusion
by showing that if a ∈ A with ‖a‖ < 1− 2

n , then a is the arithmetic mean of n unitaries in
A . Haagerup [115] proved that the same is true when ‖a‖ ≤ 1− 2

n , and a simplified version
of the latter statement was given by Haagerup, Kadison, and Pedersen [116].

The Russo–Dye theorem does not hold for unital real C∗-algebra. For example, A =
C([0, 1], R) clearly is a unital real C∗-algebra with the identity as involution. The set of
unitaries in this real C∗-algebra A is so small that reduces to±1. Thus the convex hull of the
unitaries in A is far from covering the whole closed unit ball.

There are subtle differences between the real and complex structures. For example, it
follows from the local theory of C∗-algebras that every hermitian or self-adjoint element
in the closed unit ball of a unital C∗-algebra A can be written as the average of a unitary
u and its transposed u∗. Consequently, then every x ∈ A is a linear combination of four
unitary elements (see [253, Proposition I.4.9]). This conclusion is not true in the real setting;
however, each skew-hermitian element in the open unit ball of a unital real C∗-algebra A is
the average of two unitaries in A (see [167, Lemma 3.1.3]).

To explore the Russo–Dye theorem in the setting of unital real C∗-algebras, we refresh
some well-known results on local theory and continuous functional calculus. Let A be a real
C∗-algebra. Let us recall that σ(a) = σA(a) = σA(a) for each a ∈ A (see (6.2)). If a ∈ A is
a normal element (i.e., a∗a = aa∗), then the real C∗-subalgebra C∗(a) of A generated by a
and 1 is isometrically ∗-isomorphic to

C(sp(a), · ) = { f ∈ C(sp(a)) : f (λ) = f (λ), for all λ ∈ sp(a)},
and under this identification, the element a corresponds to the identity mapping on sp(a) (see
[167, Proposition 5.1.6(2)]).

In particular, for each self-adjoint element h ∈ A, the real C∗-subalgebra C∗(h) is identi-
fied withC(sp(h), R). Therefore, for each continuous function f : sp(a) → R, there exists a
unique element f (h) ∈ C∗(h) that is identifiedwith the function f under this ∗-isomorphism.
The element f (h) is called the continuous functional calculus of f at the element h.

A close statement to the Russo–Dye theorem in the real setting was given by Li [166, 167]
between 1975 and 1979. The concrete result can be stated in the following terms.

Theorem 6.13 [167, Theorem 7.2.4 and Proposition 7.2.7] Let A be a unital real C∗-algebra
and let BA denote the closed unit ball of A. Then the convex hull of the subset

{cos(b)ea | a, b ∈ A, a∗ = −a, b∗ = b}
is dense in BA. Furthermore,

int(BA) ⊆ co{cos(b)ea | a, b ∈ A, a∗ = −a, b∗ = b} ⊆ BA,

where int(BA) denotes the open unit ball of A.

After considering the counterexample to the Russo–Dye theorem for real C∗-algebras,
it seems natural to ask whether the original statement in this theorem holds under stronger
hypotheses on the C∗-algebra, for example, when we have a real von Neumann algebra. First,
we recall the definition of real and complex von Neumann algebras.

LetH be a real or complexHilbert space. Following the standard notation, for each subset
M of B(H ), we write M ′ for the set of all bounded operators on H commuting with every
operator in M . The set M ′ is a Banach algebra of operators containing the identity operator 1.
IfM is self-adjoint (i.e., x∗ ∈ M for all x ∈ M), thenM ′ is a real or complexC∗-algebra acting
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on H , which is closed with respect to all the standard locally convex topologies on B(H )

(see [253, §II.2] and [167, §4.2]). A von Neumann algebra (respectively, a real von Neumann
algebra is a ∗-subalgebraM ofB(H ) for some complex (respectively, real) Hilbert spaceH
whose bicommutant coincides withM itself, that is,M ′′ = M (see [253, Definition II.3.2]
and [167, Definition 4.3.1]). The famous von Neumann’s bicommutant theorem shows that
for each complex (respectively, real) Hilbert spaceH and each complex (respectively, real)
C∗-subalgebraM of B(H ) containing the identity, the following conditions are equivalent:

(a) M = M ′′;
(b) M is weakly closed;
(c) M is strongly closed.

(see [209, Theorem 2.2.2] or [253, Theorem II.3.9] in the complex setting and [167, Propo-
sition 4.3.2] in the case of real von Neumann algebras, see also [58, Theorems 8.1.30 and
8.1.31 and Proposition 8.1.106]). A celebrated theorem due to Sakai asserts that a C∗-algebra
A is isometrically ∗-isomorphic to a von Neumann algebra (these algebras are frequently
termed W∗-algebras) if and only if it is a dual Banach space, and in such a case, it admits a
unique isometric predual and its product is separately weak∗ continuous (see [253, Theorem
III.3.5 and Corollary II.3.9] or [209, Theorem 3.9.8]), which is also equivalent to say that
A is monotone closed and admits sufficiently many normal positive linear functionals (see
[253, Theorem III.3.16]).

Similarly, a real W∗-algebra M is defined as a real C∗-algebra whose complexifica-
tion is a W∗-algebra, in such a case, there exists a weak∗-continuous conjugate-linear
∗-homomorphism of period-2 on Mc such that M = (Mc)

τ , and defining

τ∗ : (Mc)∗ → (Mc)∗,

τ∗(ϕ)(x) := ϕ(τ(x)) (x ∈ Mc, ϕ ∈ (Mc)∗),

we get another conjugation on Mc satisfying that M is the dual space of the real form
M∗ := ((Mc)∗)τ∗ , and the product ofM is separatelyweak∗ continuous (see [167, Proposition
6.1.3]). Actually, a real C∗-algebra M is a real W∗-algebra if and only if it is a dual Banach
space, and in such a case, its product is separately weak∗-continuous (see [167, Theorem
6.1.7] and [133, Theorem 1.11]). For these reasons, we shall not distinguish between real
von Neumann algebras and real W∗-algebras.

Thanks to the Gelfand–Naimark axiom, we can now establish a strengthened version of
Theorem 6.1 and Proposition 6.2.

Theorem 6.14 Let A be a real C∗-algebra. Then A is a complex C∗-algebra regarded as a
real C∗-algebra if and only if there exists a linear operator J on A satisfying:

(a) J is an A-module homomorphism, that is,

J (ab) = J (a)b = a J (b), for all a, b ∈ A;
(b) −J 2 is the identity map on A.

Consequently, if A is unital, then A is a complex C∗-algebra regarded as a real C∗-algebra
if and only if there exists an element ι in the center of A, satisfying ι2 = −1.
Proof The necessary condition is clear by taking J (a) = ia (a ∈ A). For the sufficient
implication we shall simply prove that ‖ · ‖ is a complex norm for the product by complex
scalars defined by (α + iβ)a = α + β J (a).
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We begin by observing that the mapping J is continuous. Indeed, every real C∗-algebra
admits an approximate unit [167, Proposition 5.2.4], and thus the continuity of J follows
from [130, Proposition 2.1].

We shall next prove that

J (a)∗ = −J (a∗), for all a ∈ A. (6.5)

To get the desired conclusion we first observe that for a central element z in a unital
C∗-algebra A the condition

z2 = −1 implies z∗ = −z. (6.6)

Namely, let us write z = h + k with h∗ = h and k∗ = −k. Clearly h and k are central
elements too. The identity z2 = −1 is equivalent to h2 + k2 + 2hk = −1, and gives hk = 0
because the latter is anti-symmetric. Now the equality h2 + k2 = −1 implies

hh∗h = h3 = h3 + k2h = −h,

and thus 0 ≤ h4 = −h2 ≤ 0, which proves that h = 0, as desired.
Since J is continuous, the bitransposed mapping J ∗∗ : A∗∗ → A∗∗ is weak∗ continuous.

Combining this continuity with the separate weak∗ continuity of the product of the real von
Neumann algebra A∗∗, Goldstine’s theorem and the hypotheses on J , it is not hard to check
that J ∗∗ satisfies −(J ∗∗)2 = I dA and

J ∗∗(ab) = J ∗∗(a)b = a J ∗∗(b), for all a, b ∈ A∗∗.

We shall prove (6.5) for J ∗∗. The element J ∗∗(1) (which is central by the properties of J ∗∗)
satisfies

J ∗∗(1)2 = J ∗∗(1)J ∗∗(1) = 1(J ∗∗)2(1) = −1.
It follows from (6.6) that J ∗∗(1)∗ = −J ∗∗(1). Now, the properties of J ∗∗ lead to

J ∗∗(a) = J ∗∗(1a) = J ∗∗(1)a, for all a ∈ A∗∗.

Therefore

J ∗∗(a)∗ = a∗ J ∗∗(1)∗ = −J ∗∗(1)a∗ = −J ∗∗(a∗), for all a ∈ A∗∗,

which proves (6.5) for J ∗∗.
Finally, by applying (6.5) we get

‖(α + iβ)a‖2 = ∥∥((α + iβ)a)((α + iβ)a)∗
∥∥ = ∥∥(αa + β J (a))(αa + β J (a))∗

∥∥

= ∥∥(αa + β J (a))(αa∗ − β J (a∗))
∥∥

= ∥∥α2aa∗ − β2 J (a)J (a∗)+ αβ J (a)a∗ − αβa J (a∗)
∥∥

= ∥∥α2aa∗ − β2a J 2(a∗)
∥∥ = ∥∥α2aa∗ + β2aa∗

∥∥

= (α2 + β2)‖aa∗‖ = |α + iβ|2 ‖a‖2.
��

The second conclusion in the above theorem appears in [113, Exercise (13A)].
The question of whether the original statement in the Russo–Dye theorem is valid for real

von Neumann algebras was open for several years. For example, this problem was explicitly
posed by Becerra Guerrero et al. [30, p. 98 and Problems (P1) and (P3)] in the particular
case of B(H) for a real Hilbert space H in 2008. The question was addressed in 2012 by
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Navarro-Pascual and Navarro-Pascual (see [197, Theorem 5 and Corollary 6]), who gave an
explicit and positive answer to this question by proving that actually the Russo–Dye theorem
holds true for any real von Neumann algebra. However, as observed by Mori and Ozawa
[189, Proof of Corollary 3], the desired solution can be easily obtained from the results
established by Li [166, 167], which have been reviewed in Theorem 6.13. Namely, let b be
a self-adjoint element in a real von Neumann algebra M . By [167, Proposition 5.1.6(2) and
Theorem 6.3.3], the real von Neumann subalgebra Mb of M generated by b and the unit
element 1 is isometrically ∗-isomorphic to C(�, R), where � is a hyperstonean compact
Hausdorff space and b is a positive generator (this can also be obtained from [119, Lemma
4.1.11]). We recall that for a compact Hausdorff space K , the closed unit ball of C(K , R)

coincides with the closed convex hull of its extreme points (i.e., the unitary elements in
C(K , R)) if and only if K is totally disconnected (see, for example, [71, p. 191] or [213]).
We recall that a Hausdorff space is said to be extremally disconnected if the closure of every
open subset is open. A compact extremely disconnected space is called a stonean space. It
is known that every extremally disconnected space is totally disconnected and that every
hyperstonean compact Hausdorff space is a stonean compact Hausdorff space satisfying
additional properties (cf. [253, Definition III.1.14]). Therefore, the elements in the closed
unit ball of Mb can be approximated in the norm by convex combinations of unitaries in Mb

and hence in M . Since, by the definition of the continuous functional calculus, cos(b) lies in
the real C∗-subalgebra of M generated by b, it follows that cos(b) ∈ Mb, and thus it can be
approximated in norm by convex combinations of unitaries in M . Having in mind that the set
of unitaries in M is a subgroup, elements of the form cos(b)ea,with a, b ∈ M , a = −a∗, and
b = b∗, can be approximated in norm by convex combinations of unitaries in M . Theorem
6.13 implies that the convex hull of the unitaries in M is norm dense in its closed unit ball.

Let us finally observe that the results by Kadison and Pedersen [141], Haagerup [115],
and Haagerup, Kadison, and Pedersen [116] on means and convex combinations of unitaries
in unital C∗-algebras have not been fully explored in the setting of unital real C∗-algebras
nor real von Neumann algebras.

6.5 Kadison–Schwarz inequality

It is well-known that an element a in a real or complex C∗-algebra A is called positive,
denoted by a ≥ 0, if a∗ = a and σ(a) ⊆ R

+
0 (see [253, Definition I.6.2] or [209, Lemma

1.3.1] and [167, Definition 5.2.1 and Proposition 5.2.2] for the basic properties in the complex
and real settings, respectively). The closed cone of positive elements inA is denoted byA +.
Suppose now that A is a real C∗-algebra. Let Ac denote the complexification of A and let
τ : Ac → Ac be the involutive conjugate-linear ∗-automorphism satisfying A = (Ac)

τ . It is
known that

A+ = A ∩ A+c = (Ac)
τ = {b∗b : b ∈ A}

(see [167, Proposition 5.2.2]). These are the usual properties of the cone of positive elements
in a complex C∗-algebra (see [234, §1.4 and Theorem 1.4.4]).

Given a (complex) C∗-algebra A , a linear mapping ϕ : A → C is called positive if
ϕ(A +) ⊆ R

+
0 . Each positive linear functional ϕ satisfies the Cauchy–Schwarz inequality

(see [209, Theorem 3.1.3] and [7, 155]):

|ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b) for all a, b ∈ A . (6.7)
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It is known that every positive linear functional ϕ on a complex C∗-algebra is continuous
and satisfies ‖ϕ‖ = ϕ(1) if A is unital (see [253, Lemma I.9.9]) and that ‖ϕ‖ = limi ϕ(ui )
for some/any approximate unit {ui }i inA (see [209, Proposition 3.1.4]). Actually a bounded
linear functional ϕ ∈ A ∗ is positive if and only if the condition ‖ϕ‖ = limi ϕ(ui ) holds for
some/any approximate unit {ui }i in A if and only if ϕ attains its norm at a positive element
in A (see [234, Proposition 1.5.2]).

The notion of positive linear functional changes in the real setting. For example, when C

is regarded as a real C∗-algebra, the linear functional ϕ(a + ib) = 1√
2
(a + b) maps positive

elements to positive elements; however, ϕ(1) = 1√
2

< ‖ϕ‖ = 1. This functional ϕ does not

satisfy the Cauchy–Schwarz inequality in (6.7). Indeed, for λ, μ ∈ C, we have

1

2
(�e(λμ)+  m(λμ))2 = |ϕ(λμ)|2 � ϕ(|λ|2)ϕ(|μ|2) = 1

2
|λ|2 |μ|2 = 1

2
|λ μ|2. (6.8)

Let A be a real C∗-algebra. A linear mapping ϕ : A → R is called positive if ϕ(A+) ⊆ R
+
0

and ϕ|Askew ≡ 0 (see [167, Definition 5.2.5]). Every positive linear functional on a real
C∗-algebra satisfies the real version of the Cauchy–Schwarz inequality in (6.7) (see [167,
Proposition 5.2.6(1)]). As in the complex setting, a bounded linear functional ϕ in the dual
of a real C∗-algebra is positive if and only if it attains its norm at a positive element (see [167,
Proposition 5.2.6(3)]).

Let A be a real C∗-algebra with complexification Ac, and let τ : Ac → Ac be a conjugate-
linear ∗-automorphism such that A identifieswith the real form Aτ

c . Similar arguments to those
employed in the previous subsections allow us to conclude that the mapping τ � : A∗c → A∗c ,
τ �(ϕ)(a) = ϕ(τ(a)), is a conjugation on A∗c and the corresponding real form (A∗c)τ

� = {ϕ ∈
A∗c : τ �(ϕ) = ϕ} identifies with A∗ via the following linear isometric surjection:

(A∗c)τ
� → A∗, ϕ �→ �eϕ|A = ϕ|A.

If wewriteA ∗+ for the set of all positive linear functionals on a real or complex C∗-algebraA ,
then, in the case where A is a real C∗-algebra, we can actually deduce (see [167, Proposition
5.2.6(2) and (4)]) that

((A∗c)+)τ
� ≡ A∗+, ϕ �→ �eϕ|A = ϕ|A.

Note that with b = 1 and a = a∗ in (6.7), we get

ϕ(a)2 = |ϕ(a)|2 ≤ ϕ(1∗1)ϕ(a∗a) = ϕ(a2).

An interesting questions asks what happens if we assume that ϕ takes its values in a general
C∗-algebra instead of C.

In 1952, Kadison [140] proved a generalized Schwarz inequality for positive linear
mappings between C∗-algebras—now called a generalized Kadison–Schwarz inequality for
C∗-algebras. It asserts that if � : A → B is a unital positive linear map and a ∈ A is
self-adjoint, then

�(a)2 ≤ �(a2).

Concrete version of the Kadison–Schwarz inequality states that for each positive bounded
linear mapping � : A → B between two C∗-algebras, the inequality

�(a) ◦�(a)∗ ≤ ‖�‖ �(a ◦ a∗), (6.9)

holds for all a ∈ A , where ◦ denotes the natural Jordan product given by x ◦ y = 1
2 (xy+ yx)

(see [140, Theorem 1]).
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Another basic result in the theory of C∗-algebras asserts that for each self-adjoint element
a in a C∗-algebra A , there exists a norm-one positive linear functional ϕ ∈ A such that
‖a‖ = |ϕ(a)| [234, Proposition 1.5.4]. It is further known that an element a ∈ A is positive
(respectively, self-adjoint) if ϕ(a) ≥ 0 (respectively, ϕ(a) ∈ R) for all positive linear func-
tionals ϕ ∈ A∗ (see [142, Theorem 4.3.4]). By combining the Russo–Dye theorem with the
Kadison–Schwarz inequality and the characterization of positive linear functionals, it can be
seen that a linear mapping� between unital C∗-algebrasA andB with�(1) = 1 is positive
if and only if � is continuous with ‖�‖ = 1 (see [50, Corollary 3.2.6]).

Let A and B be two real C∗-algebras. A linear mapping � : A → B sending positive
elements to positive elements (i.e., �(A+) ⊆ B+) need not satisfy the generalized Kadison–
Schwarz inequality (6.9) nor its consequences. We have already seen that a linear functional
ϕ : C

R
→ R mapping positive elements to positive elements that does not satisfy the

Cauchy–Schwarz inequality (see (6.8)). Additional counterexamples to the consequences of
the Kadison–Schwarz inequality can be given as follows.

Example 6.15 The real linear mapping �1 : C → C, �1(a + ib) = a + i3b is clearly unital
(�1(1) = 1), maps positive elements to positive elements, and ‖�1‖ = 3.

Consider next the linear mapping �2 : M2(R) → M2(R) defined by

�2

(
a11 a12
a21 a22

)
=
(

a11 a12
−a12 a11

)
.

Clearly, �2 is unital, but it does not map positive elements to positive elements because

�2

(
2 1
1 2

)
=
(

2 1
−1 2

)
, which is skew symmetric. The element p =

(
1 0
0 0

)
is a projection

(i.e., a symmetric idempotent) in M2(R), and hence the mapping
(
a11 a12
a21 a22

)
�→ p

(
a11 a12
a21 a22

)
=
(
a11 a12
0 0

)

is linear and contractive. It is well-known that

∥∥∥∥

(
a11 a12
0 0

)∥∥∥∥ =
√|a11|2 + |a12|2, even in

M2(C). On the other hand, the matrices 1 =
(
1 0
0 1

)
and î =

(
0 1
−1 0

)
have a very special

behavior in M2(R) because they generate an isometric copy of C—a conclusion, which is
no longer true for M2(C)—. We therefore infer that

∥∥∥∥�2

(
a11 a12
a21 a22

)∥∥∥∥ =
∥∥∥∥

(
a11 a12
−a12 a11

)∥∥∥∥ =
∥∥a11 1+ a12 î

∥∥ =
√
|a11|2 + |a12|2,

witnessing that �2 is a contractive mapping, and hence ‖�2‖ = 1.

The previous counterexamples can also be employed to deduce that the natural extension
of a bounded linear mapping between two real C∗-algebras to the corresponding complexifi-
cations need not be, in general, norm preserving. Actually, the extension of a linear mapping
preserving positive elements between real C∗-algebras to the corresponding complexifica-
tions need not send positive elements to positive elements.

Example 6.16 For the mappings �1 and �2 in Example 6.15, the mapping �̂1 :
(
C

R

)
c =

C
R
⊕ iC

R
→ (

C
R

)
c, defined by

�̂1(λ+ iμ) = �1(λ)+ i�1(μ)
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is clearly bounded complex linear and unital. In this setting, �̂1 maps positive elements to
positive elements if and only if ‖�̂1‖ = 1. To simplify the notation, let us write X for the
complex C∗-algebra

(
C

R

)
c. It is not hard to see that Xsa = {λ+ iμ : λ ∈ R, μ ∈ iR}, that

X + = {λ2 − μ2 + 2iλμ : λ ∈ R, μ ∈ iR}, and that the element x = (22 + 12)+ i(4i) is
positive inX , while �̂1(5+ i(4i)) = 5+ i(12i) /∈ X +. Since 1 < ‖�1‖ ≤ ‖�̂1‖, we also
deduce that �̂1 is noncontractive.

The counterexample given by the mapping �2 : M2(R) → M2(R) above admits a
nice algebraic-geometric reinterpretation. Let C denote the real C∗-subalgebra of M2(R)

generated by 1 and let s =
(
0 1
1 0

)
.Since s∗ = s and s2 = 1, it is easy to see thatC = R1⊕Rs

is a commutative unital real C∗-algebra whose involution is the identity. Furthermore, since

for a, b ∈ R, the eigenvalues of the matrix a1 + bs =
(
a b
b a

)
are {a ± |b|}, it can be

easily seen that ‖a1 + bs‖ = |a| + |b|, which gives a concrete expression of the C∗-norm
on C—we observe that C is an example of a two-dimensional real spin factor studied by
Kaup [151, §4], and we will find them again in subsequent subsections—. The restriction
� = �2|C : C → M2(R) is a real linear bijection from C ontoCR,when the latter is regarded
as the real C∗-subalgebra of M2(R) generated by 1 and î . Both real C∗-algebras C and CR

are commutative. It follows from what we have seen before that � is unital with ‖�‖ = 1.
The canonical complex linear extension �̂ : Cc = C + iC → (

C
R

)
c = C

R
⊕ iC

R
= X is

unital, but it cannot be contractive nor positive since � does not map positive elements to
positive elements. Furthermore,

‖1+ is‖2Cc = ‖(1+ is)∗(1+ is)‖2Cc = ‖21‖2Cc = 2,

while �̂(1 + is) = 1 + i(i) = y ∈ Xsa with y2 = 2y, and thus ‖y‖2X = ‖y2‖X =
‖2y‖X = 2‖y‖X . Therefore, ‖�̂(1+ is)‖X = ‖y‖X = 2 � ‖1+ is‖Cc =

√
2.

Let us finally note that �−1 : CR → C maps positive elements to positive elements.

Due to the previous counterexamples, the theory of completely bounded and completely
positive linear maps gains prominence in the real setting. Let us simply recall the basic
notions. For each real or complex C∗-algebra A and each natural number n, there exists
a unique real or complex C∗-norm on the space Mn(A ), of all n × n-matrices a = (ai j )
with entries ai j inA , with respect to the natural linear space structure, matrix multiplication,
and algebra involution given by a∗ = (ai j )∗ = (a∗j i ), making Mn(A ) a real or complex
C∗-algebra (see [253, §IV.3], [66, §2], and [167, Proposition 5.1.10] for references in the
complex and real case, respectively). This can be done via the standard procedure for operator
spaces (see [85, 208, 216] and [253, IV.3]). If A is a real C∗-algebra represented as a real
self-adjoint closed subalgebra of some B(H) for an appropriate real Hilbert space H (see
Theorem 6.9), for each natural n, we can consider the real Hilbert space H (n) = �2n(H), and
each a = (ai j ) ∈ Mn(A ) can be regarded as a bounded linear operator on H (n) defined by

(ai j )

⎛

⎜⎝
ξ1
...

ξn

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

a1 j (ξ j )

...
n∑
j=1

anj (ξ j )

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This assignment defines a ∗-isomorphism from Mn(B(H)) onto B(H (n)). Since A is repre-
sented as a norm closed self-adjoint subalgebra of someB(H), it turns out thatMn(A) can be
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represented as a real C∗-algebra, and this construction does not depend on the representation
of A inside B(H) because the norm is unique on a real C∗-algebra (see [167, Proposition
5.1.9] and [234, Corollary 1.2.5]).

Suppose that A and B are two real or complex C∗-algebras. For each bounded linear
mapping� : A → B and each natural n, we can consider a linearmapping�n : Mn(A ) →
Mn(B) defined by �n((ai j )) := (�(ai j )). The mapping � is called n-positive if �n :
Mn(A ) → Mn(B) is positive. If �n is n-positive for all n, then � is said to be completely
positive (see [253, Definition IV.3.3]). There is a vast literature on completely positive and
bounded operators between C∗-algebras. Here, we shall limit ourselves to comparing some
basic properties in the real and complex settings.

Some real C∗-algebras already hide a complete structure of complex C∗-algebra inside.
Recall from Sect. 3 that a (real) Banach space X has a complex structure if there exists a
bounded linear operator σ : X → X satisfying σ 2 = −I d . One can further define a complex
norm on X given by (4.1). There exist infinite-dimensional Banach spaces admitting no
complex structure, and more surprisingly, as shown by Koszmider, Martín, and Merí [159,
Corollaries 2.4 and 3.6], there exist examples of extremely noncomplex Banach spaces, that
is, Banach spaces that not only do not admit a bounded linear operator σ with σ 2 = −I d ,
but every bounded linear operator T on such a space satisfies ‖I d + T 2‖ = 1+ ‖T 2‖. The
results in the just quoted reference show that there are several different compact (Hausdorff)
spaces K such that the corresponding real C∗-algebra C(K , R) is extremely noncomplex.

The existence of a complex structure on a real Banach space X determines the presence
of multiplicative real linear functionals on the Banach algebra B(X). As it is masterfully
explained by Żelazko [266] and Mankiewicz [176], the existence of a nontrivial linear mul-
tiplicative functional on the Banach algebra of all continuous endomorphisms of a Banach
space X implies that X is not isomorphic to any finite Cartesian power of any Banach
space (see [176, Remark 6.4]). It is well-known that if X is a complex Banach space, then
there does not exist any real linear multiplicative functional ϕ : B(X ) → R; since other-
wise it would contradict the presence of a complex structure on Xr . However, the case of
real Banach spaces is a bit different. There are several folk classic arguments showing that,
for n ≥ 2, B(Rn) –aka Mn(R)– does not admit a non-zero multiplicative linear functional.
Namely, each non-zero multiplicative functional φ : Mn(R) → R satisfies φ(ab) = φ(ba)

for all a, b ∈ Mn(R). This property characterizes the normalized trace, tr(.), on Mn(R)

up to a scalar multiple. Therefore, φ = tr because φ(In) = 1, contradicting that tr is not
multiplicative. Alternatively, for any such functional φ, its kernel would be a proper ideal of
Mn(R), which leads to a contradiction.

It is further known that for each infinite dimensional complex Hilbert space H , B(H)

does not admit a non-zero multiplicative real linear functional. Indeed, if φ : B(H) → C is a
non-zero multiplicative real linear functional, we can find two orthogonal infinite projections
p and q and a partial isometry e such that p + q = I d, ee∗ = p and e∗e = q . These
facts together imply that φ(p)φ(q) = φ(pq) = 0, φ(p) = φ(ee∗) = φ(e∗e) = φ(q) and
1 = φ(I d) = φ(p)+ φ(q), which is impossible.

Mityagin and Edelstein found an example of a real Banach space X such that B(X)

admits a non-trivial real linear multiplicative functional, they concretely showed that this
is the case when X is the James space or the space C(�ω1) of all continuous scalar valued
functions on the set of ordinals not exceeding the first uncountable ordinal with its usual
order topology, equipped with the supremum norm (see [186] or [176, 177]). However, to
the best of our knowledge the first to prove that the James space does not admit a complex
structure was J. Dieudonné [78]. Apart from the James space, the famous Gowers-Maurey
example of a Banach space not having a basic sequence, which in its turn is also heriditarily
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indecomposable (H I ), provides yet another example of a Banach space lacking a complex
structure. P. Mankiewicz proved in [176, Theorem 1.1] (see also [177, §9]) the existence of
a separable superreflexive real Banach space Y with the following properties:

(1) Y has a finite-dimensional decomposition;
(2) B(Y ) admits a continuous homomorphism onto the Banach algebra C(βN) of all con-

tinuous scalar-valued functions on the compactification βN of N equipped with the
supremum norm;

(3) For each t ∈ R there are a projection Pt ∈ B(Y ) and a linear multiplicative functional
φt on B(Y ) such that for every t1, t2 ∈ R, φt1(Pt2) is equal to 1 for t1 = t2 and equal to
0 otherwise.

Consequently, the space Y constructed by Mankiewicz is not isomorphic to any finite
Cartesian power of any Banach space. The reason being that, for every Banach space Z which
is the Cartesian product of n copies of another Banach space (n ≥ 2) there exists a unital
homomorphic embedding of B(Rn) into B(Z), B(Y ) admits many non-zero multiplicative
real linear functionals, and B(Rn) lacks of non-zero multiplicative functionals.

Let us focus on the real C∗-algebra M2(A), where A is unital real C∗-algebra. Given
α, β ∈ R, the matrix

w = wα,β = α

(
1 0
0 1

)
+ β

(
0 1
−1 0

)
∈ M2(A)

satisfies that w∗w = ww∗ = (α2+β2)

(
1 0
0 1

)
. Therefore, for α2+β2 �= 0, the matrix u =

1√
α2+β2

w is a unitary element in M2(A). Since the left (respectively, right) multiplication

operator by a unitary element in a real C∗-algebra is an isometry, the mapping

Lu : M2(A) → M2(A), x �→ Lu(x) = ux

is a surjective linear isometry. Taking α = 0, β = 1, and u0 =
(

0 1
−1 0

)
∈ M2(A), the

mapping σ = Lu0 is an isometry on M2(A) with σ 2 = L2
u0 = Lu20

= −I d . Therefore,
M2(A) admits a complex structure. The product by complex scalars given by this structure
is defined as follows:

(α + iβ)x = αx + βσ(x) = α

(
1 0
0 1

)
x + βu0x = wα,β x .

Now, by the Gelfand–Naimark axiom, we have

‖(α + iβ)x‖2 = ‖wα,β x‖2 = ‖x∗w∗
α,βwα,βx‖ =

∥∥∥∥(α
2 + β2)x∗

(
1 0
0 1

)
x

∥∥∥∥

= (α2 + β2)‖x∗x‖ = (α2 + β2)‖x‖2 = |α + iβ|2‖x‖2 (α + iβ ∈ C),

witnessing that the norm on M2(A) is actually a complex norm (cf. Theorem 6.14). Con-
sequently,M2(A) is a complex C∗-algebra for the corresponding complex structure that we
just defined and the original C∗-norm. If A is not unital, then we can consider its unitization.

We observe next that M2(A) contains the algebraic complexification of A as a C∗-
subalgebra. Namely, let

Ac =
{(

a b
−b a

)
∈ M2(A) : a, b ∈ A

}
.
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Clearly, Ac is a real closed subspace of M2(A). Elements a + ib ∈ Ac = A ⊕ i A are

identified with elements a1+ bu0 ≡
(

a b
−b a

)
∈ M2(A), and we note that

(α + iβ)

(
a b
−b a

)
= wα,β

(
a b
−b a

)
=
(

αa − βb αb + βa
−αb − βa αa − βb

)
.

Therefore, Ac is a norm closed complex subspace of M2(A). Similar arguments to those
given above show that Ac is a complex C∗-subalgebra of M2(A). It follows that Ac is
isometrically ∗-isomorphic to the complexification of A by the uniqueness of the C∗-norm
(cf. [234, Corollary 1.2.5]). This procedure can be compared with the construction in [66,
§2].

Let T : A → B be a linear mapping between two real C∗-algebras. We say that T is
complexifiably positive if the canonical complex linear extension T̂ = Tc : Ac → Bc defined
by Tc(a + ib) = T (a) + iT (b) is positive. Clearly, T is complexifiably positive if it is 2-
positive. However, the reciprocal statement is not always true. For example, for A = M2(R),
the transposition T : M2(R) → M2(R) defined by T ((αi j )) = (α j i ), is positive but not
2-positive (see [208, p. 5]). The complexification of T is precisely the transposition on
M2(C) = M2(R)c, which is positive, and thus T is complexifiably positive.

One of the fundamental results on completely positivemaps, essentially due to Stinespring
[249], assures that if A and B are two C∗-algebras and one of them is commutative, then
every positive operator T : A → B is completely positive (see [208, Theorems 3.9 and
3.11] or [253, Corollary IV.3.5 and Proposition IV.3.9] as well as [190]). This conclusion
does not hold in the real setting (see Example 6.16).

Suppose that T : A → B is a linear operator between two real C∗-algebras, and let us
assume that one of them is commutative. Since the complexification of a commutative real
C∗-algebra is a commutative C∗-algebra, we can deduce from the above arguments that the
following statements are equivalent:

(a) T is complexifiably positive, that is, the natural complex linear extension Tc : Ac → Bc

is positive;
(b) T is 2-positive;
(c) T is completely positive.

There are many open questions to explore about (completely) positive maps in the setting
of real C∗-algebras, which are not treated here for the sake of brevity.

Most of the procedures described in the preceding paragraphs hold in the wider setting
of operator spaces. A (complex) operator space is a Banach space X equipped with an
isometric embedding X ↪→ B(H ) into the C∗-algebra of all bounded linear operators on
some complexHilbert spaceH . As commented above, the embeddingX ↪→ B(H ) induces
a norm on each spaceMn(X ) of n×nmatrices with entries inX , obtained by regarding any
element ofMn(X ) as an operator acting on the Hilbert spaceH (n). The resulting sequence
of matrix norms is called the operator space structure of X . Then morphisms between
operator spaces are the completely bounded maps, that is, the linear mappings T : X → Y
which induce uniformly boundedmappings between the matrix spacesMn(X ) andMn(Y )

(cf. [85, 208, 216]).
After fifteen years of successful developing of the theory of complex operator spaces,

Ruan, one of the founders of operator space theory, introduced real operator spaces in [227].
A real operator space on a real Hilbert space H is a norm closed subspace V of B(H)

together with the canonical matrix norm inherited from B(H). According to this definition,
every real C∗-algebra is a real operator space with a canonical matrix norm (actually, a real
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C∗-algebra matrix norm). Ruan described in this paper representations of C and of the real
quaternion ring H as real operator spaces, as well as similar procedures to complexify a real
operator space as the one discussed above for real C∗-algebras. Ruan also proved interesting
examples which have no counterpart in the complex case.

In a continuation paper Ruan investigated the complexification of a real operator space
(see [228]). Suppose V is a real operator space, and let Vc = V + iV be the algebraic
complexification of V . In this case, the norm on the complexification must enjoy additional
properties linked to the operator space structure. An operator space structure on Vc, given
by a sequence of matrix norms {‖ · ‖n}, is called reasonable if the mapping x �→ x + i0 is a
complete isometry from V into Vc and

‖x + iy‖n = ‖x − iy‖n
for any n ≥ 1 and any x, y ∈ Mn(V ). The main result, established by Ruan [228], proves
that Vc admits a unique reasonable operator space structure {‖ · ‖n}. Furthermore, for any

x, y ∈ Mn(V ), ‖x+iy‖n is equal to the norm of thematrix

(
x y
−y x

)
inM2n(V ). Therefore,

up to a complete isometry, there is a unique reasonable complex operator space structure on
the complexification of a real operator space. This result is employed to characterize complex
operator spaces which can be expressed as the complexification of some real operator space.

6.6 Surjective linear isometries

Suppose that K1 and K2 are two compact Hausdorff spaces. Most of basic references and
basic courses in functional analysis cover the result known as Banach–Stone theorem, which
asserts (see [23, 250]) that for each surjective linear isometry T : C(K1) → C(K2), there
exist a homeomorphism σ : K2 → K1 and a unimodular (unitary) continuous function
u ∈ C(K2) such that

T ( f )(s) = u(s) f (σ (s)), for all f ∈ C(K1).

The spaces involved in this result are commutative unital C∗-algebras, and the conclusion
implies that, although not every surjective linear isometry between C(K ) spaces preserves
the product nor the involution, each one of them preserves products of the form { f , g, h} =
f gh = f g∗h, that is,

T { f , g, h} = {T ( f ), T (g), T (h)}.
The mapping T is precisely given by a composition operator, C(K1) → C(K2), f �→ f ◦σ ,
multiplied by a unitary element in C(K2).

In the noncommutative setting, we find one of the most influencing results in the theory of
C∗-algebras,whichwas established byKadison in his study on isometries of operator algebras
(cf. [139]). Given two unital C∗-algebras A and B, for each surjective linear isometry T :
A → B, there exist a unitary element u inB and a Jordan ∗-isomorphism� : A → B (i.e., a
linear bijection preserving Jordanproducts�(a◦b) = �(a)◦�(b),wherea◦b := 1

2 (ab+ba)

and the involution �(a∗) = �(a)∗) such that

T (x) = u�(x) for all x ∈ A . (6.10)

Jordan ∗-isomorphisms were called C∗-isomorphisms by Kadison (see [139, Theorem 7]).
A subsequence result by Paterson and Sinclair [207] indicates that, at the unique cost of

considering the unitary u in the multiplier algebra of the C∗-algebra in the codomain, the
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conclusion in Kadison’s theorem remains true for surjective linear isometries between non-
necessarily unitalC∗-algebrasA andB. That is, if T : A → B is a surjective linear isometry,
then there exist a unitary element u in M(B) = {b ∈ B∗∗ : ba, ab ∈ B for all a ∈ B} and
a Jordan ∗-isomorphism � : A → B such that the identity in (6.10) holds for all x ∈ A .

A surjective linear isometry T between C∗-algebras A and B need not preserve, in
general, neither associative nor Jordan products. However, it is easy to check from (6.10) that
any such surjective linear isometry T preserves the triple products of the form {a, b, c} =
1
2 (ab∗c + cb∗a) (a, b, c ∈ A ), that is,

T {a, b, c} = {T (a), T (b), T (c)} for all a, b, c ∈ A .

Those linear maps preserving the above triple products are called triple homomorphisms.
The problem of studying those surjective linear isometries between real C∗-algebras was

addressed by Chu et al. [66], where, in a real tour de force, they obtained the following
conclusion.

Theorem 6.17 [66, Theorem 6.4] Let A and B be real C∗-algebras. Suppose that T : A → B
is a surjective linear isometry. Then T preserves triple products of the form {a, b, c} =
1
2 (ab∗c + cb∗a), that is,

T {a, b, c} = {T (a), T (b), T (c)} for all a, b, c ∈ A.

We can actually conclude that T is a triple isomorphism.

The original result obtained by Chu et al. does not include a description of the form
given by Kadison, Paterson, and Sinclair in (6.10). There is a method to derive this concrete
expression. First, we recall that given a bounded linear operator T between real C∗-algebras A
and B (or between real Banach spaces), finding a norm preserving complex linear extension
to the corresponding complexifications is not an easy task, which is actually impossible in
some cases (see Example 6.16). Let us present some case in which this norm preserving
extension is possible. The self-adjoint part Asa of a C∗-algebra A is a closed real subspace
of A , which is not, in general, a subalgebra of A . However, if we replace the associative
product by the Jordan product a◦b = 1

2 (ab+ba), which is commutative but non-necessarily
associative, Asa is a norm closed real Jordan subalgebra of A . Kadison [140, Theorem 2]
proved that every surjective (real) linear isometry T : Asa → Bsa, where B is another
C∗-algebra, admits an extension to a surjective complex linear isometry from A onto B.

Let us see how to apply Theorem 6.17 for our purposes. Let T : A → B be a sur-
jective isometry between two real C∗-algebras. Let Ac and Bc denote the corresponding
complexifications, and let τ1 and τ2 be conjugate-linear ∗-automorphisms of order-2 on Ac

and Bc, respectively, such that A = (Ac)
τ1 and B = (Bc)

τ2 . Since, by Theorem 6.17, T pre-
serves triple products of the form {a, b, c} = 1

2 (ab∗c + cb∗a), it can be easily checked that
Tc : Ac → Bc is a surjective complex linear mapping preserving triple products. Therefore,

Tc{x, x, x} = {Tc(x), Tc(x), Tc(x)} for all x ∈ Ac.

Let us observe that the Gelfand–Naimark axiom is equivalent to ‖x‖3 = ‖{x, x, x}‖ for all
x ∈ Ac. Thus the inequalities

‖Tc(x)‖3 = ‖{Tc(x), Tc(x), Tc(x)}‖ = ‖Tc{x, x, x}‖ ≤ ‖Tc‖‖x‖3
hold for all x ∈ Ac, which implies that Tc is nonexpansive. We similarly get ‖T−1c ‖ ≤ 1, and
thus Tc is an isometry. Therefore, there exist a unitary u in the multiplier algebra of Bc and a
Jordan ∗-isomorphism �̂ : Ac → Bc such that Tc(x) = u�̂(x) for all x ∈ Ac. By considering
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A∗∗ and B∗∗ as a real forms of A∗∗c and B∗∗c , via conjugate-linear ∗-automorphisms τ̂1 and
τ̂2 extending τ1 and τ2, respectively (see [66, Theorem 1.6 and its proof]), it is easy to check
that u ∈ B∗∗ actually lies in the multiplier algebra of B, and since the identity

u�̂(a) = T (a) = τ2T (a) = τ̂2(u)̂τ2�̂(a) = uτ̂2�̂(a)

holds for all a ∈ A, the mapping � = �̂|A : A → B is a (real linear) Jordan ∗-isomorphism
and T (a) = u�(a) for all a ∈ A.

It seems from the just surveyed results that, in what concerns surjective real linear isome-
tries, there is no substantial difference between real and complex C∗-algebras. We see in the
next section that this parallelism will vanish when considering more general structures like
real JB∗-triples.

6.7 Jordan structures and contractive projections

We have already caught a glimpse of the Jordan structure underlying a C∗-algebra A with
the triple product defined by {a, b, c} = 1

2 (ab∗c + cb∗a) (a, b, c ∈ A ). The main moti-
vation to introduce (complex) JB∗-triples resides in the results of holomorphic theory on
arbitrary complex Banach spaces and the seeking of a generalization of the celebrated Rie-
mann mapping theorem to classify bounded symmetric domains in complex Banach spaces
of dimension bigger than or equal to 2 (see, for example, the introduction and the main result
in [149]). Since this point of view is well referenced in the literature, we shall introduce our-
selves to the notion of JB∗-triples from another perspective and advance our incursion into
the topic of contractive projections. Let p be a rank-one projection in B(H ), whereH is an
infinite-dimensional complex Hilbert space and consider the mapping P : B(H ) → B(H )

defined by P(a) = pa that is a linear contractive projection whose image is H . It is well-
known from results due to Galé et al. [106] (see also the article [183]), that a C∗-algebra is
reflexive if and only if it is finite-dimensional. Therefore, the image of the projection P is
not a C∗-algebra. In other words, C∗-algebras are not stable under contractive projections.

In the commutative setting, Friedman and Russo [102, Theorem 2] proved that the range
of a norm-one projection P on a commutative C∗-algebra A has a ternary product structure
for the triple product defined by

{a, b, c}P := P(ab∗c) (a, b, c ∈ A ).

This provides a link with the notion of ternary ring of operators studied by Zettl [267]. In the
same article, they also described and characterized all such projections in terms of extreme
points of the unit ball of the image of the dual, and they gave necessary and sufficient
conditions for the range to be isometric to a C∗-algebra. Several years earlier, Arazy and
Friedman [9] gave an encyclopedicwork, a complete description of all contractive projections
on the C∗-algebra K (H) of all compact operators on a complex Hilbert space H and on its
dual space of all trace class operators on H .

Before presenting additional results, we introduce some notions and definitions. We recall
that a JC-algebra is a norm closed real Jordan subalgebra of the self-adjoint part of some
B(H ), where H is a complex Hilbert space (see [119, 256]). Concerning contractive pro-
jections, Effros and Størmer [86] observed that for each positive unital projection P on a
unital C∗-algebra A , the image of the hermitian part of A under P is itself a Jordan algebra
when provided with the new Jordan multiplication given by x ◦P y := P(x ◦ y).

A J∗-algebra, in the sense introduced by Harris [120], is a norm closed complex linear
subspace of B(H ,K ), the Banach space of all bounded linear operators from a complex
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Hilbert spaceH to a complexHilbert spaceK , which is closed under the product a �→ aa∗a.
A J∗-algebra is a concrete example of a JB∗-triple, in the sense we will see in the next
paragraph, and is also known under the name of JC∗-triple. Clearly, the class of J∗-algebras
contains all C∗-algebras, all complexHilbert spaces, and the spaces B(H , K ). The next step in
our story takes us to another work by Friedman and Russo. In [103], these authors proved that
the class of J∗-algebras is stable under the action of norm-one projections. More concretely,
if P is a contractive projection on a J∗-algebra M , then P(M) is a Jordan triple system
with triple product {a, b, c}P = 1

2 P(ab∗c + cb∗a) (a, b, c ∈ P(M)); and (P(M), {·, ·, ·}P )

admits a faithful representation as a J∗-algebra.
In 1984, Kaup [150] gave an elegant and sharp example of how holomorphy can be

applied in functional analysis by proving that the class of JB∗-triples is also stable under
contractive projections. The result was also independently established by Stachó [247]. We
have naturallymet the elements in the exceptional class of complexBanach spaces called JB∗-
triples, which were originated in holomorphic theory, and whose definition, from the point
of view of functional analysis, can be stated with the algebraic-analytic axioms presented
below.

A JB∗-triple is a complex Banach space E admitting a continuous triple product {·, ·, ·} :
E×E×E → E, which is conjugate-linear in the central variable and symmetric and bilinear
in the outer variables and satisfies the following conditions:

(a) The triple product satisfies the Jordan identity

L(a, b)L(x, y) = L(x, y)L(a, b)+ L(L(a, b)x, y)− L(x, L(b, a)y), (6.11)

for all a, b, x, y ∈ E , where L(a, b) is the linear operator on E defined by L(a, b)x =
{a, b, x};

(b) For each a ∈ E , the mapping L(a, a) : E → E is a hermitian operator with nonnegative
spectrum;

(c) ‖{a, a, a}‖ = ‖a‖3 for all a ∈ E .
We recall that a bounded linear operator T on a complex Banach space X is said to be
hermitian if ‖ exp(iαT )‖B(X )

= 1 for all real α, that is, exp(iαT ) is a surjective linear
isometry for all real α (see [46, §10 and Corollary 10.13] or page 87 for the connections with
the numerical range). This is the definition found by Kaup [149] in the study of bounded
symmetric domains in arbitrary complex Banach spaces.

We have already commented that all J∗-algebras—and in particular, all C∗-algebras— are
examples of JB∗-triples with the triple product defined by

{a, b, c} = 1

2
(ab∗c + cb∗a). (6.12)

Let us observe that for this triple product, axiom (c) in the definition of JB∗-triple writes in
the form ‖aa∗a‖ = ‖a‖3, which is equivalent to the Gelfand–Naimark axiom.

Several Jordan structures have been introduced to provide a mathematical model for
the algebra of observables in quantum mechanics, which is the case of Jordan algebras
introduced by Jordan, von Neumann, and Wigner [136, 137]. Friedman [100] presented
several examples in theoretical physics, where JB∗-triples theory plays an essential role. For
example, theMöbius–Potapov–Harris transformations (see [120]) of the automorphismgroup
of a bounded symmetric domain occur as transformations of signals in an ideal transmission
line and as velocity transformations between two inertial systems in special relativity. The
velocity transformation is similar to a conformal map, and the operators occurring in these
transformations have a natural physical meaning. The just quoted author struggles to present
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the theory of Jordan algebraic structures (especially, JB∗-triples) from the point of view of
mathematical physics (special relativity, spinors, and foundational quantum mechanics), in
a clear exposition suitable both for experts and nonexperts in the monograph [101]. Besides
the classical applications of Jordan theory in well-established areas of physics, like special
relativity including fermions and quantum mechanics, Jordan algebras are also employed in
string theory, quantum gravity, and M-theory; the interested reader may consult the book of
Iordănescu [131].

A real or complex Jordan algebra is a non-necessarily associative algebra B over R or C

whose multiplication, denoted by ◦, is commutative and satisfies the Jordan identity:

(x ◦ y) ◦ x2 = x ◦ (y ◦ x2) for all x, y ∈ B. (6.13)

For each element a in a Jordan algebra B, the symbol Ua will stand for the linear mapping
on B defined by

Ua(b) := 2(a ◦ b) ◦ a − a2 ◦ b (b ∈ B).

A real or complex Jordan Banach algebra B is a real or complex Jordan algebra together
with a complete norm satisfying ‖a ◦ b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ B. A JB-algebra is a real
Jordan Banach algebra J satisfying the following axioms:

(i) ‖a2‖ = ‖a‖2;
(ii) ‖a2‖ ≤ ‖a2 + b2‖ for all a, b ∈ J .

A complex Jordan Banach algebra B admitting an involution ∗ satisfying

‖Ua(a
∗)‖ = ‖a‖3, (6.14)

for all a ∈ B is called a JB∗-algebra (see [263], [57, Definition 3.3.1]). As in the case of
C∗-algebras, the involution in a JB∗-algebra is automatically a conjugate-linear isometry (see
[263, Lemma 4] and also [57, Proposition 3.3.13]).

A non-necessarily associative algebra A, with product denoted by juxtaposition, is called
flexible if it satisfies the “flexibility” condition (ab)a = a(ba), for all a, b ∈ A (cf. [57,
Definition 2.3.54]). The algebra A is said to be a non-commutative Jordan algebra (cf. [57,
Definition 2.4.9]) if it is flexible and a Jordan-admissible algebra (i.e., A is a Jordan algebra
when equipped with the natural Jordan product a ◦ b = 1

2 (ab + ba)).
In coherence with the notation in the associative setting of C∗-algebras, the self-adjoint

part of a JB∗-algebra B will be denoted by Bsa . It is known that (real) JB-algebras are
precisely the self-adjoint parts of JB∗-algebras (see [261]). Any JB∗-algebra also admits a
structure of a JB∗-triple when equipped with the triple product defined by

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x − (x ◦ z) ◦ y∗, (6.15)

and in particular, Ua(b) = {a, b∗, a} (see [51, Theorem 3.3]). The reader interested in
knowing additional details may consult the monographs [57, 119].

As in [57, Definition 3.3.1] a non-commutative JB∗-algebra is a complete normed non-
commutative Jordan complex ∗-algebra (sayA ) satisfying the axiom in (6.14). JB∗-algebras
are precisely those non-commutative JB∗-algebras which are commutative. The involution
of every non-commutative JB∗-algebra is an isometry (see [57, Proposition 3.3.13]). Non-
commutative JB∗-algebras include all alternative C∗-algebras. The recent monographs [57,
58] contain a thorough study on the theory of non-commutative JB∗-algebras, JB∗-triples, and
their real counterparts. For example, in [57, Corollary 3.4.7]we can find aRusso-Dye-Palmer-
type theorem for unital noncommutative JB∗-algebras. Each non-commutative JB∗-algebra
becomes a JB∗-triple under its own norm and the natural triple product [57, Theorem 4.1.45].
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A JBW∗-triple is a JB∗-triple that is also a dual Banach space. A triple version of the
celebrated Sakai’s theorem established by Barton and Timoney [28], asserts that each JBW∗-
triple admits a unique (isometric) predual and that its triple product is separately weak∗
continuous.

Now, since the notion of JB∗-triple has been presented, we can state the previously
advanced result on contractive projections.

Theorem 6.18 (Contractive projection principle, [150, 247]) Let P : E → E be a contractive
projection on a JB∗-triple. Then P(E) is a JB∗-triple with respect to the triple product

{x, y, z}P := P{x, y, z} (x, y, z ∈ P(E)).

In the previous theorem, the image of P need not be a JB∗-subtriple of E . However, if
P : M → M is a weak∗-continuous contractive projection on a JBW∗-triple, then there
exists a JBW∗-subtriple C of M such that C is linearly isometrically isomorphic to P(M),

and such that C is the image of a weak∗-continuous projection on M (see [84, §5] or [104,
Theorem 2]).

A projection P on a Banach space X is called bicontractive if ‖P‖ ≤ 1 and ‖I d −
P‖ ≤ 1. For each linear isometry of order-2, T , on X , the mapping P = 1

2 (I d + T )

is a bicontractive projection. Friedman and Russo [104] established that in the setting of
JB∗-triples the reciprocal statement is also true.

Theorem 6.19 [104, Proposition 3.1 and Theorem 4] Let P : E → E be a bicontractive
projection on a JB∗-triple. Then P(E) is a JB∗-subtriple of E . Furthermore, there exists a
surjective linear isometry of order-2 T : E → E satisfying P = 1

2 (I d + T ). The same
conclusion holds for duals of JB∗-triples and preduals of JBW∗-triples.

We will see in the next section that the contractive projection principle does not hold for
real JB∗-triples. Bicontractive projections on real C∗-algebras and real JB∗-triples have not
been fully studied.

6.8 Back to surjective linear isometries

JB∗-triples constitute a suitable setting to study real forms. Few classes of complex Banach
spaces offer a better algebraic-analytic structure to describe surjective linear isometries. We
observed in Sect. 6.6 that each surjective linear isometry between real or complexC∗-algebras
is a triple isomorphism for the natural triple product associated with C∗-algebras given in
(6.12). An outstanding generalization of the commented results crystallized in a Banach–
Stone type theorem for JB∗-triples obtained by Kaup (see [149, Proposition 5.5]).

Theorem 6.20 (Kaup–Kadison–Banach–Stone theorem, [149, Proposition 5.5])Let T : E →
F be a linear bijection between JB∗-triples. Then T is an isometry if and only if T is a triple
isomorphism.

Alternative proofs of this result were given by Dang et al. [73] and by Fernández-Polo,
Martínez, and the third author of this paper [91] (see also [32, Corollary 3.4]).

It should be noted here that the “only if” implication in Theorem 6.20 does not hold
when the mapping T merely is a real linear bijection (see [72, Remark 2.7]). However, every
surjective real linear isometry T : E → F between complex JB∗-triples preserves cubes of
elements (i.e., T {x, x, x} = {T (x), T (x), T (x)} for all x ∈ E), and if we further assume
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that E∗∗ does not have a nontrivial Cartan factor of rank-one as a summand , then T is a
triple isomorphism (see [72, Proposition 1.1 and Theorem 3.1] or [132, Proposition 3.8])
—actually, E is the direct sum of two orthogonal JB∗-subtriples E1 and E2 such that T |E1 is
a (complex) linear and T |E2 is a conjugate-linear homomorphism—.

If E is a JB∗-triple, then the complex conjugate E of E , constructed in Sect. 4.1, is also
a JB∗-triple. Thus each conjugation τ (i.e., a conjugate-linear isometry of period-2) on E
must preserve triple products (see also [72, Corollary 1.2]), and the real form Eτ = {x ∈ E :
τ(x) = x} is a norm closed real subtriple of E . Contrary to the case of real C∗-algebras, no
additional assumptions on τ are required. This is an equivalent re-statement of the definition
of real JB∗-triple. As defined in [132], a real Banach space, E , together with a trilinear map
{·, ·, ·} : E × E × E → E is called a real JB∗-triple if there exist a JB∗-triple, E , and a real
linear isometry, λ : E → E preserving triple products, that is,

λ{x, y, z} = {λ(x), λ(y), λ(z)}
for all x, y, z in E . As commented above, this is equivalent to say that E is a real form of a
complex JB∗-triple under a conjugation (see [132, Proposition 2.2]). A real JBW∗-triple is a
real JB∗-triple, which is also a dual Banach space. The original definition of real JBW∗-triples
in [132, Definition 4.1 and Theorem 4.4] requires an extra axiom assuming that the triple
product is separately w∗-continuous. This extra axiom was shown to be superfluous in [180].

Clearly, every real C∗-algebra is a real JB∗-triples; real and complex Hilbert spaces, J∗-
algebras, JB∗-algebras, and JB∗-triples are also real JB∗-triples. Further examples include
the self-adjoint parts of C∗-algebras and all JB-algebras.

Unfortunately, an equivalent definition of real JB∗-triples in terms of a set of algebraic-
analytic axioms, like the one we have for real C∗-algebras in Theorem 6.9(3)–(6), is not
known. This is actually one of the current open problems in the theory of JB∗-triples. The
best positive partial answers were contained in [74, 211] in the cases of commutative triples
and real JB∗-triples admitting a unitary element, respectively. Let us revisit these concrete
results.

A real Jordan Banach triple is a real Banach space A together with a continuous trilinear
product

A × A × A → A, (x, y, z) �→ {x, y, z},
which is symmetric in the outer variables and satisfies the Jordan identity seen in (6.11). A
similar notion works in the complex setting.

A real or complex Jordan Banach triple A is called commutative or abelian if the identity

{{x, y, z}, u, v} = {x, y, {z, u, v}} = {x, {y, z, u}, v}
holds for all x, y, z, u, v ∈ A. An element u ∈ A is said to be unitary if the mapping L(u, u)

coincides with the identity map on A. In this case, A is a unital Jordan ∗-algebra with product
x ◦u y := {x, u, y} and the involution x∗u := {u, x, u} (x, y,∈ A).

A first attempt to find an axiomatic definition of real JB∗-triples was conducted by Dang
and Russo [74]. These authors proposed the following definition.

Definition 6.21 [74, Definition 1.3] A J∗B-triple is a real Banach space E equipped with a
structure of real Jordan Banach triple satisfying the following axioms:

(J∗B1) ‖{x, x, x}‖ = ‖x‖3 for all x in E;
(J∗B2) ‖{x, y, z}‖ ≤ ‖x‖ ‖y‖ ‖z‖ for all x, y, z in E;
(J∗B3) σB(E)(L(x, x)) ⊆ [0,+∞) for all x ∈ E ;
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(J∗B4) σB(E)(L(x, y)− L(y, x)) ⊆ iR for all x, y ∈ E .

Here, the symbol σB(E)(T ) stands for the spectrum of T ∈ B(E) when the latter is regarded
as a unital real Banach algebra (see Sect. 6.1).

Each closed subtriple of a J∗B-triple is a J∗B-triple (see [74, Remark 1.5]). The class of
J∗B-triples encompasses all real and complex C∗-algebras and all real and complex JB∗-
triples. Furthermore, complex JB∗-triples are precisely those complex Jordan Banach triples
whose underlying real Banach space is a J∗B-triple (see [74, Proposition 1.4]). The class of
(real) J∗B-triples is very huge.

In the setting of commutative J∗B-triples, Dang and Russo proved that their defini-
tion coincides with those mathematical objects called real JB∗-triples by Isidro, Kaup, and
Rodríguez-Palacios [132] one year later.

Theorem 6.22 [74, Theorem 3.11] Let E be a commutative Jordan Banach triple. Then the
following statements are equivalent:

(a) E is a J∗B-triple E;
(b) The complexification of E is a complex JB∗-triple in some norm extending the norm on

E, that is, E is a real JB∗-triple.

The proof of the previous result is based on a local “Gelfand” theory for commutative
Jordan Banach triple systems. The questions of whether the complexification of every J∗B-
triple is a complex JB∗-triple in some norm extending the original norm, and if the second
dual of a J∗B-triple is a J∗B-triple with a separately weak∗-continuous triple product, remain
open (see [74, Problems 1 and 2 in p. 137]). One can find positive partial answers to these
questions in noncommutative structures.

We recall first some definitions. Let B be a JB∗-algebra. Clearly, the involution on B
defines a conjugate-linear isometric Jordan ∗-automorphism of period-2 on B, and the real
form Bsa = {a ∈ B : a∗ = a} is precisely a (real) JB-algebra. If we replace ∗ by a
conjugate-linear isometric Jordan ∗-automorphism of period-2 onB, then the corresponding
real form is called a real JB∗-algebra. For these concrete models, Alvermann [5] found the
following axiomatic definition: A J∗B-algebra, in the sense of Alvermann, is a real Jordan
algebra A with unit and an involution ∗ equipped with a complete algebra norm satisfying
the following axioms:

� ‖Ux (x∗)‖ = ‖x‖3;
� ‖x∗ ◦ x‖ ≤ ‖x∗ ◦ x + y∗ ◦ y‖ for all x, y ∈ A.

Alvermann [5, Theorem 4.4] proved that the norm of each J∗B-algebra A can be extended
to its complexification Ac = A + i A making the latter a JB∗-algebra. Consequently, every
J∗B-algebra is a real form of a JB∗-algebra under a conjugate-linear isometric Jordan ∗-
automorphism of period-2.

A (real or complex) numerical range space is a (real or complex) Banach spaceX with a
fixed norm-one element u ∈ X . The set of states of X relative to u, D(X , u), is defined as
the nonempty (by virtue of the Hahn–Banach theorem), convex, and weak∗-compact subset
of X ∗ defined as

D(X , u) := {φ ∈ X ∗ : ‖φ‖ = 1, φ(u) = 1}.
For x ∈ X , the numerical range of x relative to u, V (X , u, x), is defined as the set
V (X , u, x) := {φ(x) : φ ∈ D(X , u)}. The numerical radius of x relative to u, v(X , u, x),
is given by

v(X , u, x) := max{|λ| : λ ∈ V (X , u, x)}.
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It is well-known that a bounded linear operator T on a complex Banach spaceX is hermitian
if and only if V (B(X ), I d, T ) ⊆ R (see [46, Corollary 10.13]). The numerical index of the
numerical range space (X , u) is defined as

n(X , u) = n(X ) := inf{v(x) : x ∈ X , ‖x‖ = 1}
= max{α ≥ 0 : α‖x‖ ≤ v(x) for all x ∈ X }.

The element u is called a geometrically unitary element of X if and only if n(X , u) > 0. See
[57, §2.1] for a complete survey on numerical ranges.

Let us revisit the connections with some previous results. As we have already seen in
(4.2), for each complex Hilbert space H , the inequality

1

2
‖T ‖ ≤ w(T ) ≤ ‖T ‖ holds for all T ∈ B(H ),

where w(T ) stands for the spatial numerical radius of T (see [45, §9, Theorems 3 and 4] and
page 92 for the connections and coincidence of the spatial numerical radius of an operator
T ∈ B(X ) and its numerical range in (B(X ), I dX )). The celebrated Bohnenblust–Karlin
theorem [44] proves that ifA is a norm-unital (associative) Banach algebra with unit 1, then
the numerical radius is a norm onA , which is equivalent to the original norm of this Banach
algebra. Furthermore, n(A , 1) ≥ 1

e , and thus

v(a) ≤ ‖a‖ ≤ e v(a)

for all a ∈ A (see [203, Theorem 2.6.4]). Subsequent results show that the hypothesis
concerning the associativity ofA in theBohnenblust–Karlin theoremcan be actually replaced
by aweaker condition. Namely, suppose thatB is a norm-unital (non-necessarily associative)
normed complex algebra. Then n(B, 1) ≥ 1

e , and thus

v(a) ≤ ‖a‖ ≤ e v(a)

for all a ∈ B (see [57, Proposition 2.1.11]). For real Banach algebras, this conclusion is not
true, in general. A version of the Bohnenblust–Karlin theorem for unital real Banach algebras
was explored by Ingelstam [128].

We recall that a real algebra A is of complex type if it is the realization of a complex
algebra A , that is, A = Ar . We say that A is of real type if it is not of complex type. An
element a in A is called right (left) quasi-regular if there exists a b such that a+ b− ab = 0
(a+b−ba = 0). A real algebra A is of strongly real type if the element−x2 is quasi-regular
for every x ∈ A.

Ingelstam [128, Theorem 2] proved that the unit element is a vertex point of a unital real
Banach algebra A if and only if exp(αx) is unbounded as a function of α (real) for each
x �= 0. The author also showed that if x �= 0 belongs to the radical of a real Banach algebra,
then exp(αx) is unbounded, and that each real Banach algebra of strongly real type with
identity has the vertex property (see [128, Theorems 3 and 4]).

We return now to the setting of Jordan Banach triple systems. It is shown in [211] that,
by adding an additional axiom to the definition of J∗B-triples, we can actually conclude that
the previously commented question posed by Dang and Russo admits a positive answer in
the case of J∗B-triples admitting a unitary element.

Theorem 6.23 [211, Theorem 2.6] Let E be a J∗B-triple admitting a unitary element u. Then
the following assertions are equivalent:

(a) E is a numerically positive real J∗B-triple, that is, E satisfies the following additional
axiom: V (B(E), I d, L(x, x)) ⊆ [0,+∞) for all x ∈ E;
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(b) E is a J∗B-algebra or a unital real JB∗-algebra with product x ◦u y := {x, u, y} and
involution x∗u := {u, x, u};

(c) E is a real JB∗-triple, that is, the complexification of E is a complex JB∗-triple in some
norm extending the original norm on E.

The question of whether every numerically positive J∗B-triple admitting no unitary ele-
ments, is a real JB∗-triple remains open.

We can now resume our narrative about contractive projections on real structures. For
commutative real C∗-algebras, it was shown by Chu et al. that the image of a contractive
projection is a real JB∗-triple.

Theorem 6.24 [66, Proposition 7.4] Let P be a contractive projection on a commutative real
C∗-algebra A. Then P(A) is a real JB∗-triple for the triple product defined by {a, b, c}P =
P{a, b, c} for all a, b, c ∈ P(A).

The reader should not get the impression that all previously known results for surjective
linear isometries and contractive projections have been confirmed for real C∗-algebras. As
stated by Chu et al. [66, Problem 7.5], the following remains a challenging and important
open problem in the study of real JB∗-triples: Is the range of a contractive projection on a
real C∗-algebra isometric to a linear subspace of some real C∗-algebra, closed for the natural
triple product associated with each J∗-algebra?

It had been conjectured that, as in the complex setting, the image of a real JB∗-triple
under a contractive linear projection is a real JB∗-triple with respect to the projected product.
However, in 2002, Stachó [248, Proposition 2.1] found a counterexample of a contractive
real linear projection on a four-real-dimensional JB∗-triple whose image is not a real JB∗-
triple for the projected triple product because the projected triple product violates the Jordan
identity. Let us observe that the counterexample found by Stachó is a rank-one JB∗-triple.
We do not know whether the result holds for real JB∗-triples not admitting rank-one real or
complex Cartan factors as summands in their bidual spaces.

Wehave already seenhow rank-oneCartan factors and JB∗-triples produce subtle problems
to determine an algebraic characterization of surjective linear isometries (see [72, Remark
2.7]) and contractive projections. In what concerns surjective linear isometries between real
JB∗-triples, this seems to be the unique obstacle to getting triple isomorphisms. We conclude
this article with the most general answer known in this line until this moment.

Theorem 6.25 [92, Theorem 3.2 and Corollary 3.4] Let T : E → F be a surjective linear
isometry between two real JB∗-triples. Suppose that E∗∗ does not contain (real or complex)
rank-one Cartan factors as direct summands in its atomic part. Then T is a triple isomor-
phism. Consequently, every surjective linear isometry between two J∗B-algebras is a real
triple isomorphism.

Let us observe that Theorem 6.25 implies that under the corresponding hypotheses, each
surjective linear isometry T : E → F admits an extension to a surjective complex linear
isometry between the complexifications.

Another interesting real structure worth to be considered by itself is the class of real non-
commutative JB∗-algebras. As well as real C∗-algebras and real JB∗-algebras are defined
as closed real ∗-subalgebras of (complex) C∗- and JB∗-algebras, respectively, a real non-
commutative JB∗-algebra is a closed real ∗-subalgebra of a (complex) non-commutative
JB∗-algebra (cf. [57, Definition 4.2.45]). Every real non-commutative JB∗-algebra becomes
a real JB∗-triple under its own norm and the same triple product employed in the complex
case [57, Example 4.2.51].
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A norm-one element x in a real or complex Banach space X is called a vertex of the
closed unit ball of X (respectively, a geometric unitary of X ) if the set D(X , x), of all
states of X relative to x, separates the points of X (respectively, spans X ∗).

Many results have been derived from the celebrated paper of Kadison [139], Bochnak
and Siciak [42], on surjective linear isometries of C∗-algebras; one of them is an implicit
Banach space characterization of unitary elements in unital C∗-algebras. It is well explained
by Rodríguez-Palacios [225] that the mentioned characterization can be deduced from results
of Kadison as well as Bohnenblust and Karlin [44], and an explicit statement was included
by Akemann and Weaver [3].

Theorem 6.26 [3, Theorem 2], [225, Theorem 2.1] Let A be a unital C∗-algebra, and let u
be a norm-one element of A . Then the following conditions are equivalent:

(1) u is unitary;
(2) u is a geometric unitary of A ;
(3) u is a vertex of the closed unit ball of A .

An element u in a real or complex JB∗-triple E is called unitary tripotent or unitary if
L(u, u) is the idenity mapping on E , that is, {u, u, x} = x for all x ∈ E . This definition
produces no contradiction when unital JB∗-algebras are regarded as JB∗-triples because
unitary elements in a unital JB∗-algebra A are precisely the unitary tripotents in A when
the latter is regarded as a JB∗-triple (cf. [51, Proposition 4.3]).

As shown in [225, Theorem 3.1] and [57, Theorem 4.2.24], the conclusion in Theorem
6.26 remains true when the C∗-algebra A is replaced by a JB∗-triple. However, in the real
setting the conclusions are rather different.

The case of JB-algebras was treated by Leung, Ng, and Wong [165]. An element s in a
unital JB-algebra is called a symmetry if s2 = 1.

Theorem 6.27 [165, Theorem 2.6], [57, Proposition 3.1.15] Suppose x is a norm-one element
in a JB-algebra N, then the following statements are equivalent:

(a) x is a geometric unitary in N;
(b) x is a vertex of the closed unit ball of N;
(c) x is an isolated point of the set Symm(N ) of all symmetries in N (endowed with the

norm topology);
(d) x is a central unitary in N;
(e) The multiplication operator Mx : z �→ x ◦ z satisfies M2

x = idN ,

In the case of real JB∗-triples, it is shown in [91] that the existence of a geometrically
unitary element in a real JB∗-triple E is equivalent to the fact that E is triple-isomorphic to
a unital JB-algebra.

Theorem 6.28 [91, Proposition 2.8], [57, Theorem 4.2.53] Let E be a real JB∗-triple, and
let u be a norm-one element in E. Then the following conditions are equivalent:

(1) u is a geometrically unitary element of E;
(2) u is a vertex of the closed unit ball of E;
(3) The Banach space of E, endowed with the product x ◦ y := {x, u, y}, becomes a JB-

algebra with unit u.

A unitary element in a general real JB∗-triple need not be, in general, a vertex nor a geo-
metric unitary. The previous theorem should be compare with the conclusions of Ingelstam’s
version of the Bohnenblust–Karlin theorem for unital real Banach algebras (see page 88).
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Certain classical properties of C∗- and JB∗-algebras have been shown to be true for real
non-commutative JB∗-algebras. For example, every Jordan ∗-homomorphism between real
non-commutative JB∗-algebras is automatically contractive. Furthermore, every Jordan ∗-
monomorphism between real non-commutative JB∗-algebras is an isometry [58, Proposition
5.1.47]. Each closed ideal of a real non-commutative JB∗-algebra is ∗-invariant or self-adjoint
(cf. [58, Proposition 5.1.48]). Actually, closed ideals of a real non-commutative JB∗-algebra
areM-ideals [58, Proposition 5.1.53]. A version of Sakai’s theorem for real non-commutative
JB∗-algebra, in the line of [167, Theorem6.1.7], [133, Theorem1.11] and [180], is established
in [58, Proposition 5.7.62].

LetX be a real or complexBanach space. The spatial numerical range of such an operator
T ∈ B(X ) is the subset V (T ) ⊆ K defined by

V (T ) := {ϕ(T (x)) : x ∈ X , ϕ ∈ X ∗, 1 = ‖x‖ = ‖ϕ‖ = ϕ(x)}.
The closed convex hull of the spatial numerical range coincides with the numerical range
of T in the (B(X ), I dX ), and thus the numerical radius of T in (B(X ), I dX ) coincides
with the supremum of the modulus of those elements in its spatial numerical range (cf. [45,
Theorems 9.3 and 9.4] and [57, §2.1 ]). The numerical index of the space X , n(X ), is
defined as

n(X ) = inf{v(T ) : T ∈ B(X ), ‖T ‖ = 1}.
Several isomorphic properties of real infinite-dimensional Banach spaces with numerical

index 1 were obtained by López, Martín and Payá in [173]. The next result is a consequence
of the just quoted study.

Theorem 6.29 [173]Every reflexive real Banach space with numerical index 1 must be finite-
dimensional.

The result by López, Martín and Payá is deeper and shows that an infinite-dimensional
real Banach space with numerical index 1 satisfying the Radon-Nikodým property contains
�1 [173, Theorem 3]. In particular a reflexive or quasi-reflexive real Banach space cannot be
re-normed to have numerical index 1, unless it is finite-dimensional.

For complex spaces, the existence of reflexive infinite-dimensional Banach spaces with
numerical index 1 is a long standing open problem. The problem is related to the validity of
the technical Proposition 2 in [173] in the complex setting.
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